- Research
- Open Access
- Published:
Delay-induced oscillation phenomenon of a delayed finance model in enterprise operation
Advances in Difference Equations volume 2017, Article number: 173 (2017)
Abstract
In this paper, the delayed finance model of enterprise operation is improved. The stability is investigated, and a Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, some concrete expressions to judge the properties of the bifurcating periodic solutions are given. Computer simulations are performed to prove the correctness of theoretical analysis. Finally, a simple conclusion is included.
1 Introduction
In recent years, investigation on economic dynamical behaviors has become more prominent in mainstream economics in the course of enterprise running. In order to understand the highly complex dynamics of real financial and economic systems, researchers have set up several nonlinear continuous economics models to describe economics phenomena of enterprise operation, for example, Chian et al. [1, 2] proposed the forced van der Pol model, the IS-LM model was analyzed in [3–5], Lorenz [6] studied the Kaldorian model and Goodwin’s accelerate model was discussed by Lorenz and Nusse [7]. In 2001, Ma and Chen [8, 9] reported a dynamical model of financial system which is composed of four sub-blocks: production, money, stock and labor force. By setting proper dimensions and choosing appropriate coordinates, the authors set up the following simplified three-dimensional financial model:
where the three state variables \(u_{1}(t)\), \(u_{2}(t)\) and \(u_{3}(t)\) are the interest rate, the investment demand and the price index, respectively. \(a\geq0\) is the saving amount, \(b\geq0\) is the cost per investment, and \(c\geq0\) is the elasticity of demand of commercial markets. Ma and Chen [8, 9] investigated all the possible dynamical phenomena (including balance, stable period, fractal, Hopf bifurcation, the relationship between parameters and Hopf bifurcation and chaos etc.) of system (1.1) under different parameter combinations. In 2009, by adding delayed feedback to the second equation of system (1.1), Gao and Ma [10] derived the following delayed financial model:
where κ is a real number and ς is time delay. They have shown that the Hopf bifurcation of system (1.2) occurs when the time delay varies.
By adding delayed feedback to the three equations of system (1.1), Chen [11] obtained the modified version of system (1.1) which takes the form
where \(\kappa_{i}\) (\(i=1,2,3\)) are the feedback strengths and \(\varsigma_{i}\) (\(i=1,2,3\)) are the time delays. By choosing the time delays as varying parameters, Chen [11] controlled the chaotic phenomena of the unperturbed system with \(a=3\), \(b=0.1\) and \(c=1\).
Son and Park [12] further considered the dynamical behaviors of system (1.3). By local stability analysis, Son and Park [12] theoretically proved the occurrences of a Hopf bifurcation. Moreover, through numerical bifurcation analysis, they obtained the supercritical and subcritical Hopf bifurcation curves which support the theoretical predictions. Meanwhile, the folds limit cycle and Neimark-Sacker bifurcation curves were detected. Also the double Hopf bifurcation and the generalized and Hopf bifurcation codimension-2 bifurcation points were found.
Recently, Chen [13] generalized system (1.1) to the fractional order case of the form
Chen [13] found that system (1.4) displayed many interesting dynamical behaviors such as fixed points, periodic motions and chaos. Meanwhile, it was shown that chaos existed in fractional-order financial systems with orders less than three and period doubling and intermittency routes to chaos in the fractional-order financial system were found.
As is known to us, the time delays actually occur in the process of economic operation of enterprise. In fact, the investment demand is affected by interest and the price and has a certain time lag. Stimulated by this viewpoint and based on the former work [8–13], in this paper, we will make a discussion on the following delayed finance system:
where the three state variables \(u_{1}(t)\), \(u_{2}(t)\) and \(u_{3}(t)\) are the interest rate, the investment demand and the price index, respectively. \(a\geq0\) is the saving amount, \(b\geq0\) is the cost per investment, and \(c\geq0\) is the elasticity of demand of commercial markets, Ï‚ is time delay.
In this paper, we study the stability, the local Hopf bifurcation for system (1.5). Although there are a great variety of works dealing with a Hopf bifurcation for delayed differential equations [14–24], up to now, to the best of our knowledge, few authors have considered the bifurcation behaviors of finance systems. The main contributions of this article include the three aspects: (i) some new sufficient conditions which guarantee the stability and the existence of a Hopf bifurcation of delayed finance system are established; (ii) the explicit formulas for determining the properties of the bifurcating periodic solutions are obtained; (iii) to the best of our knowledge, it is the first time to focus on the time delay effect on interest rate, the investment demand and the price index for a finance system, and the obtained results have an important guiding role to the economic operation and also complement numerous previous works.
