- Research
- Open Access
- Published:
The \((k,s)\)-fractional calculus of k-Mittag-Leffler function
Advances in Difference Equations volume 2017, Article number: 118 (2017)
Abstract
In this paper, we introduce the \((k, s)\)-fractional integral and differential operators involving k-Mittag-Leffler function \(E_{k,\rho,\beta}^{\delta}(z)\) as its kernel. Also, we establish various properties of these operators. Further, we consider a number of certain consequences of the main results.
1 Introduction
Applications and importance of fractional calculus have recently been paid attention to to an ever increasing extent. In mathematical analysis, the fractional calculus is a very useful tool to carry out differentiations and integrations with the real numbers or with the complex numbers powers of the fractional calculus (for example, differential or integral operators). Miller and Ross [1] and Kiryakova [2] described a complete description of fractional calculus operators along with some of their properties and applications can be found in the research of monographs. It is quite well known that there are a number of different definitions of fractional integrals and their applications. Each definition has its own advantages and is appropriate for applications to a different type of problems. Lately, Atangana and Baleanu [3] have introduced one more dimension to this study by proposing a derivative that is based upon the generalized Mittag-Leffler function, since the Mittag-Leffler function is more appropriate in expressing nature than a power function. For the more recent improvements of fractional calculus, the reader may refer to [4–6]. Integral inequalities are taken up to be significant as these are helpful in the study of various courses of differential and integral equations (see [7]). During the past several years, several researchers have obtained various fractional integral inequalities comprising the different fractional differential and integral operators. This subject has received attention of various researchers and mathematicians during the last few decades. The k-symbols are well known from many references related to finite difference calculus (see, [8–11]). Recently, k-fractional integral operators have been considered in the literature by various authors. For this purpose, we start with the following properties in the literature. DÃaz and Pariguan (see [12]) have introduced the Pochhammer k-symbols and k-gamma function, which are defined as
and
In the same paper, they defined the relations
and
Mubeen and Habibullah [13] introduced a variant of fractional integrals which was based on the k-gamma function, called the k-fractional integral, and gave its applications. The k-fractional integral defined is as
Clearly, when \(k=1\) then \(I_{k}^{\mu}(f(x))\) leads to the result of the Riemann-Liouville (R-L) fractional integration formula (see [14]); we have
Also, they defined the following formulas of the k-fractional integral:
and
Recently Sarikaya et al. [15] have introduced the Riemann-Liouville \((k,s)\)-fractional integral of order \(\mu>0\) is defined as
where \(x\in[a,b]\), \(k>0\) and \(s\in\mathbb{R}\backslash\{-1\}\). In the same paper, they defined the following result:
The applications of fractional calculus found in many recent papers (see [16–19]). Recently, the researchers established certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals and \((k,s)\)-Riemann-Liouville fractional integral inequalities for continuous random variables by using the idea of \((k,s)\)-fractional integrals [20–23].
The Swedish mathematician Mittag-Leffler [24] has defined the Mittag-Leffler function, which is denoted and defined by the following series:
Wiman [25] introduced a generalized form of the Mittag-Leffler function, which is defined as
For more details of Mittag-Leffler functions defined in (11) and (12) such as their various generalizations and applications in different fields, the reader may refer to [4, 14, 26, 27] and in particular the work of Saigo and Kilbas [28]. In recent years, the Mittag-Leffler function (11) and some of its different generalizations and applications have been considered numerically in the complex plane \(\mathbb{C}\) (see [29, 30]). Prabhakar [31] have introduced a new generalization of the Mittag-Leffler function \(E_{\rho, \beta}(z)\).
Recently many researchers have investigated the importance and great consideration of Mittag-Leffler function in the theory of special functions for exploring some of their generalizations and applications. Extensions for these functions are found in [32]. Srivastava and Tomovski [6] have defined further the generalized form of the Mittag-Leffler function \(E_{\rho, \beta}^{\delta}(z)\).
Recently Dorrego [33] have introduced the k-Mittag-Leffler function \(E_{k,\rho,\beta}^{\delta}(z)\) (where \(k>0\)) defined as
where \(\rho,\beta,\delta\in\mathbb{C}\), \(\Re(\rho)>0\), \(\Re(\beta)>0\), \(\Re(\delta)>0\), \(k>0\) and \((\delta)_{n,k}\) is the Pochhammer k-symbol defined in (1).
