Skip to main content

Theory and Modern Applications

Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type

Abstract

This article deals with some existence and Ulam-Hyers-Rassias stability results for a class of functional differential equations involving the Hilfer-Hadamard fractional derivative. An application is made of a Schauder fixed point theorem for the existence of solutions. Next we prove that our problem is generalized Ulam-Hyers-Rassias stable.

1 Introduction

Fractional differential equations have recently been applied in various areas of engineering, mathematics, physics and bio-engineering, and other applied sciences. For some fundamental results in the theory of fractional calculus and fractional ordinary and partial differential equations, we refer the reader to the monographs of Abbas et al. [1, 2], Samko et al. [3], Kilbas et al. [4] and Zhou [5], the papers [622] and the references therein.

The stability of functional equations was originally raised by Ulam [23], next by Hyers [24]. Thereafter, this type of stability is called the Ulam-Hyers stability. In 1978, Rassias [25] provided a remarkable generalization of the Ulam-Hyers stability of mappings by considering variables. The concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Considerable attention has been given to the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of all kinds of functional equations; one can see the monographs of [26], and the papers of Abbas et al. [6, 8, 9, 2729], Petru et al. [30], Rus [31, 32], and Wang et al. [33, 34]. More details from historical point of view, and recent developments of such stabilities are reported in [31, 35].

Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative; see [3642]. Motivated by the Hilfer fractional derivative (which interpolates the Riemann-Liouville derivative and the Caputo derivative), Qassim et al. [43, 44] considered a new type of fractional derivative (which interpolates the Hadamard derivative and its Caputo counterpart). Motivated by the above papers, in this article we discuss the existence and the Ulam stability of solutions for the following problem of Hilfer-Hadamard fractional differential equations of the form

$$ \textstyle\begin{cases} ({}^{H}D_{1}^{\alpha,\beta}u)(t)=f(t,u(t)); \quad t\in J:=[1,T], \\ ({}^{H}I_{1}^{1-\gamma}u)(t)\big|_{t=1}=\phi, \end{cases} $$
(1)

where \(\alpha\in(0,1)\), \(\beta\in[0,1]\), \(\gamma=\alpha+\beta -\alpha\beta\), \(T>1\), \(\phi\in{\Bbb {R}}\), \(f:J\times{\Bbb {R}}\to{\Bbb {R}}\) is a given function, \({}^{H}I_{1}^{1-\gamma}\) is the left-sided mixed Hadamard integral of order \(1-\gamma\), and \({}^{H}D_{1}^{\alpha,\beta}\) is the Hilfer-Hadamard fractional derivative of order α and type β, introduced by Hilfer in [38].

The present paper initiates the Ulam stability for differential equations involving the Hilfer-Hadamard fractional derivative.

2 Preliminaries

Let C be the Banach space of all continuous functions v from I into \({\Bbb {R}}\) with the supremum (uniform) norm

$$\Vert v \Vert _{\infty}:=\sup_{t\in J} \bigl\vert v(t) \bigr\vert . $$

By \(L^{1}(J)\), we denote the space of Lebesgue-integrable functions \(v:J\rightarrow{\Bbb {R}}\) with the norm

$$\Vert v \Vert _{1}= \int_{0}^{T} \bigl\vert v(t) \bigr\vert \,dt. $$

As usual, \(\operatorname {AC}(J)\) denotes the space of absolutely continuous functions from J into \({\Bbb {R}}\). We denote by \(\operatorname {AC}^{1}(J)\) the space defined by

$$\operatorname {AC}^{1}(J):= \biggl\{ w:J\to{\Bbb {R}}:\frac{d}{dt}w(t)\in \operatorname {AC}(J) \biggr\} . $$

Let

$$\delta=t\frac{d}{dt}, \quad \quad q>0, \quad\quad n=[q]+1, $$

where \([q]\) is the integer part of q. Define the space

$$\operatorname {AC}_{\delta}^{n} := \bigl\{ u:[1,T]\to E :\delta^{n-1} \bigl[u(t) \bigr]\in \operatorname {AC}(J) \bigr\} . $$

Let \(\gamma\in(0,1]\), by \(C_{\gamma,\ln}(J)\), \(C_{\gamma}(J)\) and \(C^{1}_{\gamma}(J)\), we denote the weighted spaces of continuous functions defined by

$$C_{\gamma,\ln}(J)= \bigl\{ w(t): (\ln t)^{1-\gamma}w(t)\in C \bigr\} $$

with the norm

$$\begin{aligned}& \Vert w \Vert _{C_{\gamma,\ln}}:=\sup_{t\in J} \bigl\vert ( \ln t)^{1-\gamma}w(t) \bigr\vert , \\& C_{\gamma}(J)= \bigl\{ w:(0,T]\to{\Bbb {R}}: t^{1-\gamma}w(t)\in C \bigr\} \end{aligned}$$

with the norm

$$\Vert w \Vert _{C_{\gamma}}:=\sup_{t\in J} \bigl\vert t^{1-\gamma}w(t) \bigr\vert , $$

and

$$C^{1}_{\gamma}(J)= \biggl\{ w\in C: \frac{dw}{dt}\in C_{\gamma} \biggr\} $$

with the norm

$$\Vert w \Vert _{C^{1}_{\gamma}}:= \Vert w \Vert _{\infty}+ \bigl\Vert w' \bigr\Vert _{C_{\gamma}}. $$

In the following, we denote \(\Vert w \Vert _{C_{\gamma,\ln }}\) by \(\Vert w \Vert _{C}\).

