- Research
- Open Access
- Published:
Multiple solutions for the fractional differential equation with concave-convex nonlinearities and sign-changing weight functions
Advances in Difference Equations volume 2017, Article number: 174 (2017)
Abstract
In this paper, by using the fibering map and the Nehari manifold, we prove the existence and multiple results of solutions for the following fractional differential equation:
where \(\alpha\in(\frac{1}{2},1), 0< p<2, q>2, \lambda>0\) and \(h(t),b(t)\) are sign-changing continuous functions.
1 Introduction
The concept of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) is believed to have stemmed from a question raised in 1695 by L’Hôpital to Leibniz, which sought the meaning of Leibniz’s derivative notation \(\frac {d^{n}x}{dt^{n}}\) of order \(n\in\mathbb{N}=\{0,1,2,\ldots\}\) when \(n=\frac {1}{2}\) (What if \(n=\frac{1}{2}\)?). There have been many mathematicians who contributed to the study of fractional operator, and we can refer to the monographs of Kilbas [1], Podlubny [2], Samko [3], etc. An important characteristic of a fractional-order differential operator that distinguishes it from an integer-order differential operator is its nonlocal behavior, that is, the future state of a dynamical system or process involving fractional derivatives depends on its current state as well as its past states. During the last three decades or so, due to its demonstrated applications in numerous fields of science and engineering, such as viscoelasticity, neurons, electrochemistry, control (see [4–9]), more attention was paid to the fractional differential equations.
Many important results have been obtained about the existence and multiplicity of solutions for fractional boundary value problems based on the techniques of nonlinear analysis, such as fixed point theory [10–13], topological degree theory [14–16], the method of upper and lower solutions and the monotone iterative method [17].
As is well known, the variational method has turned out to be a very effective tool in studying the existence of solutions for boundary value problems (BVPs for short) of integer order differential equations with variational structure. However, most fractional differential operators do not have a variational structure, for example, the operator \(D^{\alpha}(\alpha\notin\mathbb{N})\), so the variational method cannot be applied. On the other hand, for the operator including both left and right fractional derivatives, the critical point theory can be used. In recent years, many authors have studied the existence of solutions of the fractional boundary value problems (FBVPs for short) by use of the variational method [18–25]. The author of [18, 19] treated fractional order differential equations that contain left and right Riemann-Liouville fractional derivatives. The equations arose as the Euler-Lagrange equation in variational principles with fractional derivatives. They discussed solutions of such equations (\({_{t}}D{_{T}^{\alpha}}({_{0}}D{_{t}^{\alpha}}y)(x)=\lambda y(x)+g(x)\)) or constructed corresponding integral equations and other properties. In the paper [20], for the first time, the authors showed that the critical point theory is an effective approach to tackle the existence of solutions for the following fractional boundary value problem:
and obtained the existence of at least one nontrivial solution. What is more, in the paper [23], more precisely they studied the fractional nonlinear Dirichlet problem, and they proved the existence of mountain pass solution for the proposed fractional boundary value problem. Jin Hua [21] discussed the eigenvalue problem for the fractional differential equation containing left and right fractional derivatives with Dirichlet boundary value conditions. For fractional Hamiltonian systems given by
the author of paper [24] proved the existence of solution; and in the paper [26], by the critical point theory, they considered the existence and multiplicity of solutions. Such differential equations mixing both types of derivatives have found interesting applications in fractional variational principles, fractional control theory, fractional Lagrangian and Hamiltonian dynamics as well as in the construction industry (see [27–35]).
However, as far as we know, there are few results about the multiplicity of solutions on the fractional equations involving concave-convex nonlinearities and sign-changing weight functions. In order to improve fractional boundary value problem, we use the fibering map and the Nehari manifold to investigate the existence and multiple results of solutions for the following fractional differential equation when the parameter belongs to a different interval. In this paper, in the fractional Sobolev space \(E{_{0}^{\alpha,2}}\), we investigate the existence and multiplicity of solutions for the following FBVPs:
where \(\frac{1}{2}<\alpha\leq1, 0<p<2, q>2\). Note that, when \(\alpha=1\), the fractional differential operator \({_{t}}D{_{T}^{\alpha}}{_{0}}D{_{t}^{\alpha}}\) reduces to the standard second differential operator \(-D^{2}\).