2 \((k,s)\)-fractional integrals and differentials of k-Mittag-Leffler functions
In this section, we introduce \((k,s)\)-fractional integral and differential operators which involve k-Mittag-Leffler function \(E_{k,\rho,\beta}^{\delta}(z)\) as its kernel. In this continuation of the study of \((k,s)\)-fractional calculus, we define integral operators in terms of \((k,s)\) as follows.
Definition 1
If \(k>0\) and \(\rho, \delta, \omega\in\mathbb{C}\), \(\Re(\rho)>0\), \(\Re (\beta)>0\), \(\Re(\delta)>0\), then
where \(x>\rho\). Substituting \(s=0\), then (14) reduces to the operator
see [34]. In fact, when \(\omega=0\) and \(k=1\) then the integral operator in (15) reduces to the well-known Riemann-Liouville fractional integral operator defined as
Here, we introduce \((k,s)\)-fractional order integrations and differentiations which are defined by the integral operators \({}_{k}^{s}I_{a+}^{\mu}\) and \({}_{k}^{s}I_{\beta-}^{\mu}\) and \((k,s)\)-fractional differential operators \(D_{\rho+,k}^{\mu}\) and \(D_{\rho-,k}^{\mu}\). Also, we called these integral operators \({}_{k}^{s}I_{a+}^{\mu}\) and \({}_{k}^{s}I_{\beta-}^{\mu}\), they are the left and right-sided Riemann-Liouville \((k,s)\)-fractional integral operators, respectively. Similarly, the operators \({}_{k}^{s}D_{a+,k}^{\mu }\) and \({}_{k}^{s}D_{a-}^{\mu}\) are, respectively, the left- and right-sided Riemann-Liouville \((k,s)\)-fractional differential operators. To define the left- and right-sided Riemann-Liouville \((k,s)\)-fractional integral operators, first we define the well-known Lebesgue measurable integral of a real or complex valued function, which is denoted and defined as
Definition 2
For \(\phi(x)\in L(\rho,\beta)\); \(\mu\in\mathbb{C}\); \(\Re(\mu)>0\) and \(k>0\), then we define the R-L left-sided \((k,s)\)-fractional integral operator of order μ as
Similarly, we can define the R-L right-sided \((k,s)\)-fractional integral operator of order μ as
Definition 3
For \(k>0\); \(s\in\mathbb{R}\backslash\{-1\}\); \(\mu\in\mathbb{C}\), \(\Re (\mu)>0\) and \(n=[\Re(\mu)]+1\), then the Riemann-Liouville left- and right-sided \((k,s)\)-fractional differential operators are defined as
respectively. Substituting \(k=1\) and \(s=0\), then the Riemann-Liouville left- and right-sided \((k,s)\)-fractional integrals and derivatives will reduce to the well-known Riemann-Liouville left-sided and right-sided fractional integrals and derivatives see ([14, 35]).
Definition 4
The Riemann-Liouville \((k,s)\)-fractional derivative operator \({}_{k}^{s}D_{a+}^{\mu}\) defined in (18) is generalized by the \((k,s)\)-fractional derivative operator is denoted by \({}_{k}^{s}D_{a+}^{\mu,\nu}\) where μ is the order such that \(0<\mu<1\) and ν is the type of this generalized \((k,s)\)-fractional derivative operator such that \(0<\nu<1\), we define the generalized \((k,s)\)-fractional derivative operator with respect to x as follows:
Obviously, when \(\nu=0\) then (22) reduces to the Riemann-Liouville \((k,s)\)-fractional derivative operator \({}_{k}^{s}D_{a+}^{\mu}\) (18).
Lemma 1
For \(k>0\), the following result for \((k,s)\)-fractional derivative operator \(D_{\rho+,k}^{\mu,\nu}\) defined in (22) holds true:
with \(x>\rho\), \(0<\mu<1\), \(0<\nu<1\) and \(\Re(\lambda)>0\).
Proof
We obtain from equation (10)
and
which, by applying the relation given in (3), yields
which is the desired proof. □
Theorem 1
For \(k>0\), the following result always holds true:
where \(s\in\mathbb{R}\backslash\{-1\}\), \(\mu, \rho, \beta, \delta\in \mathbb{C}\), \(\Re(\mu)>0\) and \(\Re(\beta)>0\), \(\Re(\rho)>0\), \(\Re(\delta)>0\).
