- Research
- Open Access
- Published:
Multiple positive solutions for a coupled system of fractional multi-point BVP with p-Laplacian operator
Advances in Difference Equations volume 2017, Article number: 168 (2017)
Abstract
We investigate the existence of positive solutions for a system of fractional multi-point BVP with p-Laplacian operator. Our main tool is the fixed point theorem due to Leggett-Williams. The result obtained in this paper corrects some mistakes in (Al-Hossain in Differ. Equ. Dyn. Syst., 2016, doi:10.1007/s11590-013-0708-4) and essentially improves and extends some well-known results.
1 Introduction
In this paper, we are concerned with the existence of multiple positive solutions for the following p-Laplacian fractional operator multi-point BVP:
with the boundary conditions
where \(a,b\in R\) with \(a< b\), \(\varphi_{p}(s)=|s|^{p-2}s\), \(p>1\), \(\varphi^{-1}_{p}=\varphi_{q}\), \(\frac{1}{p}+\frac{1}{q}=1\) and \(D^{\alpha_{1}}_{a^{+}}\), \(D^{\alpha_{2}}_{a^{+}}\), \(D^{\beta_{1}}_{a^{+}} \), \(D^{\beta_{2}}_{a^{+}} \), \(D^{\mu_{2}}_{a^{+}} \), \(D^{\mu_{4}}_{a^{+}} \) are the standard Riemann-Liouville fractional derivatives. We make the following assumptions:
- (\(\mathrm{H}_{0}\)):
-
\(n-1<\alpha_{1} \le n\), \(m-1<\alpha_{2} \le m\), for \(n,m\ge3\), \(\beta_{1},\beta_{2}\in(1,2]\), \(\mu_{1}\in[1,\alpha_{1}-1)\), \(\mu_{3}\in[1,\alpha_{2}-1)\), \(\mu_{2},\mu_{4}\in(0,1]\) and \(\mu_{2}\le\beta_{1}-1\), \(\mu_{4}\le \beta_{2}-1\), \(f_{i}(t,u,v)\in C([a,b] \times R^{2}, R^{+})\), for \(i=1,2\),
- (\(\mathrm{H}_{1}\)):
-
\(\gamma_{i}\ge0\) (\(i=1,2,\ldots\)) and \(a<\xi_{1}<\xi_{2}<\cdots<\xi_{i-1}<\xi_{i}<\cdots<b\) satisfy that
$$\begin{aligned}& \Phi_{1}=(b-a)^{\alpha_{1}-\mu_{1}-1}-\sum_{i=1}^{\infty} \gamma_{i} (\xi_{i}-a)^{\alpha_{1}-\mu_{1}-1}>0, \\& \Phi_{2}=(b-a)^{\alpha_{2}-\mu_{3}-1}-\sum_{l=1}^{\infty} \gamma_{l} (\xi_{l}-a)^{\alpha_{2}-\mu_{3}-1}>0, \end{aligned}$$ - (\(\mathrm{H}_{2}\)):
-
\(\delta_{i}\ge0\) (\(i=1,2,\ldots\)) and \(a<\eta_{1}<\eta_{2}<\cdots<\eta_{i-1}<\eta_{i}<\cdots<b\) satisfy that
$$\begin{aligned}& \Delta_{1}=(b-a)^{\beta_{1}-\mu_{2}-1}-\sum_{i=1}^{\infty} \delta_{i} (\eta_{i}-a)^{\beta_{1}-\mu_{2}-1}>0, \\& \Delta_{2}=(b-a)^{\beta_{2}-\mu_{4}-1}-\sum_{l=1}^{\infty} \delta_{l} (\eta_{l}-a)^{\beta_{2}-\mu_{4}-1}>0. \end{aligned}$$
Recently, the existence of solutions or positive solutions of p-Laplacian fractional differential equations at nonresonance or resonance have been of great interest, readers can see [1–14] and the references cited therein. In particular, if \(a=0\), \(b=1\), \(n=m=3\), \(\delta_{i}=\gamma_{i}=0\) (\(i=1,2,\ldots\)), \(\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=1\), \(\alpha_{1}=\alpha_{2}=\alpha\), \(\beta_{1}=\beta_{2}=\beta\), \(f_{1}(t,u)=f_{2}(t,u)=\lambda f(u(t))\) with \(u(t)=v(t)\), the problem becomes the problem studied in [14]. Han, Lu and Zhang investigated the existence of positive solutions for the eigenvalue problems of the fractional differential equation with generalized p-Laplacian
where \(2<\alpha\le3\), \(1<\beta\le2\), \(\lambda>0\), \(\varphi_{p}(s)=|s|^{p-2}s\), \(\varphi^{-1}_{p}=\varphi_{q}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f:(0,+\infty)\to(0,+\infty)\) is continuous. By using the properties of Green’s function and Guo-Krasnosel’skii’s fixed point theorem, some existence results of at least one or two positive solutions in terms of a different eigenvalue interval are obtained.