In the following, we set \(c_{pq}= (\frac{2-p}{q-p} )^{\frac {2-p}{q-2}} \frac{q-2}{q-p}\) and \(\lambda_{1}=c_{pq}(c_{b} c_{q}^{q}){^{\frac {p-2}{q-2}}}/c_{h} c_{p}^{p}\), where \(c_{h}= \max\{ \vert h(t) \vert \vert t\in[0,T]\}, c_{b}=\max\{ \vert b(t) \vert \vert t\in[0,T]\}\), \(c_{p}, c_{q}\) are the Sobolev embedding constants. For the sign-changing weight functions, we suppose the following.
- \((f1)\) :
-
There exists \(u\in E{_{0}^{\alpha,2}}\) such that \(\int _{0}^{T} h(t) \vert u(t) \vert ^{q}\,dt>0\).
- \((f2)\) :
-
There exists \(v\in E{_{0}^{\alpha,2}}\) such that \(\int _{0}^{T} b(t) \vert v(t) \vert ^{p}\,dt>0\).
The main theorems are as follows.
Theorem 1.1
If \(\lambda\in(0,\lambda_{1})\) and \(h(t)\) satisfies \((f1)\), problem (1.1) has at least one nontrivial solution.
Theorem 1.2
If \(\lambda\in(0,\frac{p }{2}\lambda_{1})\), and \(h(t),b(t)\) satisfy \((f1),(f2)\), problem (1.1) has at least two nontrivial solutions.
2 Preliminaries
For the convenience of readers, in this section, the definitions of fractional integral and fractional derivative are presented. Since we use the critical point theory to investigate problem (1.1), the appropriate fractional Sobolev space is necessary.
Definition 2.1
[1]
For \(n-1\leq\alpha< n\), the left (right) Riemann-Liouville fractional integral operator of order α of a function \(u:[a,b]\rightarrow\mathbb{R}\) is given by
provided that the right-hand side integral is pointwise defined on \([a,b]\), where \(\Gamma(\cdot) >0\) is the gamma function.
Definition 2.2
[1]
For \(n-1\leq\alpha< n\), the left (right) Riemann-Liouville fractional derivative operator of order α of a function \(u:[a,b]\rightarrow\mathbb{R}\) is given by
Next we give the definitions of left and right weak fractional derivatives and the corresponding function spaces. For the details, we refer to [21, 36].
Definition 2.3
Let \(n-1\leq\alpha< n\), \(u,v\in L^{1}[0,T]\), if
then v is named the left weak fractional derivative, and we denote it by \(v= {_{0}}\dot{D}_{t}^{\alpha}u\).
Definition 2.4
Let \(n-1\leq\alpha< n\), \(u,v\in L^{1}[0,T]\), if
then v is named the right weak fractional derivative denoted by \({_{t}}\dot{D}_{T}^{\alpha}u\).
Definition 2.5
For \(1\leq p\leq\infty\), \(0<\alpha\leq1\), the space \(E^{\alpha,2}\) is defined by
with the norm
and the product
Definition 2.6
Fractional Sobolev space \(E{_{0}^{\alpha,2}}\) is defined by the closure of \(C_{0}^{\infty}(0,T)\) in \(E^{\alpha,2}\) equipped with the norm of \(E^{\alpha,2}\). What is more, by studying Remark 3.7 of paper [21], we can obtain that the norm \(\Vert \cdot \Vert _{E^{\alpha,2}}\) is equivalent to the norm \(\Vert {_{0}}\dot{D}_{t}^{\alpha}u \Vert _{L^{2}}\).