Proof
The proof is obvious by applying \((\frac{1}{x^{\frac{s}{m}}}\frac {d}{dx})^{m}\) where \(m=1,2,\ldots\) . □
Theorem 2
Suppose \(k>0\), \(x>a \ (a\in\mathbb{R_{+}}=[0,\infty))\) and \(\rho, \beta, \delta, \omega\in\mathbb{C}\), \(\Re(\beta)>0\), \(\Re(\rho)>0\), \(\Re(\delta )>0\), \(\Re(\mu)>0\), then
and
Proof
Substituting \(\tau^{s+1}=a^{s+1}+y(x^{s+1}-a^{s+1})\), this implies \(\tau ^{s}\,d\tau=(\frac{x^{s+1}-a^{s+1}}{s+1})\,dy\), we have
This completes the proof of (26).
Now, we have
and using (26) this takes the following form:
Applying (24), we have
This completes the desired proof.
Now to prove (28), we have
This can be written as
By applying (23), we get
which completes the desired proof. □
Remark 1
If we substitute \(s=0\) in (26), (27) and (28), then we have the results of the k-Mittag-Leffler function (see [34]). Similarly if \(s=0\) and \(k=1\), then from the above equations we get the integral and differential operators of the classical Mittag-Leffler function (see [6]).
3 Some properties of the operator \(({}_{k}^{s}\varepsilon_{a+;\rho ,\beta}^{\omega;\delta}f)(x)\)
Theorem 3
For \(k>0\), \(\rho, \beta, \delta\in\mathbb{C}\), \(\omega\in\mathbb{C}\), \(\Re(\rho)>0\), \(\Re(\beta)>0\), \(\Re(\delta)>0\) and \(\Re(\mu)>0\), we have
Proof
From (14)
Therefore, we have
which completes the desired proof. □
Theorem 4
Suppose that \(f\in L_{1}[a,b]\), \(s\in\mathbb{R}\backslash\{-1\}\), \(k>0\), \(\rho, \beta, \delta, \omega\in\mathbb{C}\), \(\Re(\rho)>0\), \(\Re(\beta )>0\), \(\Re(\delta)>0\) and \(\Re(\mu)>0\), then \({}_{k}^{s}\varepsilon_{a+;\rho ,\beta}^{\omega;\delta}f(x)\) exist for any \(x\in[a,b]\).
Proof
Assume that \(\Delta=[a,b]\times[a,b]\) and \(P: \Delta\rightarrow\mathbb {R} \) such that \(P(x,\tau)=[(x^{s+1}-\tau^{s+1})\tau^{s}]\) for all \(x\in[a,b]\). It is obvious that \(P=P_{+}+P_{-}\) where
and
As P is measurable on Δ, we can write
Hence, we obtain
By using the repeated integral, we have
Therefore the function \(Q:\Delta\rightarrow\mathbb{R}\) such that \(Q(x,t)=P(x,\tau)f(x)\) is integrable on Δ by Tonelli’s theorem. Thus, by Fubini’s theorem \(\int_{a}^{b}P(x,\tau)E_{k,\rho, \beta }^{\delta}(\omega(x^{s+1}-\tau^{s+1})^{\frac{\rho}{k}})^{n}f(x)\,dx\) is an integrable function on \([a,b]\), as a function of \(t\in[a,b]\). Thus, \({}_{k}^{s}\varepsilon_{a+;\rho,\beta}^{\omega;\delta}f(x)\) exists. □
Theorem 5
For \(\mu\in\mathbb{C}\), \(\rho, \beta, \delta\in\mathbb{C}\), \(\omega\in \mathbb{C}\), \(\Re(\rho)>0\), \(\Re(\beta)>0\), \(\Re(\delta)>0\), \(\Re(\mu )>0\), \(k>0\), \(s\in\mathbb{R}\backslash\{-1\}\), and \(x>a\), the following result holds:
for any \(f\in L(\rho,\beta)\).