The remainder of the paper is organized as follows. In Section 2, we investigate the stability of the equilibrium and the existence of local Hopf bifurcations. In Section 3, the direction and stability of the local Hopf bifurcation are established. In Section 4, numerical simulations are carried out to illustrate the validity of the main predictions. Some main conclusions are drawn in Section 5.
2 Stability of equilibrium and local Hopf bifurcations
One can check that if
-
(H1)
\(c-b-abc>0\)
holds, then Eq. (1.5) has three equilibria \(E_{1}(0, \frac{1}{b}, 0)\), \(E_{2}(u_{1}^{*},u_{2}^{*},-u_{3}^{*})\) and \(E_{3}(-u_{1}^{*},u_{2}^{*},u_{3}^{*})\), where
In the following, we only focus on the existence of a local Hopf bifurcation at the equilibrium \(E_{2}(u_{1}^{*},u_{2}^{*},-u_{3}^{*})\) of system (1.5).
Let \(\bar{u}_{1}(t)=u_{1}(t)-x^{*}\), \(\bar{u}_{2}(t)=u_{2}(t)-u_{2}^{*}\), \(\bar{u}_{3}(t)=u_{3}(t)+u_{3}^{*}\) and still denote \(\bar{u}_{1}(t)\), \(\bar{u}_{2}(t)\) and \(\bar{u}_{3}(t)\) by \(u_{1}(t)\), \(u_{2}(t)\) and \(u_{3}(t)\), respectively, then (1.5) takes the form
The linearization of Eq. (2.1) at \((0, 0, 0)\) is given by
The characteristic equation corresponding to the linearized equation (2.2) is given by
That is,
where \(l_{0}=2c(u_{1}^{*})^{2}\), \(l_{1}=1-c(u_{2}^{*}-a)\), \(l_{2}=c+a-u_{2}^{*}\), \(m_{0}=b+abc-bcu_{2}^{*}\), \(m_{1}=bc+ab-bu_{2}^{*}+2(u_{1}^{*})^{2}\), \(m_{2}=b\).
For \(\varsigma=0\), (2.3) becomes
In view of Routh-Hurwitz criteria, we know that all roots of (2.4) have a negative real part if the following condition
-
(H2)
\((l_{1}+m_{1}) (l_{2}+m_{2})>l_{0}+m_{0}\), \(l_{0}+m_{0}>0\)
is fulfilled.
For \(\varpi>0\), iÏ– is a root of (2.3) if and only if
Then we have
which is equivalent to
namely,
Let \(z=\varpi^{2}\), then (2.6) becomes
where \(p_{1}=l_{2}^{2}-2l_{1}-m_{2}^{2}\), \(p_{2}=l_{1}^{2}-2l_{0}l_{2}-m_{1}^{2}+2m_{0}m_{2}\), \(p_{3}=l_{0}^{2}-m_{0}^{2}\).
Denote
Let \(K=(\frac{q}{2})^{2}+(\frac{r}{3})^{3}\), where \(r=p_{2}-\frac{1}{3}p_{1}^{2}\), \(q=\frac{2}{27}p_{1}^{3}-\frac{1}{3}p_{1}p_{2}+p_{3}\). There are three cases for the solutions of Eq. (2.7).
-
(i)
If \(K>0\), Eq. (2.7) has a real root and a pair of conjugate complex roots. The real root is positive and is given by
$$\nu_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{K}}+\sqrt[3]{- \frac{q}{2}-\sqrt {K}}-\frac{1}{3}p_{1}. $$ -
(ii)
If \(K=0\), Eq. (2.7) has three real roots, of which two are equal. In particular, if \(p_{1}>0\), there exists only one positive root, \(\nu_{1}=2\sqrt[3]{-\frac{q}{2}}-\frac{p_{1}}{3}\); if \(p_{1}<0\), there exists only one positive root, \(\nu_{1}=2\sqrt[3]{-\frac{q}{2}}-\frac{p_{1}}{3}\) for \(\sqrt[3]{-\frac{q}{2}}>-\frac{p_{1}}{3}\), and there exist three positive roots for \(\frac{r_{1}}{6}<\sqrt[3]{-\frac{q}{2}}<-\frac{p_{1}}{3}\), \(\nu_{1}=2\sqrt[3]{-\frac{q}{2}}-\frac{p_{1}}{3}\), \(\nu_{2}=\nu_{3}=-\sqrt[3]{-\frac{q}{2}}-\frac{p_{1}}{3}\).