If \(\gamma_{1}=\xi\), \(\xi_{1}=\eta\), \(\gamma_{i}=0\) (\(i=2,3,\ldots\)), \(\delta_{i}=0\) (\(i=1,2,3,\ldots\)), the problem becomes the problem considered in [1]. Al-Hossain investigated the existence of at least one positive solution for the following system of fractional order differential equations with p-Laplacian operators:
with the boundary conditions
where \(\varphi_{p}(s)=|s|^{p-2}s\), \(p>1\), \(\varphi^{-1}_{p}=\varphi_{q}\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\beta_{1},\beta_{2}\in(1,2]\), \(n-1<\alpha_{1} \le n\), \(m-1<\alpha_{2} \le m\) for \(n,m\ge3\), \(\mu_{2},\mu_{4}\in(0,1]\), \(\mu_{1}\in[1,\alpha_{1}-2]\), \(\mu_{3}\in[1,\alpha_{2}-2]\) are fixed integers, \(\xi\in(0,\infty)\), \(\eta\in(a,b)\) are constants with \(0<\xi(\eta-a)^{\alpha_{1}-\mu_{1}-1}<(b-a)^{\alpha_{1}-\mu_{1}-1}\), \(f_{i}(t,u,v)\in C([a,b] \times R^{2}, R^{+})\), for \(i=1,2\), and \(D^{\alpha_{1}}_{a^{+}}\), \(D^{\alpha_{2}}_{a^{+}}\), \(D^{\beta_{1}}_{a^{+}} \), \(D^{\beta_{2}}_{a^{+}} \), \(D^{\mu_{2}}_{a^{+}} \), \(D^{\mu_{4}}_{a^{+}} \) are the standard Riemann-Liouville fractional derivatives. By using a fixed point theorem of the cone expansion and compression of functional type due to Avery, Henderson and O’Regan, the author established at least one existence result for positive solutions to the problem.
Unfortunately, there are some mistakes in paper [1]. First and foremost, the given Green’s function \(H_{1}(t,s)\) is not to problem (1.5)-(1.8). In fact, the Green’s function \(H_{1}(t,s)\) in [1] is the Green’s function of the following system of fractional order differential equations with p-Laplacian operators:
with the boundary conditions (1.7), (1.8). In [1], even if the author studied the above problem, there are still the following two mistakes in [1], which are very essential to the proof of the main results.
First, Lemma 3.3 in [1], the author gave the following result: if \(s\le t\), then
If \(t\le s\), we have
The above result is one of the mistakes. In fact, by
then, for \(s\le t\), we have
and for \(t\le s\), we have
Thus, as the above wrong conclusion, the proof of the inequality of Lemma 3.3 is not correct. In this paper, we give a method to deal with this problem in the proof of Lemma 2.4.
