- Research
- Open access
- Published:
BSDEs with monotone generator driven by time-changed Lévy noises
Advances in Difference Equations volume 2017, Article number: 214 (2017)
Abstract
In this paper, we establish an existence and uniqueness theorem for solutions to backward stochastic differential equations driven by time-changed Lévy noises, in which the generator is monotonic and general growth with respect to y. Our conclusion extends the corresponding result in Di Nunno and Sjursen (Stoch. Process. Appl. 124:1679-1709, 2014).
1 Introduction and preliminary
In 1990, Pardoux and Peng [2] firstly put forward the theory of nonlinear backward stochastic differential equations (BSDEs for short) and proved an existence and uniqueness result under the Lipschitz assumption. Since then, many scholars have paid more attention to the existence and uniqueness of solutions for BSDEs under weaker assumptions, such as Lepeltier and San Martin [3], Mao [4], Jia [5] and Fan [6]. In particular, Pardoux [7] investigated the existence and uniqueness of \(L^{2}\) solutions for BSDEs when the generator g satisfies monotonicity, continuity and general growth conditions with respect to y.
On the other hand, many scholars were devoted their work to investigating BSDEs driven by different noises and its applications such as Cohen and Szpruch [8], Nualart and Schoutens [9], Zhou [10] and their references therein. In particular, Di Nunno and Sjursen [1] introduced a new class of BSDEs driven by time-changed Lévy noises. In fact, it derives from a conditional Brownian motion and a doubly stochastic Poisson random field of the following type:
where the terminal time \(T>0\), the terminal condition \(\xi \in L^{2} (\Omega,\mathcal{F}_{T},P)\), the generator \(g(w,t,\lambda,y,z):\Omega \times[0,T] \times[0, + \infty)^{2} \times R \times\Phi \mapsto R\) is \(\mathcal{G}_{t}\)-measurable for all \(t\in[0, T ]\) and μ is the mixture of a conditional Brownian measure B on \([0, T ]\times\{0\}\) and a centered doubly stochastic Poisson measure H̃ on \([0, T ] \times R_{0}\) with
They proved the existence and uniqueness of solution under the following conditions (L1)-(L2):
-
(L1)
$$\bigl\vert {g (w, t,\lambda,y,z ) - g \bigl(w, t,{\lambda ,y',z} \bigr)} \bigr\vert \le C \bigl\vert y-y' \bigr\vert , $$
-
(L2)
$$\bigl\vert {g (w, t,\lambda,y,z ) - g \bigl(w, t,{\lambda ,y,z'} \bigr)} \bigr\vert \le C \bigl\Vert z - z' \bigr\Vert _{\lambda}, $$
where \(C>0\) is a constant and
$$\bigl\Vert z-z' \bigr\Vert _{\lambda }^{2}: = \bigl\vert z(0)-z'(0) \bigr\vert ^{2} \lambda^{B} + \int_{R_{0} } { \bigl\vert z(x)-z'(x) \bigr\vert ^{2} q(dx)}\lambda^{H}. $$
Moreover, they also obtained a sufficient maximum principle for a general optimal control problem.
Motivated by the above work, our paper aims to discuss the existence and uniqueness of solutions for BSDEs driven by time-changed Lévy noises when the generator g satisfies monotonicity, continuity and general growth conditions with respect to y, which generalize the existence and uniqueness result of [1]. Moreover, we introduce the stability result for the first time under this structure.
In the sequel, we shall introduce the preliminary to establish our desired result. For more details, please refer to [1] and the references therein.
Let \(( {\Omega,{\mathcal {F}},P} )\) be a complete probability space and \(\lambda:= (\lambda^{B}, \lambda^{H})\in L^{1}(\Omega\times[0, T ]; (R^{+})^{2})\) be a pair of stochastic process whose components are nonnegative and continuous in probability. Let \(X = ([0, T ] \times\{0\}) \cup([0, T ] \times R_{0})\), where \(R_{0} = R\setminus\{0\}\) and \(\mathcal{B}_{X}\) denotes the Borel σ-algebra on X. Define the random measure Λ on X by
as the mixture of measures on disjoint sets, \(\Delta\subseteq X\). Here, q is a deterministic and σ-finite measure on the Borel sets of \(R_{0}\) satisfying \(\int_{R_{0} } {x^{2} q(dx)} < + \infty\).