Now, we give some results and properties of fractional calculus.

Definition 2.1

[24]; Riemann-Liouville fractional integral

The left-sided mixed Riemann-Liouville integral of order \(r>0\) of a function \(w\in L^{1}(J)\) is defined by

$$\bigl( I_{1}^{r}w \bigr) (t) =\frac{1}{\Gamma(r)} \int_{1}^{t}( t-s) ^{r-1}w(s)\,ds \quad \text{for a.e. }t\in J, $$

where \(\Gamma(\cdot)\) is the (Euler’s) gamma function defined by

$$\Gamma(\xi)= \int_{0}^{\infty}t^{\xi-1}e^{-t}\,dt;\quad \xi>0. $$

Notice that for all \(r,r_{1},r_{2}>0\) and each \(w\in C\), we have \(I_{1}^{r}w\in C\), and

$$\bigl(I_{1}^{r_{1}}I_{1}^{r_{2}}w \bigr) (t)= \bigl(I_{1}^{r_{1}+r_{2}}w \bigr) (t) \quad \text{for a.e. }t\in J. $$

Definition 2.2

[24]; Riemann-Liouville fractional derivative

The Riemann-Liouville fractional derivative of order \(r>0\) of a function \(w\in L^{1}(J)\) is defined by

$$\begin{aligned} \bigl(D^{r}_{1} w \bigr) (t) =& \biggl( \frac{d^{n}}{dt^{n}}I_{1}^{n-r}w \biggr) (t) \\ =&\frac{1}{\Gamma(n-r)}\frac{d^{n}}{dt^{n}} \int _{1}^{t}(t-s)^{n-r-1}w(s)\,ds \quad \text{for a.e. }t \in J, \end{aligned}$$

where \(n=[r]+1\) and \([r]\) is the integer part of r.

In particular, if \(r\in(0,1]\), then

$$\begin{aligned} \bigl(D^{r}_{1} w \bigr) (t) =& \biggl( \frac{d}{dt}I_{1}^{1-r}w \biggr) (t) \\ =&\frac{1}{\Gamma(1-r)}\frac{d}{dt} \int_{1}^{t}(t-s)^{-r}w(s)\,ds \quad \text{for a.e. }t \in J. \end{aligned}$$

Let \(r\in(0,1]\), \(\gamma\in[0,1)\) and \(w\in C_{1-\gamma }(J)\). Then the following expression leads to the left inverse operator as follows:

$$\bigl(D_{1}^{r}I_{1}^{r}w \bigr) (t)=w(t)\quad \text{for all }t\in(1,T]. $$

Moreover, if \(I_{1}^{1-r}w\in C^{1}_{1-\gamma}(J)\), then the following composition is proved in [3]:

$$\bigl(I_{1}^{r}D_{1}^{r}w \bigr) (t)=w(t)-\frac{(I_{1}^{1-r}w)(1^{+})}{\Gamma (r)}t^{r-1}\quad \text{for all }t\in(1,T]. $$

Definition 2.3

[24]; Caputo fractional derivative

The Caputo fractional derivative of order \(r>0\) of a function \(w\in L^{1}(J)\) is defined by

$$\begin{aligned} \bigl(^{c}D^{r}_{1}w \bigr) (t) =& \biggl(I_{1}^{n-r}\frac{d^{n}}{dt^{n}}w \biggr) (t) \\ =&\frac{1}{\Gamma(n-r)} \int_{1}^{t}(t-s)^{n-r-1} \frac {d^{n}}{ds^{n}}w(s)\,ds \quad \text{for a.e. }t\in J. \end{aligned}$$

In particular, if \(r\in(0,1]\), then

$$\begin{aligned} \bigl(^{c}D^{r}_{1}w \bigr) (t) =& \biggl(I_{1}^{1-r}\frac{d}{dt}w \biggr) (t) \\ =&\frac{1}{\Gamma(1-r)} \int_{1}^{t}(t-s)^{-r} \frac{d}{ds}w(s)\,ds \quad \text{for a.e. }t\in J. \end{aligned}$$

Let us recall some definitions and properties of Hadamard fractional integration and differentiation. We refer to [4, 45] for a more detailed analysis.

Definition 2.4

[4, 45]; Hadamard fractional integral

The Hadamard fractional integral of order \(q>0\) for a function \(g\in L^{1}(I,E)\) is defined as

$$\bigl({}^{H}I_{1}^{q}g \bigr) (x)= \frac{1}{\Gamma(q)} \int_{1}^{x} \biggl(\ln\frac {x}{s} \biggr)^{q-1}\frac{g(s)}{s}\,ds, $$

provided the integral exists.

Example 2.5

Let \(0< q<1\). Then

$${}^{H}I_{1}^{q} \ln t=\frac{1}{\Gamma(2+q)}(\ln t)^{1+q} \quad \text{for a.e. }t\in[0,e]. $$

Set

$$\delta=x\frac{d}{dx}, \quad \quad q>0, \quad\quad n=[q]+1 $$

and

$$\operatorname {AC}_{\delta}^{n} := \bigl\{ u:[1,T]\to E :\delta^{n-1} \bigl[u(x) \bigr]\in \operatorname {AC}(J) \bigr\} . $$

Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional derivative is defined in terms of the Hadamard fractional integral in the following way.