Proof
From equations (14) and (18), we observe
By interchanging the order of integration, we obtain
By applying (26), we have
thus, we get
To prove the second part, consider the rhs of (30) then by applying (14), we get
By interchanging the order of integration, we have
Again by making the use of (18) and applying (26), we obtain
Thus (31) and (32) complete the desired proof of (30). □
References
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Kiryakova, V: Generalized Fractional Calculus and Applications, vol. 38. Longman Scientific and Technical, Harlow (1994)
Atangana, A, Baleanu, D: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763-769 (2016)
Kilbas, AA, Saigo, M, Saxena, RK: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15, 31-49 (2004)
Purohit, SD, Kalla, SL: On fractional partial differential equations related to quantum mechanics. J. Phys. A, Math. Theor. 44, 045202 (2011)
Srivastava, HM, Tomovski, Ž: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211, 198-210 (2009)
Mitrinovic, DS, Pecaric, JE, Fink, AM: Classical and New Inequalities in Analysis. Mathematics and Its Applications. Springer, Netherlands (1993)
Milne-Thomson, LM: The Calculus of Finite Differences. Macmillan & Co., London (1993)
Hahn, W: Uber Orthogonalpolynome, die q-Differenzengleichungen genugen. Math. Nachr. 2, 4-34 (1949)
Hahn, W: Uber Polynome, die gleichzweitig zwei verschiedenen Orthogonalsystemen angehoren. Math. Nachr. 2, 263-278 (1949)
Garcia, AG, Marcellhn, F, Salto, L: A distributional study of discrete classical orthogonal polynomials. J. Comput. Appl. Math. 57, 147-162 (1995)
Diaz, R, Pariguan, E: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 17, 179-192 (2007)
Mubeen, S, Habibullah, GM: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7, 89-94 (2012)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Sarikaya, MZ, Dahmani, Z, Kiris, ME, Ahmad, F: \((k; s)\)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 45, 77-89 (2016)
Evans, RM, Katugampola, UN, Edwards, DA: Applications of fractional calculus in solving Abel-type integral equations: surface-volume reaction problem. Comput. Math. Appl. 73, 1346-1362 (2017)
Machado, JAT, Silva, MF, Barbosa, RS, Jesus, IS, Reis, CM, Marcos, MG, Galhano, AF: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 34 (2010)
Nisar, KS, Baleanu, D, Al Qurashi, MM: Fractional calculus and application of generalized Struve function. SpringerPlus 5, 910 (2016)
Nisar, KS, Purohit, SD, Abouzaid, MS, Al Qurashi, MM, Baleanu, D: Generalized k-Mittag-Leffler function and its composition with pathway integral operators. J. Nonlinear Sci. Appl. 9, 3519-3526 (2016)
Agarwal, P, Jaleli, M, Tomar, M: Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 55 (2017)
Aldhaifallah, M, Tomar, M, Nisar, KS, Purohit, SD: Some new inequalities for \((k, s)\)-fractional integrals. J. Nonlinear Sci. Appl. 9, 5374-5381 (2016)
Mubeen, S, Iqbal, S: Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals. J. Inequal. Appl., 2016, 109 (2016)
Tomar, M, Maden, S, Set, E: \((k, s)\)-Riemann-Liouville fractional integral inequalities for continuous random variables. Arab. J. Math. 6, 55-63 (2017)
Mittag-Leffler, GM: Sur la nouvelle fonction. C. R. Acad. Sci. Paris 137, 554-558 (1903)
Wiman, A: Uber den fundamentalsatz in der theorie der funktionen \(E_{\alpha}(z)\). Acta Math. 29, 191-201 (1905)
Mainardi, F: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461-1477 (1996)
Gorenflo, R, Luchko, Y, Mainardi, F: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, 175-191 (2000)
Saigo, M, Kilbas, AA: On Mittag-Leffler type function and applications. Integral Transforms Spec. Funct. 7, 97-112 (1998)
Hilfer, R, Seybold, HJ: Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms Spec. Funct. 17, 637-652 (2006)
Seybold, HJ, Hilfer, R: Numerical results for the generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 8, 127-139 (2005)
Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971)
Gorenflo, R, Mainardi, F, Srivastava, HM: Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In: Bainov, D (ed.) Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18-23, 1997). VSP Publishers, Utrecht (1998)
Dorrego, GA, Cerutti, RA: The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 7, 705-716 (2012)
Dorrego, GA: Generalized Riemann-Liouville fractional operators associated with a generalization of the Prabhakar integral operator. Prog. Fract. Differ. Appl. 2, 131-140 (2016)
Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors have contributed equally to this manuscript. They read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
An erratum to this article is available at http://dx.doi.org/10.1186/s13662-017-1239-6.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Nisar, K., Rahman, G., Baleanu, D. et al. The \((k,s)\)-fractional calculus of k-Mittag-Leffler function. Adv Differ Equ 2017, 118 (2017). https://doi.org/10.1186/s13662-017-1176-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1176-4
Keywords
- fractional integral
- k-fractional integral operator
- \((k,s)\)-fractional integral
- \((k,s)\)-fractional differential
- k-Mittag-Leffler function