Next, we want to point out, in [1], the following conclusion in Lemma 3.4(i) is also wrong: \(H_{1}(t,s)\le H_{1}(b,s)\) for \((t,s)\in[a,b]\times[a,b]\). In fact, for \(a\le s\le t \le b\),
- Case 1: :
-
if \(0<\mu_{2}\le\beta_{1}-1\le1\), we have
$$\begin{aligned} \frac{\partial}{\partial t} H_{1}(t,s) =&\frac{(\beta_{1}-1)[(t-a)^{\beta_{1}-2}(b-s)^{\beta_{1}-\mu _{2}-1}-(t-s)^{\beta_{1}-2}(b-a)^{\beta_{1}-\mu_{2}-1}]}{\Gamma(\beta _{1})(b-a)^{\beta_{1}-\mu_{2}-1}} \\ \le&\frac{(\beta_{1}-1)(t-s)^{\beta_{1}-2}[(b-s)^{\beta_{1}-\mu _{2}-1}-(b-a)^{\beta_{1}-\mu_{2}-1}]}{\Gamma(\beta_{1})(b-a)^{\beta_{1}-\mu _{2}-1}}\le 0. \end{aligned}$$ - Case 2: :
-
if \(0<\beta_{1}-1\le\mu_{2}\le1\), we have
$$\begin{aligned} \frac{\partial}{\partial t} H_{1}(t,s) =&\frac{(\beta_{1}-1)[(t-a)^{\beta_{1}-2}(b-s)^{\beta_{1}-\mu _{2}-1}-(t-s)^{\beta_{1}-2}(b-a)^{\beta_{1}-\mu_{2}-1}]}{\Gamma(\beta _{1})(b-a)^{\beta_{1}-\mu_{2}-1}} \\ =&\frac{(\beta_{1}-1)[(t-a)^{\mu_{2}-1}((t-a)(b-s))^{\beta_{1}-\mu _{2}-1}-(t-s)^{\mu_{2}-1}((t-s)(b-a))^{\beta_{1}-\mu_{2}-1}]}{\Gamma(\beta _{1})(b-a)^{\beta_{1}-\mu_{2}-1}}\\ \le&\frac{(\beta_{1}-1)[(t-s)(b-a)]^{\beta_{1}-\mu_{2}-1}[(t-a)^{\mu _{2}-1}-(t-s)^{\mu_{2}-1}]}{\Gamma(\beta_{1})(b-a)^{\beta_{1}-\mu_{2}-1}}\le0. \end{aligned}$$
Thus, \(H_{1}(t,s)\) in decreasing in t, which implies \(H_{1}(t,s)\ge H_{1}(b,s)\) for \(a\le s\le t \le b\).
Because of the wrong conclusion of Lemma 3.4 in [1], Theorems 4.2 and 4.3 in [1] cannot be established. The aim of this paper is to correct and improve the wrong results in [1]. By using the fixed point theorem due to Leggett-Williams, we will study the existence of triple positive solutions for the system of p-Laplacian fractional operator multi-point BVP (1.1)-(1.4). The associated Green’s function for the above problem is given at first, and some useful properties of the Green’s function are also obtained. The result obtained in this paper essentially improves and extends some known results. As application, an example is presented to illustrate the main result.
2 Preliminaries and lemmas
Lemma 2.1
[15]
Assume that \(D_{a^{+}}^{\alpha}\in L^{1}(a,b)\) with a fractional derivative of order \(\alpha>0\). Then
for some \(c_{i}\in R\), \(i=1,2,\ldots,n\), where n is the smallest integer greater than or equal to α.