-
(iii)
If \(K<0\), there are three distinct real roots, \(\nu_{1}=2\sqrt{\frac{|p|}{3}\cos\frac{\psi}{3}}-\frac{p_{1}}{3}\), \(\nu_{2}=2\sqrt{\frac{|p|}{3}\cos(\frac{\psi}{3}+\frac{2\pi}{3})}-\frac{p_{1}}{3}\), \(\nu_{3}=2\sqrt{\frac{|p|}{3}\cos(\frac{\psi}{3}+\frac{4\pi}{3})}-\frac{p_{1}}{3}\), where \(\cos\psi=-\frac{q}{2\sqrt{(\frac{|p|}{3})^{3}}}\). Furthermore, if \(p_{1}>0\), there exists only one positive root. Otherwise, if \(p_{1}<0\), there may exist either one or three positive real roots. If there is only one positive real root, it is equal to \(\max(\nu_{1},\nu_{2},\nu_{3})\).
Obviously, the number of positive real roots of Eq. (2.7) depends on the sign of \(r_{1}\). If \(p_{1}\geq0\), Eq. (2.7) has only one positive real root. Otherwise, there may exist three positive roots. Without loss of generality, we assume that (2.7) has three positive roots, defined by \(z_{1}\), \(z_{2}\), \(z_{3}\), respectively. Then Eq. (2.6) has three positive roots
By (2.5), we have
Thus, if we denote
where \(k=1,2,3\); \(j=0,1,\ldots\) , then \(\pm{i\varpi_{k}}\) are a pair of purely imaginary roots of Eq. (2.4) with \(\varsigma_{k}^{(j)}\). Define
In view of [25], we have the following result.
Lemma 2.1
If (H1) and (H2) hold, then all roots of (2.3) have a negative real part when \(\varsigma\in[0, \varsigma_{0})\), and (2.3) admits a pair of purely imaginary roots \(\pm\varpi_{k}\) when \(\varsigma=\varsigma_{k}^{(j)}\) (\(k=1,2,3\); \(j=0,1,2,\ldots \)).
Assume that \(\lambda(\varsigma)=\alpha(\varsigma)+i\varpi(\varsigma)\) is a root of (2.3) near \(\varsigma=\varsigma_{k}^{(j)}\), and \(\alpha(\varsigma_{k}^{(j)})=0\), and \(\varpi(\varsigma_{k}^{(j)})=\varpi_{k}\). In view of (2.3), one has
Noting that
and
it follows from (2.5) that
where \(\Lambda=(m_{1}\varpi_{k}^{2})^{2}+(m_{0}\varpi_{k}-m_{2}\varpi_{k}^{3})^{2}>0\). Thus we have
Since \(\Lambda, z_{k}>0\), we can conclude that the sign of \([\frac{d(\operatorname{Re}\lambda(\varsigma))}{d\varsigma} ]_{\varsigma=\varsigma_{k}^{(j)}}\) can be judged by that of \(h'(z_{k})\). The analysis above leads to the following result.
Theorem 2.1
Assume that \(z_{k}=\omega_{k}^{2}\) and \(h'(z_{k})\neq0\), where \(h(z)\) is defined by (2.9). Then
and the sign of \([\frac{d(\operatorname{Re}\lambda(\varsigma))}{d\varsigma} ]_{\varsigma =\varsigma_{k}^{(j)}}\) is consistent with that of \(h'(z_{k})\).
In the sequel, we give the following assumption:
-
(H3)
\(h'(z_{k})\neq0\).
According to the above analysis and the results of Kuang [26] and Hale [27], we have the following.