Here, \(\mathcal{F}^{\Lambda}\) represents the σ-algebra which is generated by the values of Λ. B and H are called signed random measures on the Borel sets of \([0, T ] \times\{0\}\) and \([0, T ] \times R_{0}\), respectively. And they satisfy Definition 2.1 of [1]. Let \(\tilde{H}: = H - \Lambda^{H}\) be a signed random measure given by
Definition 1
[1]
We define the signed random measure μ on the Borel subsets of X by
Based on the definitions of B and H, μ is the mixture of a conditional Brownian measure B on \([0, T ] \times\{0\}\) and a centered doubly stochastic Poisson measure H̃ on \([0, T ] \times R_{0}\). Moreover, we know that
and
Here the random measures B and H are specific types of time-changed Brownian motion and a pure jump Lévy process.
Let \(\mathbb{F}= \{\mathcal{F}_{t}, t \in[0, T ]\}\), where \(\mathcal {F}_{t}: =\bigcap_{r >t}\mathcal{F}^{\mu}_{r}\) and \(\mathcal{F}^{\mu}_{t}= \mathcal{F}^{B}_{t}\vee\mathcal{F}^{H}_{t}\vee\mathcal{F}^{\Lambda}_{t}\). Let \(\mathbb{G}= \{\mathcal{G}_{t}, t \in[0, T ]\}\) where \(\mathcal{G}_{t} =\mathcal{F}^{\mu}_{t}\vee\mathcal{F}^{\Lambda}\). Remark that \(\mathcal {G}_{T}=\mathcal{F}_{T}\) and \(\mathcal{G}_{0}=\mathcal{F}^{\Lambda}\). Next, we introduce some definitions of spaces.
Let \(S^{2}_{\mathbb{G}}\) be the space of \(\mathbb{G}\)-adapted càdlàg processes ψ such that
let \(L^{2}_{\mathbb{G}}\) be a subspace of \(L^{2}(\Omega\times[0, T ] \times R, \mathcal{F}\otimes\mathcal{B}_{X}, P\otimes\Lambda )\) of the random fields admitting a \(\mathbb{G}\)-predictable modification and its norm be
let Φ be the space of functions \(z: R \rightarrow R\) such that \(\vert z(0) \vert ^{2} + \int_{R_{0} } { \vert z(x) \vert ^{2} q(dx)} < + \infty\).
Definition 2
A solution to the BSDE (1.1) is a pair of stochastic processes \((y_{t}, z_{t} )_{t\in[0,T]} \) satisfying (1.1) such that \((y_{t}, z_{t} )_{t\in[0,T]}\in S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}} \).
2 Main result
In this section, we shall state the existence and uniqueness result for solution of BSDE (1.1). Let us start with introducing the following assumptions (H1)-(H4):
-
(H1)
\(dP\times dt\)-a.e., for each \(z \in\Phi\), the mapping \(y \mapsto g(t,\lambda,y,z)\) is continuous. Moreover, there exists a constant \(\alpha\in R\) such that
$$\bigl(y - y' \bigr) \bigl( {g (w,t,\lambda,y,z) - g \bigl(w,t, \lambda,y',z \bigr)} \bigr) \le\alpha \bigl\vert y - y' \bigr\vert ^{2}; $$ -
(H2)
there exists a continuous increasing function \(\phi:R^{+} \mapsto R^{+}\) such that \(dP\times dt\)-a.e., for each \(y \in R \),
$$\bigl\vert g(w,t,\lambda,y,0) \bigr\vert \le \bigl\vert g(w,t,\lambda,0,0) \bigr\vert + \phi \bigl( \vert y \vert \bigr); $$ -
(H3)
there exists a constant \(C>0\) such that \(dP\times dt\)-a.e., for each \(y \in R \) and \(z, z'\in\Phi\)
$$\bigl\vert {g (w, t,\lambda,y,z ) - g \bigl(w, t,{\lambda,y,z'} \bigr)} \bigr\vert \le C \bigl\Vert z - z' \bigr\Vert _{\lambda}; $$ -
(H4)
\(E [ { \int_{0}^{T} { \vert g(w,t,\lambda_{t},0,0) \vert ^{2} \,dt}} ] < + \infty\).