Lemma 2.2
If \(y_{1}\in C[a,b]\) and (\(\mathrm{H}_{0}\)), (\(\mathrm{H}_{1}\)) hold, then the fractional differential equation BVPs
has a unique solution
where
Proof
Assume that \(u\in C^{[\alpha_{1}]+1}[a,b]\) is a solution of fractional order BVPs (2.1) and is uniquely expressed as
such that
By \(u^{(j)}(a)=0\), \(j=0,1,2,\ldots,n-2\), we get that \(c_{i}=0\), for \(i=2,3,\ldots,n\), hence
By \(u^{(\mu_{1})}(b)=\sum_{i=1}^{\infty}\gamma_{i}u^{(\mu_{1})}(\xi_{i})\), we have
Then
Hence
□
Lemma 2.3
Suppose that (\(\mathrm{H}_{0}\))-(\(\mathrm{H}_{2}\)) are satisfied for \(y_{2}\in C[a,b]\), then the fractional order BVP
has a unique solution
where
Proof
It follows from Lemma 2.1 and \(1<\beta_{1}\le2\) that
Since (2.2), we get
Then
Note that \(\varphi_{p}(D^{\alpha_{1}}_{a^{+}}u(a))=0\), we have \(C_{2}=0\), then
By \(D^{\mu_{2}}_{a^{+}}(\varphi_{p}(D^{\alpha_{1}}_{a^{+}}u(b)))=\sum_{i=1}^{\infty}\delta_{i} (D^{\mu_{2}}_{a^{+}}(\varphi_{p}(D^{\alpha_{1}}_{a^{+}}u(\eta _{i}))) )\), we have
Thus, the solution \(u(t)\) of the fractional order BVP (2.2)-(2.3) satisfies
Then the fractional order BVP (2.2)-(2.3) is equivalent to the following problem:
In view of Lemma 2.2, we get
□
Lemma 2.4
Suppose (\(\mathrm{H}_{0}\))-(\(\mathrm{H}_{2}\)) hold. Then \(G_{1}(t,s)\) has the following properties:
-
(i)
\(0\le G_{1}(t,s)\le G_{1}(b,s)\) for all \((t,s)\in[a,b]\times[a,b]\),
-
(ii)
\(G_{1}(t,s)\ge (\frac{1}{4} )^{\alpha_{1}-1}G_{1}(b,s)\) for all \((t,s)\in I\times(a,b) \), where \(I= [\frac{3a+b}{4},\frac{a+3b}{4} ]\).
Proof
(i) For \(t\le s\), we have
For \(t\ge s\), we get
Thus, for all \((t,s)\in[a,b]\times[a,b]\), we get
Then \(0=G_{1}(a,s) \le G_{1}(t,s)\le G_{1}(b,s)\), \(\forall(t,s)\in[a,b]\times[a,b] \).
(ii) For \(t\le s\), we have
For \(t\ge s\), we get
Thus,
Then
□
Lemma 2.5
Suppose (\(\mathrm{H}_{0}\))-(\(\mathrm{H}_{2}\)) hold. Then \(H_{1}(t,s)\) has the following properties:
-
(i)
\(0\le H_{1}(t,s)\le\omega_{1}(s)\) for all \((t,s)\in[a,b]\times[a,b]\), where
$$\omega_{1}(s)= H_{11}(s,s) +\frac{(b-a)^{\beta_{1}-1}\sum_{i=1}^{\infty}\delta_{i}H_{12}(\eta _{i},s)}{\Delta_{1}}, $$ -
(ii)
\(H_{1}(t,s)\ge h_{1}(s)H_{11}(s,s)\) for all \((t,s)\in I\times(a,b)\), where \(I=[\frac{3a+b}{4},\frac{a+3b}{4}]\), and for \(\zeta_{1}\in I\),
$$h_{1}(s)=\left \{ \textstyle\begin{array} {l@{\quad}l} \frac{(b-s)^{\beta_{1}-\mu_{2}-1}(\frac{3}{4})^{\beta_{1}-1}-(\frac {a+3b}{4}-s)^{\beta_{1}-1}(b-a)^{-\mu_{2}}}{(b-s)^{\beta_{1}-\mu_{2}-1}},& s\in (a,\zeta_{1}],\\ (\frac{1}{4})^{\beta_{1}-1},&s\in[\zeta_{1},b). \end{array}\displaystyle \right .$$
Proof
(i) For \(t\le s\), it is easy to show that \(\frac{\partial}{\partial t} H_{11}(t,s) \ge0\) for all \((t,s)\in[a,b]\times[a,b]\), then
For \(t\ge s\), we have
Thus,
Hence, for all \((t,s)\in[a,b]\times[a,b]\), by \(\mu_{2}\le \beta_{1}-1\) and \((b-s)(t-a)\ge(t-s)(b-a)\), we can easily show that \(H_{12}(t,s)\ge0\), then
(ii) Setting:
Then
Therefore, for all \((t,s)\in I\times(a,b)\), we have
We complete the proof. □
Remark 2.6
In a similar manner, the results of the Green’s function \(G_{2}(t,s)\) and \(H_{2}(t,s)\) for the homogeneous BVP corresponding to the fractional differential equation (1.2) and (1.4) are obtained. Consider the following conditions:
-
(i)
\(G_{i}(t,s)\ge\Lambda G_{i}(b,s)\) for all \((t,s)\in I\times(a,b)\), \(i=1,2\),
-
(ii)
\(H_{i}(t,s)\ge h(s) H_{i1}(s,s)\) for all \((t,s)\in I\times(a,b)\), \(i=1,2\),
where \(I= [\frac{3a+b}{4},\frac{a+3b}{4} ]\), \(\Lambda=\min\{(\frac{1}{4})^{\alpha_{1}-1},(\frac{1}{4})^{\alpha_{2}-1}\}\), \(h(s)=\min\{h_{1}(s), h_{2}(s)\}\).