Theorem 2.2
Assume that (H1) and (H2) hold, then the equilibrium \(E_{2}(u_{1}^{*},u_{2}^{*},-u_{3}^{*})\) of system (1.5) is asymptotically stable for \(\tau\in[0,\tau_{0})\). Under conditions (H1)-(H3), system (1.5) undergoes a Hopf bifurcation around the equilibrium \(E_{2}(u_{1}^{*},u_{2}^{*},-u_{3}^{*})\) when \(\varsigma=\varsigma_{k}^{(j)}\), \(k=1,2,3\); \(j=0,1,2,\ldots \) .
3 Direction and stability of the Hopf bifurcation
In this section, we consider the direction and stability of the Hopf bifurcation of (1.5) by using normal form and center manifold theory [28].
Let \(\bar{u}_{1}(t)=u_{1}(\tau{t})\), \(\bar{u}_{2}(t)=u_{2}(\tau{t})\), \(\bar {u}_{3}(t)=u_{3}(\varsigma{t})\) and \(\varsigma=\varsigma_{k}^{(j)}+\mu\), where \(\varsigma_{k}^{(j)}\) is defined by (2.9) and \(\mu\in{R}\), drop the bar for the simplification of notations, then system (2.1) can be written as a functional differential equation in \(C=C([-1, 0]), R^{3}))\) as
where \(u(t)=(u_{1}(t), u_{2}(t), u_{3}(t))^{T}\in{C}\) and \(u_{t}(\theta)=u(t+\theta)=(u_{1}(t+\theta), u_{2}(t+\theta), u_{3}(t+\theta))^{T}\in{C}\), and \(L_{\mu}: C\rightarrow{R}\), \(F: R\times{C}\rightarrow{R}\) are given by
and
respectively, where \(\phi(\theta)=(\phi_{1}(\theta), \phi_{2}(\theta), \phi_{3}(\theta))^{T}\in{C}\).
By the representation theorem, there is a matrix function with bounded variation components \(\eta(\theta,\mu)\), \(\theta\in[-1,0]\) such that
In fact, we can choose
where δ is the Dirac delta function. For \(\phi\in{C([-1,0],R^{3})} \), define
and
Then (3.1) is equivalent to
where \(u_{t}(\theta)=u(t+\theta)\), \(\theta\in[-1,0]\). For \(\psi\in{C([0,1],(R^{3})^{*})}\), define
For \(\phi\in{C([-1,0],R^{3})}\) and \(\psi\in{C([0,1],(R^{3})^{*})}\), define the bilinear form
where \(\eta(\theta)=\eta(\theta,0)\), the \(A=A(0)\) and \(A^{*}\) are adjoint operators. By a simple computation, we can obtain
where
Furthermore, \(\langle q^{*}(s),q(\theta)\rangle=1\) and \(\langle q^{*}(s),\bar{q}(\theta)\rangle=0\). Next, we use the same notations as those in Hassard et al. [28], and we first compute the coordinates to describe the center manifold \(C_{0}\) at \(\mu=0\). Let \(u_{t}\) be the solution of Eq. (3.1) when \(\mu=0\). Define
on the center manifold \(C_{0}\), and we have
where
and z and z̄ are local coordinates for center manifold \(C_{0}\) in the direction of \(q^{*}\) and \(\bar{q}^{*}\). Noting that W is also real if \(u_{t}\) is real, we consider only real solutions. For solutions \(u_{t}\in{C_{0}}\) of (3.1),
That is,
where
Then we can obtain the expression of \(g_{20}\), \(g_{11}\), \(g_{02}\) and \(g_{21}\). See Appendix. Then we get
Theorem 3.1
If \(\mu_{2}>0\) (\(\mu_{2}<0\)), then the periodic solution is supercritical (subcritical); if \(\beta_{2}<0\) (\(\beta_{2}>0\)), then the bifurcating periodic solutions are orbitally asymptotically stable with asymptotical phase (unstable); if \(T_{2}>0\) (\(T_{2}<0\)), then the periods of the bifurcating periodic solutions increase (decrease).