Theorem 1 is the main result of this paper.
Theorem 1
Under assumptions (H1)-(H4), for each \(\xi \in L^{2} (\Omega,\mathcal{F}_{T},P)\), BSDE (1.1) has a unique solution \((y_{t},z_{t})_{t\in[0,T]}\).
Remark 1
It is not hard to check that (L1) ⇒ (H1) and (H2). Thus, our main result extends the corresponding conclusion of [1].
Before giving the proof of Theorem 1, we establish the following two propositions (see Propositions 1-2). Proposition 1 and Proposition 2 are, respectively, the prior estimate and stability of the solutions to BSDEs, which play an important role in the proof of our main result. For convenience, we always assume that \(\alpha=0\) in (H1). Indeed if \((y_{t},z_{t})_{t\in[0,T]}\) is a solution of (1.1), then \(( \tilde{y_{t}},\tilde{z_{t}})_{t\in[0,T]}\) with \(\tilde{y_{t}}=e^{\alpha t}y_{t}\) and \(\tilde{z_{t}}=e^{\alpha t}z_{t}\) satisfies an analogous BSDE with terminal condition \(\tilde{\xi}= e^{\alpha T} \xi\) and generator
g̃ satisfies assumptions (H1)-(H4) with \(\alpha=0\). Hence in the rest of this section, we will suppose that \(\alpha=0\).
Proposition 1
Let g satisfy (H1) and (H3); let \((y_{t},z_{t})_{t\in[0,T]}\) be a solution of BSDE (1.1). Then there exists a constant \(A>0\) depending on C and T such that, for each \(0\leq u\leq t\leq T\),
Proof
From Definition 1, BSDE (1.1) is equivalent to the following BSDE:
Applying the Itô formula to \(\vert y_{s} \vert ^{2}\), we get
Integrating both sides from t to T, we deduce
By (H1) and (H3), we can get
By the Burkholder-Davis-Gundy (BDG) inequality, \(\{ {\int_{0}^{t} {\int_{R} {y_{s} z_{s} (x)\mu(ds,dx)} } } \}_{t \in[0,T]}\) is a uniformly integrable martingale. In fact, there exists a constant \(p>0\) such that
Taking \(E[\cdot| \mathcal{G}_{u}]\) on both sides of (2.1) for each \(0\leq u\leq t\leq T\) and combining with the above inequality and (2.2), we can obtain
where
Furthermore, it follows from the BDG inequality that there exists a positive constant d such that for each \(0\leq u\leq t\leq T\),
By virtue of (2.2) and (2.4), it follows from (2.1) that
Thus, from the above inequality and (2.3), we have
By letting
and noticing the definition of \(X_{t}\), we know that, for each \(0\leq u\leq t\leq T\),
Finally, Gronwall’s inequality yields, for each \(t \in[0, T]\),
which completes the proof of Proposition 1. □
Proposition 2 is a stability result. For each \(n \geq1\), let \((y_{t}, z_{t} )_{t\in[0,T]} \) and \((y^{n}_{t}, z^{n}_{t} )_{t\in[0,T]} \) be, respectively, a solution of the BSDE (1.1) and the following BSDE depending on the parameter n:
Furthermore, we introduce the following assumptions (B1) and (B2):
-
(B1)
\(\xi^{n} \in L^{2} (\Omega,\mathcal{F}_{T},P)\) and all \(g^{n}\) satisfy (H1) and (H3);
-
(B2)
\(\lim_{n \to\infty} E [ \vert \xi^{n} - \xi \vert ^{2} + \int_{0}^{T} \vert g^{n} (s,\lambda_{s},y_{s},z_{s} ) - g (s,\lambda_{s},y_{s},z_{s} ) \vert ^{2} \,ds] = 0\).