Let c, d, e, r be positive real numbers, \(K_{r}=\{x\in K: \|x\|< r\}\), \(K(\psi,d,e)=\{x\in K:{ d\le\psi(x)},\|x\|\le e\}\).
Lemma 2.7
[16]
Let K be a cone in a real Banach space E, \(K_{r}=\{x\in K: \|x\|< r\}\), ψ be a nonnegative continuous concave functional on K such that \(\psi(x)\le\|x\|\), \(\forall x\in\overline{K}_{r}\) and \(K(\psi,d,e)=\{x\in K: d\le \psi(x),\|x\|\le e\}\). Suppose \(T :\overline{K}_{r} \to\overline{K}_{r}\) is completely continuous and there exist constants \(0 < c < d < e\le r \) such that
-
(i)
\(\{x\in K(\psi,d,e)|\psi(x)>d\} \neq\emptyset\) and \(\psi (Tx)>d\) for \(x\in K(\psi,d,e)\);
-
(ii)
\(\|Tx\|< c\) for \(x \le c\);
-
(iii)
\(\psi(Tx)>d\) for \(x\in K(\psi,d,r)\) with \(\|Tx\|>e\).
Then T has at least three fixed points \(x_{1}\), \(x_{2}\) and \(x_{3}\) with \(\|x_{1}\|< c\), \(d<\psi(x_{2})\), \(c<\|x_{3}\|\) with \(\psi(x_{3})< d\).
3 The main result and proof
Let the Banach space \(E = C[a, b]\times C[a, b]\) be endowed with the norm \(\|(u, v)\|=\|u \|+\|v \|\) for \((u,v)\in E\) and \(\|x\|=\max_{a\le t\le b} |x(t)|\). Define a cone \(K\in E\) by
where \(I= [\frac{3a+b}{4},\frac{a+3b}{4} ]\).
It is well known that the system of fractional order BVP (1.1)-(1.4) is equivalent to
Define the operators \(T_{1},T_{2} :K \to E\) by
and the operator \(T:K\to E\) by
It is clear that the existence of a positive solution to system (1.1)-(1.4) is equivalent to the existence of fixed points of the operator T.
Lemma 3.1
\(T:K\to K\) is completely continuous.
Proof
The continuity of functions \(G_{i}(t,s)\), \(H_{i}(t,s)\) and \(f_{i}(t,u(t),v(t))\) for \(i=1,2\) implies that \(T: K\to K\) is continuous. For all \((t,s)\in I\times[a,b]\) (where \(I= [\frac{3a+b}{4},\frac{a+3b}{4} ]\)), we have
Thus, \(T(K)\subset K\). So, we can easily show that \(T:K\to K\) is completely continuous by the Arzela-Ascoli theorem. The proof is completed. □
Let the nonnegative continuous concave functional ψ be defined on the cone K by
For convenience, we denote
and
Theorem 3.2
Suppose that (\(\mathrm{H}_{0}\))-(\(\mathrm{H}_{2}\)) hold. If there exist positive real numbers \(0< c< d<\Lambda r\) such that the following conditions hold:
- (\(\mathrm{H}_{3}\)):
-
\(f_{i}(t,u,v)< \varphi_{p}(\frac{r M}{2})\) for \(i=1,2\), for all \(t\in[a,b]\), \((u,v)\in[0,r]\times[0,r]\);
- (\(\mathrm{H}_{4}\)):
-
\(f_{i}(t,u,v)> \varphi_{p}(\frac{d N}{2\Lambda})\) for \(i=1,2\), for all \(t\in I= [\frac{3a+b}{4},\frac{a+3b}{4} ]\), \((u,v)\in [d,\frac{d}{\Lambda}]\times[d,\frac{d}{\Lambda}]\);
- (\(\mathrm{H}_{5}\)):
-
\(f_{i}(t,u,v)<\varphi_{p}(\frac{ c M}{2})\) for \(i=1,2\), for all \(t\in[a,b]\), \((u,v)\in[0,c]\times[0,c]\).