Definition 2.6

[4, 45]; Hadamard fractional derivative

The Hadamard fractional derivative of order \(q>0\) applied to the function \(w\in \operatorname {AC}_{\delta}^{n}\) is defined as

$$\bigl({}^{H}D_{1}^{q}w \bigr) (x)= \delta^{n} \bigl({}^{H}I_{1}^{n-q}w \bigr) (x). $$

In particular, if \(q\in(0,1]\), then

$$\bigl({}^{H}D_{1}^{q}w \bigr) (x)=\delta \bigl({}^{H}I_{1}^{1-q}w \bigr) (x). $$

Example 2.7

Let \(0< q<1\). Then

$${}^{H}D_{1}^{q} \ln t=\frac{1}{\Gamma(2-q)}(\ln t)^{1-q} \quad \text{for a.e. }t\in[0,e]. $$

It has been proved (see, e.g., Kilbas [46], Theorem 4.8) that in the space \(L^{1}(J)\) the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.,

$$\bigl({}^{H}D_{1}^{q} \bigr) \bigl({}^{H}I_{1}^{q}w \bigr) (x)=w(x). $$

From Theorem 2.3 of [4], we have

$$\bigl({}^{H}I_{1}^{q} \bigr) \bigl({}^{H}D_{1}^{q}w \bigr) (x)=w(x)-\frac {({}^{H}I_{1}^{1-q}w)(1)}{\Gamma(q)}(\ln x)^{q-1}. $$

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional derivative is defined in the following way.

Definition 2.8

Caputo-Hadamard fractional derivative

The Caputo-Hadamard fractional derivative of order \(q>0\) applied to the function \(w\in \operatorname {AC}_{\delta}^{n}\) is defined as

$$\bigl(^{Hc}D_{1}^{q}w \bigr) (x)= \bigl({}^{H}I_{1}^{n-q}\delta^{n}w \bigr) (x). $$

In particular, if \(q\in(0,1]\), then

$$\bigl(^{Hc}D_{1}^{q}w \bigr) (x)= \bigl({}^{H}I_{1}^{1-q}\delta w \bigr) (x). $$

In [38], Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville and the Caputo derivatives as specific cases (see also [3941]).

Definition 2.9

Hilfer fractional derivative

Let \(\alpha\in (0,1)\), \(\beta\in[0,1]\), \(w\in L^{1}(J)\), \(I_{1}^{(1-\alpha)(1-\beta)}w\in \operatorname {AC}^{1}(J)\). The Hilfer fractional derivative of order α and type β of w is defined as

$$ \bigl(D_{1}^{\alpha,\beta}w \bigr) (t)= \biggl(I_{1}^{\beta(1-\alpha)}\frac{d}{dt} I_{1}^{(1-\alpha)(1-\beta)}w \biggr) (t)\quad \text{for a.e. }t\in J. $$
(2)

Properties

Let \(\alpha\in(0,1)\), \(\beta\in[0,1]\), \(\gamma =\alpha+\beta-\alpha\beta\), and \(w\in L^{1}(J)\).

  1. 1.

    The operator \((D_{1}^{\alpha,\beta}w)(t)\) can be written as

    $$\bigl(D_{1}^{\alpha,\beta}w \bigr) (t)= \biggl(I_{1}^{\beta(1-\alpha)} \frac{d}{dt} I_{1}^{1-\gamma}w \biggr) (t)= \bigl(I_{1}^{\beta(1-\alpha)} D_{1}^{\gamma }w \bigr) (t)\quad \text{for a.e. }t\in J. $$

    Moreover, the parameter γ satisfies

    $$\gamma\in(0,1], \quad\quad \gamma\geq\alpha, \quad\quad \gamma>\beta, \quad\quad 1-\gamma < 1-\beta(1-\alpha). $$
  2. 2.

    The generalization (2) for \(\beta=0\) coincides with the Riemann-Liouville derivative and for \(\beta=1\) with the Caputo derivative.

    $$D_{1}^{\alpha,0}=D_{1}^{\alpha},\quad \text{and}\quad D_{1}^{\alpha,1}= ^{c}D_{1}^{\alpha}. $$
  3. 3.

    If \(D_{1}^{\beta(1-\alpha)}w\) exists and in \(L^{1}(J)\), then

    $$\bigl(D_{1}^{\alpha,\beta}I_{1}^{\alpha}w \bigr) (t)= \bigl(I_{1}^{\beta(1-\alpha )}D_{1}^{\beta(1-\alpha)}w \bigr) (t)\quad \text{for a.e. }t\in J. $$

    Furthermore, if \(w\in C_{\gamma}(J)\) and \(I_{1}^{1-\beta(1-\alpha )}w\in C^{1}_{\gamma}(J)\), then

    $$\bigl(D_{1}^{\alpha,\beta}I_{1}^{\alpha}w \bigr) (t)=w(t) \quad \text{for a.e. }t\in J. $$
  4. 4.

    If \(D_{1}^{\gamma}w\) exists and in \(L^{1}(J)\), then

    $$\bigl(I_{1}^{\alpha}D_{1}^{\alpha,\beta}w \bigr) (t)= \bigl(I_{1}^{\gamma}D_{1}^{\gamma}w \bigr) (t) =w(t)-\frac{I_{1}^{1-\gamma}(1^{+})}{\Gamma(\gamma)}t ^{\gamma-1} \quad \text{for a.e. }t\in J. $$

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative (introduced for the first time in [43]) is defined in the following way.