Proposition 2
Under assumptions (B1) and (B2), we have
Proof
For each \(n\geq1\), let \(\hat{y}_{\cdot}^{n} = y_{\cdot}^{n} - y_{\cdot}, \hat{z}_{\cdot}^{n} = z_{\cdot}^{n} - z_{\cdot}\) and \(\hat{\xi}^{n} = \xi^{n} - \xi\). Then
Applying Itô’s formula to \(\vert \hat{y}_{s}^{n} \vert ^{2}\) on \([t,T]\), we have
By (H1) with \(\alpha=0\) and (H3), we have
Thus,
Taking the mathematical expectation on both sides of (2.5), by Gronwall’s inequality, we can obtain
Then by (2.5) with \(t =0\) and the previous inequality, we can get
Finally, taking the supremum over \(t \in[0,T]\) on both sides of (2.5) and the mathematical expectation, and applying the BDG inequality to the supremum of the martingale on the right-hand side, we have
Note that the above K is a positive constant depending on C and T. Thus, in view of (B2), we complete the proof of Proposition 2. □
Now, we give the proof of Theorem 1.
Proof of Theorem 1
The uniqueness part of Theorem 1 is established immediately by Proposition 2. Hence, we just need to prove the existence part, which can be divided into three steps.
Step 1. We shall prove that, for each \(\xi \in L^{2} (\Omega ,\mathcal{F}_{T},P)\), if there exists a constant \(M>0\) such that
and g satisfy (L1) and (H3), then there exists a unique solution to BSDE (1.1).
For \((u_{t},v_{t})_{t\in[0,T]}\in S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\), define
Moreover, by the martingale representation theorem
where \(z_{\cdot}\in L^{2}_{\mathbb{G}}\). It follows from (2.6) that \(y_{\cdot}\in S^{2}_{\mathbb{G}}\). Thus, \((y_{t},z_{t})_{t\in[0,T]}\) is a solution of the BSDE:
Therefore, we can define the map Ξ: \(S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\rightarrow S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\) by putting \(\Xi((u_{t},v_{t}))=(y_{t},z_{t})\). Let \((u_{\cdot},v_{\cdot})\), \((u'_{\cdot},v'_{\cdot})\in S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}} \), \((y_{\cdot},z_{\cdot})=\Xi((u_{\cdot},v_{\cdot}))\), \((y'_{\cdot},z'_{\cdot})=\Xi((u'_{\cdot},v'_{\cdot}))\). Let \((\bar{u}_{\cdot},\bar{v}_{\cdot})=(u_{\cdot}-u'_{\cdot},v_{\cdot}-v'_{\cdot})\), \((\bar{y}_{\cdot},\bar{z}_{\cdot})=(y_{\cdot}-y'_{\cdot},z_{\cdot}-z'_{\cdot})\). Applying Itô formula to \(e^{\beta s} \vert \bar{y}_{s} \vert ^{2}\), we can obtain, for each \(\beta \in R\),
Choose \(\beta=1+4C^{2}\), hence
from which Ξ is a contraction on \(S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\) equipped with the following norm:
Thus, \((y_{t},z_{t})_{t\in[0,T]}\) is a unique solution of BSDE (1.1).