Then the system of fractional differential equations BVP (1.1)-(1.4) has at least three positive solutions \((u_{1},v_{1})\), \((u_{2},v_{2})\) and \((u_{3},v_{3})\) with
Proof
Firstly, if \((u,v)\in\overline{K}_{r}\), then we may assert that \(T:\overline{K}_{r}\to\overline{K}_{r}\) is a completely continuous operator. To see this, suppose \((u,v)\in\overline{K}_{r}\), then \(\|(u,v)\|\le r\). It follows from Lemma 2.4, Lemma 2.5 and (\(\mathrm{H}_{3}\)) that
Therefore, \(T:\overline{K}_{r}\to\overline{K}_{r}\). This together with Lemma 3.1 implies that \(T:\overline{K}_{r}\to \overline{K}_{r}\) is a completely continuous operator. In the same way, if \((u,v)\in\overline{K}_{c}\), then assumption (\(\mathrm{H}_{5}\)) yields \(\|T(u,v)\|< c\). Hence, condition (ii) of Lemma 2.7 is satisfied.
To check condition (i) of Lemma 2.7, we let \(u(t)+v(t)=\frac{d}{\Lambda}\) for \(t\in[a,b]\). It is easy to verify that \(u(t)+v(t)=\frac{d}{\Lambda}\in K(\psi,d,\frac{d}{\Lambda})\) and \(\psi(u,v)=\frac{d}{\Lambda}>d\), and so \(\{(u,v)\in K(\psi,d,\frac{d}{\Lambda}):\psi(u,v)>d\}\neq\emptyset\). Thus, for all \((u,v)\in K(\psi,d,\frac{d}{\Lambda})\), we have that \(d\le u(t)+v(t)\le\frac{d}{\Lambda}\) for \(t\in I\) and \(T(u,v)\in K\). From Lemma 2.4, Lemma 2.5 and (\(\mathrm{H}_{4}\)), one has
This shows that condition (i) of Lemma 2.7 holds.
Secondly, we verify that (iii) of Lemma 2.7 is satisfied. By Lemma 3.1, we have
which shows that condition (iii) of Lemma 2.7 holds.
To sum up, all the conditions of Lemma 2.7 are satisfied, it follows from Lemma 2.7 that there exist three positive solutions \((u_{1},v_{1})\), \((u_{2},v_{2})\) and \((u_{3},v_{3})\) satisfying
□
4 Example
Example 1
Consider the system of fractional differential equations BVP
with the boundary conditions
where
We note that \(a=0\), \(b=1\), \(n=m=3\), \(\alpha_{1}=\alpha_{2}=\frac{5}{2}\), \(\beta_{1}=\beta_{2}=\frac{3}{2}\), \(\mu_{1}=\mu_{3}=\frac{5}{4}\), \(\gamma_{1}=\eta_{1}=\xi_{1}=\mu_{2}=\mu_{4}=\frac{1}{4}\), \(\delta_{1}=\frac{1}{3}\), \(\gamma_{i}=\delta_{i}=0\) (\(i=2,3,4,\ldots\)). Let \(p=2\), an easy computation shows that \(\Phi_{1}=\Phi_{2}\approx0.8232\), \(\Delta_{1}=\Delta_{2}\approx0.7643\), \(\Lambda=0.125\), \(N\approx23.1092\), \(M\approx2.6109\). Then, if we choose \(c=\frac{1}{4}\), \(d=\frac{1}{2}\), \(r=7{,}109\), then \(f_{i}(t,u,v)\) for \(i=1,2\) satisfies the following conditions:
- (\(\mathrm{H}_{3}\)):
-
\(f_{i}(t,u,v)< \varphi_{p}(\frac{r M}{2})\approx9{,}280.44\) for \(i=1,2\), for all \(t\in[0,1]\), \((u,v)\in [0,7{,}109]\times[0,7{,}109]\);
- (\(\mathrm{H}_{4}\)):
-
\(f_{i}(t,u,v)> \varphi_{p}(\frac{d N}{2\Lambda})=46.2184\) for \(i=1,2\), for all \(t\in [\frac{1}{4},\frac{3}{4}]\), \((u,v)\in [\frac{1}{2},4]\times[\frac{1}{2},4]\);
- (\(\mathrm{H}_{5}\)):
-
\(f_{i}(t,u,v)<\varphi_{p}(\frac{ c M}{2})\approx0.3264\) for \(i=1,2\), for all \(t\in[0,1]\), \((u,v)\in [0,\frac{1}{4}]\times[0,\frac{1}{4}]\).