Definition 2.10

Hilfer-Hadamard fractional derivative

Let \(\alpha\in(0,1)\), \(\beta\in[0,1]\), \(\gamma=\alpha+\beta -\alpha\beta\), \(w\in L^{1}(J)\), and \({}^{H}I_{1}^{(1-\alpha)(1-\beta)}w\in \operatorname {AC}^{1}(J)\). The Hilfer-Hadamard fractional derivative of order α and type β applied to the function w is defined as

$$ \begin{aligned}[b] \bigl({}^{H}D_{1}^{\alpha,\beta}w \bigr) (t)&= \bigl({}^{H}I_{1}^{\beta(1-\alpha )} \bigl({}^{H}D_{1}^{\gamma}w \bigr) \bigr) (t) \\ &= \bigl({}^{H}I_{1}^{\beta(1-\alpha)}\delta \bigl({}^{H}I_{1}^{1-\gamma }w \bigr) \bigr) (t) \quad \text{for a.e. }t \in J. \end{aligned} $$
(3)

This new fractional derivative (3) may be viewed as interpolating the Hadamard fractional derivative and the Caputo-Hadamard fractional derivative. Indeed, for \(\beta=0\), this derivative reduces to the Hadamard fractional derivative, and when \(\beta=1\), we recover the Caputo-Hadamard fractional derivative.

$${}^{H}D_{1}^{\alpha,0}= {}^{H}D_{1}^{\alpha},\quad \text{and}\quad {}^{H}D_{1}^{\alpha,1}= ^{Hc}D_{1}^{\alpha}. $$

From Theorem 21 in [44], we concluded the following lemma.

Lemma 2.11

Let \(f:I\times E\rightarrow E\) be such that \(f(\cdot,u(\cdot))\in C_{\gamma,\ln}(J)\) for any \(u\in C_{\gamma,\ln}(J)\). Then problem (1) is equivalent to the problem of the solutions of the Volterra integral equation

$$u(t)=\frac{\phi}{\Gamma(\gamma)}(\ln t)^{\gamma -1}+ \bigl({}^{H}I_{1}^{\alpha}f \bigl(\cdot,u(\cdot) \bigr) \bigr) (t). $$

Now, we consider the Ulam stability for problem (1). Let \(\epsilon>0\) and \(\Phi:I\to[0,\infty)\) be a continuous function. We consider the following inequalities:

$$\begin{aligned}& \bigl\vert \bigl({}^{H}D_{1}^{\alpha,\beta}u \bigr) (t)-f \bigl(t,u(t) \bigr) \bigr\vert \leq \epsilon; \quad t\in J. \end{aligned}$$
(4)
$$\begin{aligned}& \bigl\vert \bigl({}^{H}D_{1}^{\alpha,\beta}u \bigr) (t)-f \bigl(t,u(t) \bigr) \bigr\vert \leq \Phi(t); \quad t\in J. \end{aligned}$$
(5)
$$\begin{aligned}& \bigl\vert \bigl({}^{H}D_{1}^{\alpha,\beta}u \bigr) (t)-f \bigl(t,u(t) \bigr) \bigr\vert \leq \epsilon\Phi(t);\quad t\in J. \end{aligned}$$
(6)

Definition 2.12

[2, 31]

Problem (1) is Ulam-Hyers stable if there exists a real number \(c_{f}>0\) such that for each \(\epsilon>0\) and for each solution \(u\in C_{\gamma,\ln}\) of inequality (4) there exists a solution \(v\in C_{\gamma,\ln}\) of (1) with

$$\bigl\vert u(t)-v(t) \bigr\vert \leq\epsilon c_{f};\quad t\in J. $$

Definition 2.13

[2, 31]

Problem (1) is generalized Ulam-Hyers stable if there exists \(c_{f}:C([0,\infty),[0,\infty))\) with \(c_{f}(0)=0\) such that for each \(\epsilon>0\) and for each solution \(u\in C_{\gamma,\ln}\) of inequality (4) there exists a solution \(v\in C_{\gamma,\ln}\) of (1) with

$$\bigl\vert u(t)-v(t) \bigr\vert \leq c_{f}(\epsilon); \quad t\in J. $$

Definition 2.14

[2, 31]

Problem (1) is Ulam-Hyers-Rassias stable with respect to Φ if there exists a real number \(c_{f,\Phi}>0\) such that for each \(\epsilon>0\) and for each solution \(u\in C_{\gamma,\ln}\) of inequality (6) there exists a solution \(v\in C_{\gamma,\ln}\) of (1) with

$$\bigl\vert u(t)-v(t) \bigr\vert \leq\epsilon c_{f,\Phi}\Phi(t); \quad t\in J. $$

Definition 2.15

[2, 31]

Problem (1) is generalized Ulam-Hyers-Rassias stable with respect to Φ if there exists a real number \(c_{f,\Phi}>0\) such that for each solution \(u\in C_{\gamma,\ln}\) of inequality (5) there exists a solution \(v\in C_{\gamma,\ln}\) of (1) with

$$\bigl\vert u(t)-v(t) \bigr\vert \leq c_{f,\Phi}\Phi(t);\quad t\in J. $$

Remark 2.16

It is clear that

  1. (i)

    Definition 2.12 Definition 2.13,

  2. (ii)

    Definition 2.14 Definition 2.15,

  3. (iii)

    Definition 2.14 for \(\Phi(\cdot)=1\) Definition 2.12.

One can have similar remarks for inequalities (4) and (6).

In the sequel we will make use of the following fixed point theorem.

Theorem 2.17

Schauder fixed point theorem [47]

Let E be a Banach space and Q be a nonempty bounded convex and closed subset of E, and \(N:Q\to Q\) is a compact and continuous map. Then N has at least one fixed point in Q.