4 Numerical examples
Let us consider the following system:
which has an equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) and satisfies the conditions indicated in Theorem 2.2. The equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) is asymptotically stable for \(\varsigma=0\). Using the software Matlab, we derive \(\varpi_{0}\approx0.8960\), \(\varsigma_{0}\approx2.6\), \(\lambda'(\varsigma_{0})\approx0.9281-7.1128i\). Thus by algorithm (3.12) derived in Section 3, we have \(c_{1}(0)\approx-0.7053-6.0952i\), \(\mu_{2}\approx0.7599\), \(\beta_{2}\approx-1.4106\), \(T_{2}\approx8.2331\). Furthermore, it follows that \(\mu_{2}>0\) and \(\beta_{2}<0\). Thus the equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) is stable when \(\varsigma<\varsigma_{0}\). Figure 1 shows that the equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) is asymptotically stable when \(\varsigma=2.2<\varsigma_{0}\approx2.6\). When ς passes through the critical value \(\varsigma_{0}\), the equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) loses its stability and a Hopf bifurcation occurs. In view of \(\mu_{2}>0\) and \(\beta_{2}<0\), we know that the direction of the Hopf bifurcation is \(\varsigma>\varsigma_{0}\), and these bifurcating periodic solutions from \(E_{2}(0.9201,0.7667,-0.1534)\) at \(\varsigma_{0}\) are stable. Figure 2 suggests that a Hopf bifurcation occurs from the equilibrium \(E_{2}(0.9201,0.7667,-0.1534)\) when \(\varsigma=0.11>\varsigma_{0}\approx0.1\).
Dynamics of ( 4.1 ) with \(\pmb{\varsigma=0.09<\varsigma_{0}\approx0.1}\) and the initial value \(\pmb{(0.5,0.5,0.1)}\) .
Dynamics of ( 4.1 ) with \(\pmb{\varsigma=0.11>\varsigma_{0}\approx0.1}\) and the initial value \(\pmb{(0.5,0.5,0.1)}\) .
5 Conclusions
Recently, there has been an increasing activity and interest in the study of Hopf bifurcations of the delayed differential equations. Most of them focused on the study of predator-prey models and neural network systems [14, 15, 17, 19–28]. However, to the best of our knowledge, there are few results on the properties of Hopf bifurcations for a finance model of enterprise operation. In this paper, we have investigated the qualitative behaviors of a delayed finance model of enterprise operation. The study shows that if under some conditions, finance model (1.5) is asymptotically stable, when the delay ς increases and crosses a threshold value \(\varsigma_{k}\), the equilibrium loses its stability and the delayed finance system enters into a Hopf bifurcation. Thus the time delay has important effect on the stability of a finance model of enterprise operation. We also give the concrete expressions to judge the properties of the bifurcating periodic solutions. Simulation results show that theoretical analysis of this paper is correct. The obtained results are useful in applications of finance control in enterprise operation. In the real process of economic operation of enterprise, we can choose some suitable parameters and the delay of investment demand to keep the investment demand, the interest and the price a balance.
References
Chian, AL, Rempel, EL, Rogers, C: Complex economic dynamics: chaotic saddle, crisis and intermittency. Chaos Solitons Fractals 29, 1194-1218 (2006)
Chian, AL, Zorotto, FA, Rempel, EL, Rogers, C: Attractor merging crisis in chaotic business cycles. Chaos Solitons Fractals 24, 869-875 (2005)
Cesare, LD, Sportelli, M: A dynamic IS-LM model with delayed taxation revenues. Chaos Solitons Fractals 25, 233-244 (2005)
Fanti, L, Manfredi, P: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals 32, 736-744 (2007)
Sasakura, K: On the dynamic behavior of Schinas’s business cycle model. J. Macroecon. 16, 423-424 (1994)
Lorenz, HW: Nonlinear Economic Dynamics and Chaotic Motion. Springer, New York (1993)
Lorenz, HW, Nusse, HE: Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin’s nonlinear accelerator model reconsidered. Chaos Solitons Fractals 13, 957-965 (2002)
Ma, JH, Chen, YS: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system I. Appl. Math. Mech. 22, 1240-1251 (2001)
Ma, JH, Chen, YS: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system II. Appl. Math. Mech. 22, 1375-1382 (2001)
Gao, Q, Ma, JH: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209-216 (2009)