Lemma 2.7
[21]
If \(\alpha\in(\frac {1}{2},1)\), the embedding map from \(E{_{0}^{\alpha,2}}\) into \(C[0,T]\) is compact, and it is also true for the embedding map from \(E_{0}^{\alpha ,2}\) into \(L^{r}[0,T](r\in\mathbb{R^{+}})\). So there exists a constant \(c_{r}\) such that \(\Vert u(t) \Vert _{L^{r}[0,T]}\leq c_{r} \Vert u \Vert \).
Remark 2.8
From Theorem 3.11 in [21], we obtain that any \(u\in E{_{0}^{\alpha,2}}\)(\(\alpha\in(1/2,1)\)) satisfies \(u\in L^{2}[0,T], {_{0}}\dot{D}{_{t}^{\alpha}}u\in L^{2}[0,T]\) and \(u(0)=u(T)=0\). In the following, we all set \(\alpha\in(1/2,1)\).
3 Proof of Theorems 1.1 and 1.2
In this section, we investigate the existence of solutions of equation (1.1) when the parameter λ changes by using the fibering map and the Nehari manifold.
The Euler functional \(I_{\lambda}:E{_{0}^{\alpha,2}}\rightarrow\mathbb{R}\) associated with problem (1.1) is defined by
It is easy to see that \(I{_{\lambda}}(u)\) is \(C^{1}\) and
It is obvious that \(I{_{\lambda}}\) is not bounded below on \(E{_{0}^{\alpha,2}}\), but it is bounded below on an appropriate subset of \(E{_{0}^{\alpha,2}}\), and a minimizer on this set (if it exists) may give rise to solutions of the corresponding differential equation. A good candidate for the subset is the so-called Nehari manifold
It is clear that all critical points of \(I_{\lambda}\) must lie on \(N_{\lambda}\). On the other hand, if \(u\in N_{\lambda}\), we have
Define the fibering map \(\varphi_{u}(s)=I{_{\lambda}}(su)\) by
After a simple calculation, we have
It is easy to see that \(su\in N_{\lambda}\) if and only if \(\varphi _{u}'(s)=0\) and \(u\in N_{\lambda}\) if and only if \(\varphi_{u}'(1)=0\). That is to say, if u is the minimizer point of \(I_{\lambda}\), \(\varphi _{u}(s)\) has the local minimum or maximum at \(s=1\). Thus it is natural to split \(N_{\lambda}\) into three subsets \(N_{\lambda}^{+}\), \(N_{\lambda}^{-}\), \(N_{\lambda}^{0}\) corresponding to local minima, local maxima and points of inflexion of a fibering map. Hence we define
Lemma 3.1
see [37]
Suppose that \(u\in N_{\lambda}\) is a local minimizer of \(I_{\lambda}\) on \(N_{\lambda}\) and \(u \notin N_{\lambda}^{0}\), then u is a critical point of \(I_{\lambda}\).
Lemma 3.2
\(I_{\lambda}(u)\) is coercive and bounded from below on \(N_{\lambda}\).
Proof
Let \(u\in N_{\lambda}\), then we have
From Lemma 2.7, we obtain
where \(c_{h}=\max\{ \vert h(t) \vert | t\in[0,T]\}\) and \(c_{p}\) is the Sobolev embedding constant.
For \(u\in N_{\lambda}\),
Since \(0< p<2,q>2\), it is easy to see that the functional \(I_{\lambda}(u)\) is coercive and bounded from below on \(N_{\lambda}\). The proof is finished. □
Before studying the behavior of a Nehari manifold by using a fibering map, we consider the function \(\psi_{u}(s):\mathbb{R^{+}}\rightarrow\mathbb {R}\) defined by
It is obvious that \(\psi_{u}(0)=0\) and
It follows from (3.3) that \(\varphi_{u}'(s)=s^{p-1} (\psi_{u}(s)-\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt )\). Therefore, \(su\in N_{\lambda}\) if and only if \(\psi_{u}(s)=\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\). Thus, if \(\psi_{u}(s)\) and \(\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\) have the same sign, \(\varphi_{u}(s)\) has stationary points, and if \(\psi_{u}(s)\) and \(\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\) have the opposite signs, \(\varphi _{u}(s)\) has no stationary points.