3 Existence of solutions

Let us start by defining what we mean by a solution of problem (1).

Definition 3.1

By a solution of problem (1) we mean a measurable function \(u\in C_{\gamma,\ln}\) that satisfies the condition \(({}^{H}I_{1}^{1-\gamma}u)(1^{+})=\phi\) and the equation \(({}^{H}D_{1}^{\alpha,\beta}u)(t)=f(t,u(t))\) on J.

The following hypotheses will be used in the sequel.

\((H_{1})\) :

The function \(t\mapsto f(t,u)\) is measurable on I for each \(u\in C_{\gamma,\ln}\), and the function \(u\mapsto f(t,u)\) is continuous on \(C_{\gamma,\ln}\) for a.e. \(t\in J\),

\((H_{2})\) :

There exists a continuous function \(p:I\to[0,\infty )\) such that

$$\bigl\vert f(t,u) \bigr\vert \leq\frac{p(t)}{1+ \vert u \vert } \vert u \vert \quad \text{for a.e. } t\in J\text{ and each }u\in{\Bbb {R}}. $$

Set

$$p^{*}=\sup_{t\in J}p(t). $$

Now, we shall prove the following theorem concerning the existence of solutions of problem (1).

Theorem 3.2

Assume that hypotheses \((H_{1})\) and \((H_{2}) \) hold. Then problem (1) has at least one solution defined on J.

Proof

Consider the operator \(N:C_{\gamma,\ln}\rightarrow C_{\gamma,\ln}\) defined by

$$ (Nu) (t)=\frac{\phi}{\Gamma(\gamma)}(\ln t)^{\gamma-1} + \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {f(s,u(s))}{s\Gamma(\alpha)}\,ds. $$
(7)

Clearly, the fixed points of the operator N are solution of problem (1).

For any \(u\in C_{\gamma,\ln}\) and each \(t\in J\), we have

$$\begin{aligned} \bigl\vert (\ln t)^{1-\gamma}(Nu) (t) \bigr\vert \leq& \frac{ \vert \phi \vert }{\Gamma(\gamma)}+\frac{(\ln t)^{1-\gamma }}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1} \bigl\vert f \bigl(s,u(s) \bigr) \bigr\vert \frac{ds}{s} \\ \leq&\frac{ \vert \phi \vert }{\Gamma(\gamma)}+\frac {(\ln t)^{1-\gamma}}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}p(s)\frac {ds}{s} \\ \leq&\frac{ \vert \phi \vert }{\Gamma(\gamma)}+\frac {p^{*}(\ln T)^{1-\gamma}}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac{ds}{s} \\ \leq&\frac{ \vert \phi \vert }{\Gamma(\gamma)}+\frac {p^{*}(\ln T)^{1-\gamma+\alpha}}{\Gamma(1+\alpha)}. \end{aligned}$$

Thus

$$ \bigl\Vert N(u) \bigr\Vert _{C}\leq \frac{ \vert \phi \vert }{\Gamma(\gamma)}+\frac{p^{*}(\ln T)^{1-\gamma+\alpha }}{\Gamma(1+\alpha)}:=R. $$
(8)

This proves that N transforms the ball \(B_{R}:=B(0,R)=\{w\in C_{\gamma,\ln}: \Vert w \Vert _{C}\leq R\}\) into itself. We shall show that the operator \(N:B_{R}\to B_{R}\) satisfies all the assumptions of Theorem 2.17. The proof will be given in several steps.

Step 1. \(N:B_{R} \to B_{R}\) is continuous.

Let \(\{u_{n}\}_{n\in {\mathbb {N}}}\) be a sequence such that \(u_{n}\rightarrow u\) in \(B_{R}\). Then, for each \(t\in J\), we have

$$ \begin{aligned}[b] &\bigl\vert (\ln t)^{1-\gamma}(Nu_{n}) (t)-(\ln t)^{1-\gamma }(Nu) (t) \bigr\vert \\ &\quad \leq\frac{(\ln t)^{1-\gamma}}{\Gamma(\alpha)} \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1} \bigl\vert f \bigl(s,u_{n}(s) \bigr)-f \bigl(s,u(s) \bigr) \bigr\vert \frac{ds}{s}. \end{aligned} $$
(9)

Since \(u_{n}\rightarrow u\text{ as } n\rightarrow\infty\) and f is continuous, by the Lebesgue dominated convergence theorem, equation (9) implies

$$\bigl\Vert N(u_{n})-N(u) \bigr\Vert _{C} \to0 \quad \text{as } n\to \infty. $$

Step 2. \(N(B_{R})\) is uniformly bounded.

This is clear since \(N(B_{R})\subset B_{R}\) and \(B_{R}\) is bounded.

Step 3. \(N(B_{R})\) is equicontinuous.