Thus, all the hypotheses of Theorem 3.2 are satisfied. Hence, the system of fractional differential equations BVP (4.1)-(4.4) has at least three positive solutions.
References
Al-Hossain, AY: Existence of positive solutions for system of p-Laplacian fractional order boundary value problems. Differ. Equ. Dyn. Syst. (2016). doi:10.1007/s12591-016-0275-0
Yuan, C, Jiang, D, O’Regan, D, Agarwal, RP: Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012, Article ID 13 (2012)
Bai, C: Existence of positive solutions for boundary value problems of fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 30 (2010)
Ma, D: Positive solutions of multi-point boundary value problem of fractional differential equation. Arab J. Math. Sci. 21, 225-236 (2015)
Henderson, J, Luca, R: Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, Article ID 138 (2015)
Henderson, J, Luca, R: Existence and multiplicity of positive solutions for a system of fractional boundary value problems. Bound. Value Probl. 2014, Article ID 60 (2014)
Prasad, KR, Krushna, BMB, Sreedhar, N: Even number of positive solutions for the system of (p, q)-Laplacian fractional order two-point boundary value problems. Differ. Equ. Dyn. Syst. (2016). doi:10.1007/s12591-016-0281-2
Zhao, K, Liu, J: Multiple monotone positive solutions of integral BVPs for a higher-order fractional differential equation with monotone homomorphism. Adv. Differ. Equ. 2016, Article ID 20 (2016)
Yang, L, Shen, C, Xie, D: Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann-Liouville derivative. Adv. Differ. Equ. 2014, Article ID 284 (2014)
Luca, R, Tudorache, A: Positive solutions to a system of semipositone fractional boundary value problems. Adv. Differ. Equ. 2014, Article ID 179 (2014)
Leggett, RW, Williams, LR: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673-688 (1979)
Feng, W: Topological methods on solvability, multiplicity and eigenvalues of a nonlinear fractional boundary value problem. Electron. J. Qual. Theory Differ. Equ. 2015, Article ID 70 (2015)
Liu, X, Jia, M, Ge, W: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56-62 (2017)
Han, Z, Lu, H, Zhang, C: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526-536 (2015)
Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Jiang, W, Qiu, J, Yang, C: The existence of positive solutions for p-Laplacian boundary value problems at resonance. Bound. Value Probl. 2016, Article ID 175 (2016)
Acknowledgements
The authors thank the editor and referees for their careful reading of the manuscript and a number of excellent suggestions. The work is sponsored by the Natural Science Foundation of China (11571136 and 11271364), the University Natural Science Key Research Program of Anhui Province under Grant (KJ2015A196) and the Anhui Provincial Natural Science Foundation of key projects (KJ2014A200).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Liu, Y., Xie, D., Bai, C. et al. Multiple positive solutions for a coupled system of fractional multi-point BVP with p-Laplacian operator. Adv Differ Equ 2017, 168 (2017). https://doi.org/10.1186/s13662-017-1221-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1221-3
Keywords
- fractional differential equation
- positive solutions
- p-Laplacian operator
- Green’s function
- cone