For the convenience of investigating the fibering map according to the sign of \(\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\) and \(\int_{0}^{T} b(t) \vert u(t) \vert ^{q}\,dt\), we introduce some notations.
Case 1: If \(u\in B^{\underline{0}}\cap H^{\underline{0}}\), \(\psi _{u}(s)\geq0\) and is strictly increasing for all \(s>0\). As \(\lambda\int _{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\leq0\), so \(\varphi_{u}(s)\) has no stationary points.
Case 2: If \(u\in B^{\underline{0}}\cap H^{+}\), \(\psi_{u}(s)\geq0\) and is strictly increasing for all \(s>0\). Since \(\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\geq0\), there exists a unique point \(s_{1}^{*}\) such that \(s_{1}^{*}u\in N_{\lambda}\). We also get that for \(0< s< s_{1}^{*}\), \(\varphi _{u}'(s)<0\) and for \(s>s_{1}^{*}\), \(\varphi_{u}'(s)>0\). So \(\varphi_{u}(s)\) attains its minimum at \(s_{1}^{*}\), which means that \(s_{1}^{*}u\in N_{\lambda}^{+}\).
Case 3: If \(u\in B^{+}\cap H^{\underline{0}}\), \(\psi_{u}(s)\geq0\) for s small enough and \(\psi_{u}(s)\rightarrow-\infty\) as \(s\rightarrow+\infty \). From (3.4), \(\psi_{u}(s)\) has a unique maximum stationary point at \(s^{*}= (\frac{(2-p) \Vert u \Vert ^{2}}{(q-p)\int _{0}^{T} b(t) \vert u \vert ^{q} \,dt} )^{\frac{1}{q-2}}\) such that \(\psi_{u}'(s^{*})=0\). For \(s>0\), we infer that
Since \(u\in H^{\underline{0}}\), there exists a unique \(s_{2}^{*}\) and \(\psi _{u}(s_{2}^{*})=\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt\) satisfying \(\varphi _{u}'(s_{2}^{*})=0\), which means \(s_{2}^{*}u\in N_{\lambda}\). Moreover, we obtain that for \(0< s< s_{2}^{*}\), \(\varphi_{u}'(s)>0\) and for \(s>s_{2}^{*}\), \(\varphi _{u}'(s)<0\). So \(\varphi_{u}(s)\) gets its maximum at \(s_{2}^{*}\), that is to say, \(s_{2}^{*}u\in N_{\lambda}^{-}\).
Case 4: If \(u\in B^{+}\cap H^{+}\), similarly to Case 3, \(\psi_{u}(s)\) has a unique maximum stationary point at \(s^{*}\) such that \(\psi_{u}'(s^{*})=0\). Hence, if
there exist two points \(s_{1}, s_{2}\) such that \(\lambda\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt=\psi_{u}(s_{1})=\psi_{u}(s_{2})\). From \(\varphi_{u}'(s_{1})=0\) and \(\psi_{u}'(s_{1})>0\), we have \(s_{1}u\in N_{\lambda}^{+}\). By \(\varphi_{u}'(s_{2})=0\) and \(\psi_{u}'(s_{2})<0\), we get \(s_{2}u\in N_{\lambda}^{-}\).
Lemma 3.3
If \(\lambda\in(0,\lambda_{1})\), then \(N_{\lambda}^{0}=\emptyset\).