Let \(t_{1},t_{2}\in J\), \(t_{1}< t_{2}\) and let \(u\in B_{R}\). Thus, we have

$$\begin{aligned} & \bigl\vert (\ln t_{2})^{1-\gamma}(Nu) (t_{2})-(\ln t_{1})^{1-\gamma }(Nu) (t_{1}) \bigr\vert \\ &\quad \leq \biggl\vert (\ln t_{2})^{1-\gamma} \int_{1}^{t_{2}} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1}\frac{f(s,u(s))}{s\Gamma(\alpha)}\,ds- (\ln t_{1})^{1-\gamma} \int_{1}^{t_{1}} \biggl(\ln\frac{t_{1}}{s} \biggr)^{\alpha-1}\frac{f(s,u(s))}{s\Gamma(\alpha)}\,ds \biggr\vert \\ &\quad \leq(\ln t_{2})^{1-\gamma} \int_{t_{1}}^{t_{2}} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1}\frac{ \vert f(s,u(s)) \vert }{s\Gamma(\alpha)}\,ds \\ &\quad \quad{}+ \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln \frac{t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln\frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \frac{ \vert f(s,u(s)) \vert }{s\Gamma (\alpha)}\,ds \\ &\quad \leq(\ln t_{2})^{1-\gamma} \int_{t_{1}}^{t_{2}} \biggl(\ln\frac {t_{2}}{s} \biggr)^{\alpha-1}\frac{p(s)}{s\Gamma(\alpha)}\,ds \\ &\quad\quad{} + \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln \frac{t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln\frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \frac{p(s)}{s\Gamma(\alpha)}\,ds. \end{aligned}$$

Hence, we get

$$\begin{aligned}& \bigl\vert (\ln t_{2})^{1-\gamma}(Nu) (t_{2})-(\ln t_{1})^{1-\gamma }(Nu) (t_{1}) \bigr\vert \\& \quad \leq\frac{p_{*}(\ln T)^{1-\gamma+\alpha}}{\Gamma(1+\alpha)} \biggl(\ln\frac{t_{2}}{t_{1}} \biggr)^{\alpha} \\& \quad\quad{} +\frac{p_{*}}{\Gamma(\alpha)} \int_{1}^{t_{1}} \biggl\vert (\ln t_{2})^{1-\gamma} \biggl(\ln\frac{t_{2}}{s} \biggr)^{\alpha-1} -(\ln t_{1})^{1-\gamma} \biggl(\ln\frac{t_{1}}{s} \biggr)^{\alpha -1} \biggr\vert \,ds. \end{aligned}$$

As \(t_{1}\longrightarrow t_{2}\), the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that N is continuous and compact. From an application of Schauder’s theorem (Theorem 2.17), we deduce that N has at least a fixed point u which is a solution of problem (1). □

4 Ulam-Hyers-Rassias stability

Now, we are concerned with the generalized Ulam-Hyers-Rassias stability of our problem (1).

Theorem 4.1

Assume that hypotheses \((H_{1})\), \((H_{2}) \) and the following hypotheses hold.

\((H_{3})\) :

There exists \(\lambda_{\Phi}>0\) such that for each \(t\in J\), we have

$$\bigl({}^{H}I_{1}^{\alpha}\Phi \bigr) (t)\leq \lambda_{\Phi}\Phi(t); $$
\((H_{4})\) :

There exists \(q\in C(J,[0,\infty))\) such that for each \(t\in J\), we have

$$p(t)\leq q(t)\Phi(t). $$

Then problem (1) is generalized Ulam-Hyers-Rassias stable.

Proof

Consider the operator \(N:C_{\gamma,\ln}\rightarrow C_{\gamma,\ln}\) defined in (7). Let u be a solution of inequality (5), and let us assume that v is a solution of problem (1). Thus, we have

$$v(t)=\frac{\phi}{\Gamma(\gamma)}(\ln t)^{\gamma-1} + \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {f(s,v(s))}{s\Gamma(\alpha)}\,ds. $$

From inequality (5), for each \(t\in J\), we have

$$\biggl\vert u(t)-\frac{\phi}{\Gamma(\gamma)}(\ln t)^{\gamma-1} - \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {f(s,u(s))}{s\Gamma(\alpha)}\,ds \biggr\vert \leq \bigl({}^{H}I_{1}^{\alpha }\Phi \bigr) (t). $$

Set

$$q^{*}=\sup_{t\in J}q(t). $$

From hypotheses \((H_{3})\) and \((H_{4})\), for each \(t\in J\), we get

$$\begin{aligned} \bigl\vert u(t)-v(t) \bigr\vert \leq& \biggl\vert u(t)- \frac{\phi }{\Gamma(\gamma)}(\ln t)^{\gamma-1} - \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {f(s,u(s))}{s\Gamma(\alpha)}\,ds \biggr\vert \\ &{}+ \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac{ \vert f(s,u(s))-f(s,v(s)) \vert }{s\Gamma(\alpha)}\,ds \\ \leq& \bigl({}^{H}I_{1}^{\alpha}\Phi \bigr) (t) + \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {2q^{*}\Phi(s)}{s\Gamma(\alpha)}\,ds \\ \leq&\lambda_{\phi}\Phi(t)+2q^{*} \bigl({}^{H}I_{1}^{\alpha} \Phi \bigr) (t) \\ \leq& \bigl[1+2q^{*} \bigr]\lambda_{\phi}\Phi(t) \\ :=&c_{f,\Phi}\Phi(t). \end{aligned}$$

Hence, problem (1) is generalized Ulam-Hyers-Rassias stable. □

In the sequel, we will use the following theorem.

Theorem 4.2

Let \((\Omega,d)\) be a generalized complete metric space and \(\Theta :\Omega\rightarrow\Omega\) be a strictly contractive operator with a Lipschitz constant \(L<1\). If there exists a nonnegative integer k such that \(d(\Theta^{k+1}x,\Theta^{k}x)<\infty\) for some \(x\in\Omega\), then the following propositions hold true:

  1. (A)

    The sequence \((\Theta^{k}x)_{n\in N}\) converges to a fixed point \(x^{*}\) of Θ;

  2. (B)

    \(x^{*}\) is the unique fixed point of Θ in \(\Omega ^{*}=\{y\in\Omega\mid d(\Theta^{k}x,y)<\infty\}\);

  3. (C)

    If \(y\in\Omega^{*}\), then \(d(y,x^{*})\leq\frac {1}{1-L}d( y,\Theta x)\).