Chen, WC: Dynamics and control of a financial system with time delayed feedbacks. Chaos Solitons Fractals 37, 1198-1207 (2008)
Son, WS, Park, YJ: Delayed feedback on the dynamical model of a financial system. Chaos Solitons Fractals 44, 208-217 (2011)
Chen, WC: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36, 1305-1314 (2008)
Guo, SJ: Equivariant Hopf bifurcation for functional differential equations of mixed type. Appl. Math. Lett. 24, 724-730 (2011)
Guo, SJ, Tang, XH, Huang, LH: Stability and bifurcation in a discrete system of two neurons with delays. Nonlinear Anal., Real World Appl. 9, 1323-1335 (2008)
Song, YL, Yuan, SL, Zhang, JM: Bifurcation analysis in the delayed Leslie-Gower predator-prey system. Appl. Math. Model. 33, 4049-4061 (2009)
Wei, JJ, Zhang, CR: Bifurcation analysis of a class of neural networks with delays. Nonlinear Anal., Real World Appl. 9, 2234-2252 (2008)
Wei, JJ, Li, MY: Global existence of periodic solutions in a tri-neuron network model with delays. Physica D 198, 106-119 (2004)
Xu, CJ, Tang, XH, Liao, MX: Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays. Neural Netw. 23, 872-880 (2010)
Xu, CJ, Tang, XH, Liao, MX: Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments. Appl. Math. Comput. 216, 2920-2936 (2010)
Xu, R, Ma, ZE: Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure. Chaos Solitons Fractals 38, 669-684 (2008)
Yan, XP, Li, WT: Bifurcation and global periodic solutions in a delayed facultative mutualism system. Physica D 227, 51-69 (2007)
Yan, XP, Zhang, CH: Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system. Nonlinear Anal., Real World Appl. 10, 2758-2773 (2009)
Zhou, XY, Shi, XY, Song, XY: Analysis of non-autonomous predator-prey model with nonlinear diffusion and time delay. Appl. Math. Comput. 196, 129-136 (2008)
Ruan, SG, Wei, JJ: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 10, 863-874 (2003)
Kuang, Y: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)
Hale, J: Theory of Functional Differential Equation. Springer, New York (1977)
Hassard, B, Kazarino, D, Wan, Y: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
Acknowledgements
The first author was supported by Key Research Institute of Philosophies and Social Sciences in Guangxi Universities and Colleges (16YC001, 16YC002). The second author was supported by Key Research Institute of Philosophies and Social Sciences in Guangxi Universities and Colleges (16YC001, 16YC002) and Key Project of Science and Technology Research in Guangxi Universities and Colleges (ZD2014058). The authors would like to thank the referees and the editor for helpful suggestions incorporated into this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors have made the same contribution. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
We give the computational process of \(g_{20}\), \(g_{11}\), \(g_{02}\) and \(g_{21}\).
Then
We need to seek \(W_{20}^{(i)}(0)\), \(W_{11}^{(i)}(0)\), \(W_{20}^{(i)}(-1)\), \(W_{11}^{(i)}(-1)\) (\(i=1,2\)) in \(g_{21}\). By (3.8) and (3.9), we have
where
Comparing the coefficients, we obtain
We know that for \(\theta\in[-1,0)\),
From (A.3), (A.6) and the definition of A, we get
Noting that \(q(\theta)=q(0)e^{i\varpi_{k}\varsigma_{k}^{(j)}\theta}\), we have
where \(G_{1}=(G_{1}^{(1)}, G_{1}^{(2)}, G_{1}^{(3)})^{T}\in{R^{3}}\) is a constant vector. In view of (A.4), (A.7) and the definition of A, we get
where \(H_{2}=(H_{2}^{(1)}, H_{2}^{(2)}, H_{2}^{(3)})^{T}\in{R^{3}}\) is a constant vector. Now we shall compute \(H_{1}\), \(H_{2}\) in (A.9), (A.11), respectively. It follows from the definition of A and (A.6), (A.7) that
and
where \(\eta(\theta)=\eta(0,\theta)\). From (A3), we have
Considering that
and substituting (A.9) and (A.14) into (A.12), we have
That is,
It follows that
where
Similarly, by (A.10), (A.15) and (A.13), we have
That is,
It follows that
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Lu, L., Li, C. Delay-induced oscillation phenomenon of a delayed finance model in enterprise operation. Adv Differ Equ 2017, 173 (2017). https://doi.org/10.1186/s13662-017-1208-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1208-0
Keywords
- finance model
- stability
- Hopf bifurcation
- delay
- periodic solution
- enterprise