Proof
Suppose not, that is, \(N_{\lambda}^{0}\neq\emptyset \). Letting \(u\in N_{\lambda}^{0}\), we have
Since \(0< p<2,q>2\), from (3.6) and (3.7) we obtain
It is easy to verify that, if \(\lambda\in(0,\lambda_{1})\), (3.8) and (3.9) are contradictory. The proof is finished. □
By Lemmas 3.2 and 3.3, for any \(\lambda\in(0,\lambda_{1})\), we know that \(N_{\lambda}=N_{\lambda}^{+}\cup N_{\lambda}^{-}\) and \(I_{\lambda}(u)\) is coercive and bounded from below on \(N_{\lambda}^{+}\) and \(N_{\lambda}^{-}\).
Now, we complete the proof of Theorem 1.1.
Proof
Since \(\lambda\in(0,\lambda_{1})\), \(N_{\lambda}^{0}=\emptyset\). In the following, we show that there exists \(u_{1}\) belonging to \(N_{\lambda}^{+}\) and satisfying \(I_{\lambda}(u_{1})=\inf_{u\in N_{\lambda}^{+}} I_{\lambda}(u)<0\). From Lemma 3.1, \(u_{1}\) is the critical point of \(I_{\lambda}\).
By \((f1)\), there exists \(u\in E{_{0}^{\alpha,2}}\) satisfying \(\int_{0}^{T} h(t) \vert u(t) \vert ^{p}\,dt>0\), that is, \(u\in H^{+}\). If \(u\in B^{\underline{0}}\), from the argument in Case 2, there exists a unique point \(s_{1}^{*}\) such that \(s_{1}^{*}u\in N_{\lambda}^{+}\). If \(u\in B^{+}\), from the argument in Case 4, we get that
Since \(\lambda\in(0,\lambda_{1})\), from (3.5), we can deduce that there also exists a point, still represented by \(s_{1}^{*}\), such that \(s_{1}^{*}u\in N_{\lambda}^{+}\). So \(N_{\lambda}^{+} \) is nonempty.
For \(u\in N_{\lambda}^{+}\), from (3.2) and
we obtain
Consequently,
Thus we have \(\inf_{u\in N_{\lambda}^{+}} I_{\lambda}(u)<0\).
Since \(I_{\lambda}(u)\) is coercive and bounded from below on \(N_{\lambda}^{+}\), there exist a minimizing sequence \(\{u_{k}\}\subset N_{\lambda}^{+}\) and \(u_{1}\in E{_{0}^{\alpha,2}}\) such that \(I_{\lambda}(u_{k}) \rightarrow\inf_{u\in N_{\lambda}^{+}} I_{\lambda}(u)\) and \(u_{k}\rightharpoonup u_{1}\) (up to a subsequence). From Lemma 2.7, \(u_{k}\rightarrow u_{1}\) in \(L^{r}[0,T]\) (\(r=p,q\)). Hence
It follows from (3.1) and (3.2) that
Letting \(k\rightarrow\infty\), we get \(\int_{0}^{T} h(t) \vert u_{1}(t) \vert ^{p}\,dt>0\). By the same argument as above, there exists \(s_{1}^{*}\) such that \(s_{1}^{*}u_{1}\in N_{\lambda}^{+}\). That is to say, \(\varphi_{u_{1}}(s)\) attains its local (or global) minimum at \(s_{1}^{*}\). Therefore, there exists \(t_{1}>s_{1}^{*}\) such that
Next we claim that \(u_{k}\rightarrow u_{1}\) in \(E{_{0}^{\alpha,2}}\). Otherwise, \(\Vert u_{1} \Vert <\liminf_{k\rightarrow\infty } \Vert u_{k} \Vert \). Since \(u_{k}\in N_{\lambda}^{+}\), \(\varphi _{u_{k}}(s)\) attains its local (or global) minimum at \(s=1\). So, there exists \(t_{2}>1\) such that
What is more,
Hence, for k large enough, \(\varphi_{u_{k}}'(s_{1}^{*})>0\). Together with (3.11), we have \(s_{1}^{*}>1\). Together with (3.10), we get
which is a contradiction. Hence, \(u_{k}\rightarrow u_{1}\) strongly in \(E{_{0}^{\alpha,2}}\). This implies
Namely, \(u_{1}\) is a minimizer of \(I_{\lambda}\) on \(N_{\lambda}^{+}\). From Lemmas 3.1 and 3.3, \(u_{1}\) is a critical point of \(I_{\lambda}(u)\). The proof is finished. □
Completion of the proof of Theorem 1.2.