Let \(X= X(I,{\Bbb {R}})\) be the metric space, with the metric

$$d(u,v)= \sup_{t\in J}\frac{ \Vert u(t)-v(t) \Vert _{C}}{\Phi(t)}. $$

Theorem 4.3

Assume that \((H_{3})\) and the following hypothesis hold.

\((H_{5})\) :

There exists \(\varphi\in C(J,[0,\infty))\) such that for each \(t\in J\) and all \(u,v\in{\Bbb {R}}\), we have

$$\bigl\vert f(t,u)-f(t,u) \bigr\vert \leq(\ln t)^{1-\gamma}\varphi (t) \Phi(t) \vert u-v \vert . $$

If

$$ L:=(\ln T)^{1-\gamma}\varphi^{*}\lambda_{\phi}< 1, $$
(10)

where \(\varphi^{*}=\sup_{t\in J}\varphi(t)\), then there exists a unique solution \(u_{0}\) of problem (1), and problem (1) is generalized Ulam-Hyers-Rassias stable. Furthermore, we have

$$\bigl\vert u(t)- u_{0}(t) \bigr\vert \leq\frac{\Phi(t)}{1-L}. $$

Proof

Let \(N:C_{\gamma,\ln}\rightarrow C_{\gamma,\ln}\) be the operator defined in (7). Applying Theorem 4.2, we have

$$\begin{aligned} \bigl\vert (Nu) (t)-(Nv) (t) \bigr\vert \leq& \int_{1}^{t} \biggl(\ln \frac{t}{s} \biggr)^{\alpha-1}\frac{ \vert f(s,u(s))-f(s,v(s)) \vert }{s\Gamma(\alpha)}\,ds \\ \leq& \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {\varphi(s)\Phi(s) \vert (\ln s)^{1-\gamma}u(s)-(\ln s)^{1-\gamma}v(s) \vert }{s\Gamma (\alpha)}\,ds \\ \leq& \int_{1}^{t} \biggl(\ln\frac{t}{s} \biggr)^{\alpha-1}\frac {\varphi^{*}\Phi(s) \Vert u-v \Vert _{C}}{s\Gamma(\alpha )}\,ds \\ \leq&\varphi^{*} \bigl({}^{H}I_{1}^{\alpha}\Phi \bigr) (t) \Vert u-v \Vert _{C} \\ \leq&\varphi^{*}\lambda_{\phi}\Phi(t) \Vert u-v \Vert _{C}. \end{aligned}$$

Thus

$$\bigl\vert (\ln t)^{1-\gamma}(Nu) (t)-(\ln t)^{1-\gamma}(Nv) (t) \bigr\vert \leq(\ln T)^{1-\gamma}\varphi^{*}\lambda_{\phi}\Phi(t) \Vert u-v \Vert _{C}. $$

Hence, we get

$$d \bigl(N(u),N(v) \bigr)=\sup_{t\in J} \frac{ \Vert (Nu)(t)-(Nv)(t) \Vert _{C}}{\Phi(t)}\leq L \Vert u-v \Vert _{C}, $$

from which we conclude the theorem. □

5 An example

As an application of our results, we consider the following problem of Hilfer-Hadamard fractional differential equation of the form

$$ \textstyle\begin{cases} ({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}u)(t)=f(t,u(t)); \quad t\in[1,e],\\ ({}^{H}I_{1}^{\frac{1}{4}}u)(t)\big|_{t=1}=0, \end{cases} $$
(11)

where

$$\textstyle\begin{cases} f(t,u)=\frac{(t-1)^{\frac{-1}{4}}\sin(t-1)}{64(1+\sqrt {t-1})(1+ \vert u \vert )}; \quad t\in(1,e], u\in{\Bbb {R}}, \\ f(1,u)=0; \quad u\in{\Bbb {R}}. \end{cases} $$

Clearly, the function f is continuous.

Hypothesis \((H_{2})\) is satisfied with

$$\textstyle\begin{cases} p(t)=\frac{(t-1)^{\frac{-1}{4}} \vert \sin(t-1) \vert }{64(1+\sqrt{t-1})};\quad t\in(1,e], \\ p(1)=0. \end{cases} $$

Hence, Theorem 3.2 implies that problem (11) has at least one solution defined on \([1,e]\). Also, hypothesis \((H_{3})\) is satisfied with

$$\Phi(t)=e^{3},\quad \text{and} \quad \lambda_{\Phi}=\frac{2}{\sqrt{\pi}}. $$

Indeed, for each \(t\in[1,e]\), we get

$$\begin{aligned} \bigl({}^{H}I_{1}^{\alpha}\Phi \bigr) (t) \leq& \frac{2e^{3}}{\sqrt{\pi}} \\ =&\lambda_{\Phi}\Phi(t). \end{aligned}$$

Consequently, Theorem 4.1 implies that problem (11) is generalized Ulam-Hyers-Rassias stable.

References

  1. Abbas, S, Benchohra, M: Advanced Functional Evolution Equations and Inclusions. Developments in Mathematics, vol. 39. Springer, Cham (2015)

    MATH  Google Scholar 

  2. Abbas, S, Benchohra, M, N’Guérékata, GM: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, Amsterdam (1987). Engl. Trans. from the Russian

    MATH  Google Scholar 

  4. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Zhou, Y: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  6. Abbas, S, Benchohra, M: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190-198 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Abbas, S, Benchohra, M: Existence and Ulam stability for impulsive discontinuous fractional differential inclusions in Banach algebras. Mediterr. J. Math. 12(4), 1245-1264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Abbas, S, Benchohra, M, Petrusel, A: Ulam stabilities for the Darboux problem for partial fractional differential inclusions via Picard operators. Electron. J. Qual. Theory Differ. Equ. 2014, 51 (2014)

    Article  MATH  Google Scholar 

  9. Abbas, S, Benchohra, M, Sivasundaram, S: Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators. Nonlinear Stud. 20(4), 623-641 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Ahmad, B, Alsaedi, A: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010, 364560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ahmad, B, Nieto, JJ, Alsaedi, A, et al.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13, 599-606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: Existence results for functional differential equations of fractional order. J. Math. Anal. Appl. 338, 1340-1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benchohra, M, Souid, MS: Integrable solutions for implicit fractional order differential equations. Transylv. J. Math. Mech. 6, 101-107 (2014)

    MathSciNet  Google Scholar 

  14. Benchohra, M, Souid, MS: Integrable solutions for implicit fractional order functional differential equations with infinite delay. Arch. Math. 51, 13-22 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J-R, Feckan, M, Zhou, Y: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806-831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J-R, Feckan, M, Zhou, Y: Center stable manifold for planar fractional damped equations. Appl. Math. Comput. 296, 257-269 (2017)

    MathSciNet  Google Scholar 

  17. Zhou, Y, Zhang, L, Shen, XH: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 25, 557-586 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y, Peng, L: On the time-fractional Navier-Stokes equations. Comput. Math. Appl. 73(6), 874-891 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zhou, Y, Peng, L: Weak solution of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73(6), 1016-1027 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zhou, Y, Zhang, L: Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. 73(6), 1325-1345 (2017)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Y, Ahmad, B, Alsaedi, A: Existence of nonoscillatory solutions for fractional neutral differential equations. Appl. Math. Lett. 72, 70-74 (2017)

    Article  MathSciNet  Google Scholar 

  22. Zhou, Y, Vijayakumar, V, Murugesu, R: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4, 507-524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ulam, SM: A Collection of Mathematical Problems. Interscience, New York (1968)

    MATH  Google Scholar 

  24. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222-224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rassias, TM: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)

    MATH  Google Scholar 

  27. Abbas, S, Albarakati, W, Benchohra, M, N’Guérékata, GM: Existence and Ulam stabilities for Hadamard fractional integral equations in Fréchet spaces. J. Fract. Calc. Appl. 7(2), 1-12 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Abbas, S, Albarakati, WA, Benchohra, M, Sivasundaram, S: Dynamics and stability of Fredholm type fractional order Hadamard integral equations. Nonlinear Stud. 22(4), 673-686 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Abbas, S, Benchohra, M: Existence and Ulam stability results for quadratic integral equations. Libertas Math. 35(2), 83-93 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Petru, TP, Petrusel, A, Yao, J-C: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 15, 2169-2193 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Rus, IA: Ulam stability of ordinary differential equations. Stud. Univ. Babeş–Bolyai, Math. LIV(4), 125-133 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Rus, IA: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10, 305-320 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Wang, J-R, Li, X: A uniform method to Ulam-Hyers stability for some linear fractional equations. Mediterr. J. Math. 13, 625-635 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, J-R, Lin, Z, Zhou, Y: On the stability of new impulsive ordinary differential equations. Topol. Methods Nonlinear Anal. 46, 303-314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011)

    Book  MATH  Google Scholar 

  36. Furati, KM, Kassim, MD: Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Electron. J. Differ. Equ. 2013, 235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Furati, KM, Kassim, MD, Tatar, N-E: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616-1626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  39. Hilfer, R: Threefold introduction to fractional derivatives. In: Anomalous Transport: Foundations and Applications, pp. 17-73 (2008)

    Chapter  Google Scholar 

  40. Kamocki, R, Obczńnski, C: On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. 2016, 50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tomovski, Ž, Hilfer, R, Srivastava, HM: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 21(11), 797-814 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J-R, Zhang, Y: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850-859 (2015)

    MathSciNet  Google Scholar 

  43. Qassim, MD, Furati, KM, Tatar, N-E: On a differential equation involving Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2012, Article ID 391062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qassim, MD, Tatar, N-E: Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2013, Article ID 605029 (2013)

    MathSciNet  Google Scholar 

  45. Hadamard, J: Essai sur l’étude des fonctions données par leur développment de Taylor. J. Math. Pures Appl. 4(8), 101-186 (1892)

    MATH  Google Scholar 

  46. Kilbas, AA: Hadamard-type fractional calculus. J. Korean Math. Soc. 38(6), 1191-1204 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the anonymous reviewers and the editors for their helpful advice and hard work. The work was supported by the National Natural Science Foundation of China (No. 11671339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zhou.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SA, MB, and JEL contributed to Sections 1, 2, 3, and 4. AA and YZ contributed to Sections 1 and 5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Benchohra, M., Lagreg, J. et al. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type. Adv Differ Equ 2017, 180 (2017). https://doi.org/10.1186/s13662-017-1231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-017-1231-1

MSC

Keywords