Proof
From Theorem 1.1, we know that \(u_{1}\in N_{\lambda}^{+}\) is a critical point of \(I_{\lambda}(u)\) when \(\lambda\in (0,\frac{p}{2}\lambda_{1})\) since \(p<2\). Next, we show that if \(\lambda\in (0,\frac{p}{2}\lambda_{1})\), there exists another critical point \(u_{2}\) of \(I_{\lambda}\) which belongs to \(N_{\lambda}^{-}\) and satisfies \(I_{\lambda}(u_{2})=\inf_{u\in N_{\lambda}^{-}} I_{\lambda}(u)>0\). Let \(u\in E{_{0}^{\alpha ,2}}\) satisfying \(\int_{0}^{T} b(t) \vert u(t) \vert ^{q}\,dt>0\), namely, \(u\in B^{+}\). From the argument in Cases 3 and 4, we obtain that \(N_{\lambda}^{-}\) is not empty. Since \(I_{\lambda}(u)\) is coercive and bounded from below on \(N_{\lambda}^{-}\), there exist a minimizing sequence \(\{u_{k}\}\) and \(u_{2}\in E{_{0}^{\alpha,2}}\) such that \(I_{\lambda}(u_{k}) \rightarrow\inf_{u\in N_{\lambda}^{-}} I_{\lambda}(u)\) and \(u_{k}\rightharpoonup u_{2}\)(up to a subsequence). Next we claim that \(I_{\lambda}(u_{k}) \rightarrow I_{\lambda}(u_{2})\) and \(\inf_{u\in N_{\lambda}^{-}} I_{\lambda}(u)>0\). For \(u\in N_{\lambda}^{-}\), from (3.2) and
we have
For \(q>2\) and from Lemma 2.7, we have
Thus
Since \(\lambda<\frac{p}{2} \lambda_{1}\), then \(I_{\lambda}(u)>\delta>0\) and \(\inf_{u\in N_{\lambda}^{-}} I_{\lambda}(u)>0\). It follows from (3.1) and (3.2) that
Letting \(k\rightarrow\infty\), from \(\inf_{u\in N_{\lambda}^{-}} I_{\lambda}(u)>0\), we get
Since \(\lambda\in(0,\frac{p}{2}\lambda_{1})\), from the argument in Cases 3 and 4, we infer that there exists \(s_{2}u_{2}\in N_{\lambda}^{-}\). Next we claim that \(u_{k} \rightarrow u_{2}\) strongly in \(E_{0}^{\alpha,2}\). If not, \(\Vert u_{2} \Vert <\liminf_{k\rightarrow\infty} \Vert u_{k} \Vert \). Since \(u_{k}\in N_{\lambda}^{-}\), then \(I_{\lambda}(su_{k})\) attains its global maximum at \(s=1\). Hence,
which is a contradiction. So, \(u_{k}\rightarrow u_{2}\) strongly in \(E{_{0}^{\alpha,2}}\) and \(u_{2}\in N_{\lambda}^{-}\). Namely, \(u_{2}\) is a minimizer of \(I_{\lambda}\) on \(N_{\lambda}^{-}\). From Lemmas 3.1 and 3.3, \(u_{2}\) is a critical point of \(I_{\lambda}(u)\). The proof is finished. □
References
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)
Diethelm, K, Freed, AD: On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. In: Keil, F, Mackens, W, Voss, H, Werther, J (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217-224. Springer, Heidelberg (1999)
Glockle, WG, Nonnenmacher, TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46-53 (1995)
Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Kirchner, JW, Feng, X, Neal, C: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524-526 (2000)
Lundstrom, BN, Higgs, MH, Spain, WJ, Fairhall, AL: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335-1342 (2008)
Mainardi, F: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A, Mainardi, F (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291-348. Springer, Wien (1997)
Agarwal, RP, O’Regan, D, Stanĕk, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)
Ahmad, B, Nieto, JJ: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838-1843 (2009)
Bai, Z, Lu, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)
Chen, T, Liu, W: An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator. Appl. Math. Lett. 25, 1671-1675 (2012)
Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
Jang, W: The existence of solutions for boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74, 1987-1994 (2011)
Jin, H, Liu, W: On the periodic boundary value problem for Duffing type fractional differential equation with p-Laplacian operator. Bound. Value Probl. 2015, 144 (2015)
Zhang, S: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 61, 1202-1208 (2011)
Atanackovic, T, Stankovic, B: On a class of differential equations with left and right fractional derivatives. Z. Angew. Math. Mech. 87(7), 537-539 (2007)
Atanackovic, T, Stankovic, B: On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 10(2), 139-150 (2007)
Jiao, F, Zhou, Y: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1250086 (2012)
Jin, H, Liu, W: Eigenvalue problem for fractional differential operator containing left and right fractional derivative. Adv. Differ. Equ. 2016, 246 (2016)
Thabet, M, Baleanu, D: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. J. Math. Phys. 49(8), 309-310 (2008)
Torres, C: Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 5(1), 1-10 (2014)
Torres, C: Existence of solution for a fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013, 259 (2013)
Zhang, Z, Yuan, R: Variational approach to solution for a class of fractional Hamiltonian systems. Math. Methods Appl. Sci. 37(13), 1873-1883 (2014)
Zhou, Y, Zhang, L: Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. 73(6), 1325-1345 (2017)
Baleanu, D: Fractional Hamiltonian analysis of irregular systems. Signal Process. 86(10), 2632-2636 (2006)
Baleanu, D, Muslih, S: Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scr. 72(2-3), 119-121 (2005)
Baleanu, D, Muslih, S, Tas, K: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47(10), 103503 (2006)
Leszczynski, S: Using the fractional interaction law to model the impact dynamics of multiparticle collisions in arbitrary form. Phys. Rev. E 70, 051315 (2004)
Leszczynski, S, Blaszczyk, T: Modeling the transition between stable and unstable operation while emptying a silo. Granul. Matter 13, 429-438 (2011)
Rabei, E, Nawafleh, K, Hijjawi, R, Muslih, S, Baleanu, D: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327(2), 891-897 (2007)
Szymanek, E: The application of fractional order differential calculus for the description of temperature profiles in a granular layer. In: Mitkowski, W, et al.(eds.) Theory and Appl. of Non-integer Order Syst. LNEE, vol. 275, pp. 243-248. Springer, Switzerland (2013)
Zhou, Y, Peng, L: On the time-fractional Navier-Stokes equations. Comput. Math. Appl. 73(6), 874-891 (2017)
Zhou, Y, Peng, L: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73(6), 1016-1027 (2017)
Idczak, D, Walczak, S: Fractional Sobolev spaces via Riemann-Liouville derivatives. J. Funct. Spaces Appl. 2013, 128043 (2013)
Brown, KJ, Zhang, YP: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481-499 (2003)
Acknowledgements
The authors would like to express their sincere gratitude to the anonymous referee for his/her valuable suggestions and comments. This work is supported by the National Basic Research Program of China (2015CB251601), National Natural Science Foundation (51322401, 51421003, U1261201), the Fundamental Research Funds for the Central Universities (2014YC09, 2014ZDPY08) (China University of Mining and Technology) and the 111 Project (B07028).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All the authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Pu, H., Cao, L. Multiple solutions for the fractional differential equation with concave-convex nonlinearities and sign-changing weight functions. Adv Differ Equ 2017, 174 (2017). https://doi.org/10.1186/s13662-017-1215-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1215-1
Keywords
- fractional differential equation
- concave-convex nonlinearities
- Nehari manifold
- fibering map