Step 2. We shall prove that, for each \(\xi \in L^{2} (\Omega ,\mathcal{F}_{T},P)\) and \(V\in L^{2}_{\mathbb{G}} \), if g satisfy (H1)-(H4), then there exists a unique solution to the following BSDE:
Firstly, we assume that (2.6) holds. For given V, \(g(s,\lambda ,y,V_{s})\) will be viewed as \(g(s,\lambda,y)\). By similar proof as Proposition 2.4 in [7], we can construct of smooth approximations \((g_{n}, n\in N)\) of g,
where \(\rho_{n}:R \mapsto R^{+}\) is a sequence of smooth functions with compact support which approximate the Dirac measure at 0 and satisfy \(\int{\rho_{n} (x)\,dx = 1}\). For each \(n\geq1\), \(g_{n}\) is smooth and monotone in y, and thus locally Lipschitz in y uniformly with respect to \((w,t,\lambda)\). Hence, we need to introduce a truncation function \(q_{p}\) in \(g_{n}\):
By Step 1, \((y_{t}^{n,p},z_{t}^{n,p})_{t\in[0,T]}\) is a unique solution for BSDE (2.7) with generator \(g_{n,p}\). The sequence \((y_{t}^{n,p})_{t\in[0,T]}\) is bounded and its boundedness does not depend on p. In fact, since \(g_{n,p}\) satisfies globally Lipschitz in y, applying the Itô formula to \(\vert y_{s}^{n,p} \vert ^{2}\) on \([t,T]\), we can get
By (2.6) and Gronwall’s inequality, for each \(r\in[t,T]\), we can obtain
Taking \(r=t\), we obtain
Therefore, for p large enough, \((y_{\cdot}^{n,p},z_{\cdot}^{n,p})\) turns into \((y_{\cdot}^{n},z_{\cdot}^{n})\). From the above facts, \(g_{n}\) satisfies conditions of Proposition 1 with relative constant independent of n. So, \((y_{t}^{n},u_{t}^{n},z_{t}^{n})_{t\in[0,T]}\) is bounded, i.e.,
where \(u^{n}_{t} =g_{n}(t,\lambda_{t},y^{n}_{t})\). Thus, we can find a subsequence (named again \((y_{t}^{n},u_{t}^{n},z_{t}^{n})_{t\in[0,T]}\)) converging weakly to \((y_{t},u_{t},z_{t})_{t\in[0,T]}\). Moreover, the martingale \(\int _{t}^{T} {\int_{R} {z^{n}_{s} (x)\mu(ds,dx)} }\) converges weakly to \(\int_{t}^{T} {\int_{R} {z_{s} (x)\mu(ds,dx)} }\) in \(L^{2}(\Omega\times[0,T])\). In fact, let \(\eta\in L^{2}(\Omega,\mathcal{F}_{T};R)\), which can be written as \(\eta = E[ \eta \vert \mathcal{F}^{\Lambda}] + \int_{0}^{T} \int_{R} \varphi_{s} (x)\mu(ds,dx) \). Then
By a similar proof to Proposition 2.4 in [7], \(u_{t}\) is equal to \(g(t,\lambda_{t}, y_{t})\).
Lastly, condition (2.6) can be taken away by a truncation procedure. For each \(x\in R\) and \(m\geq1\), let \(q^{m}(x)={xm/{( \vert x \vert \vee m)}}\). Set
By (H4), for each \(m,r\geq1\), we can get
and
Moreover, \(g^{m}\) satisfies (H1)-(H4) and (2.6). Thus, for each \(m\geq 1\), \((y_{t}^{m},z_{t}^{m} )_{t \in[0,T]}\) is the unique solution to the following BSDE:
Set \(\hat{y}^{m,r}_{\cdot}= y^{m+r}_{\cdot}-y^{m}_{\cdot}\), \(\hat{z}^{m,r}_{\cdot}= z^{m+r}_{\cdot}-z^{m}_{\cdot}\) and \(\hat{\xi}^{m,r}=\xi^{m+r}-\xi^{m}\). Then
where for each \((t,\lambda,y)\), \(\hat{g}^{m,r}(t,\lambda, y ):= g^{m+r}(t,\lambda, y + y^{m}_{t})- g^{m}(t,\lambda, y^{m}_{t} )\). We can check that, for each \(m, r \geq1\), \(\hat{g}^{m,r}\) satisfies (H1) and (H3),
where for each \((t,\lambda,y)\), \(\widetilde{g} (t,\lambda ,y):\equiv0\). Thus, by Proposition 2, we can get
Thus, the sequence \((y^{n}_{t},z^{n}_{t} )_{t\in[0,T]}\) converges to the solution \((y_{t},z_{t} )_{t\in[0,T]}\) in \(S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\) as \(n\to\infty\).
Step 3. We shall prove that, for each \(\xi \in L^{2} (\Omega ,\mathcal{F}_{T},P)\), if g satisfy (H1)-(H4), then there exists a unique solution to BSDE (1.1).
Clearly, we can find a mapping Ξ̂: \(S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\rightarrow S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\) by Step 2, where \(\hat{\Xi}((U_{\cdot},V_{\cdot}))= (y_{\cdot},z_{\cdot})\) with solution \((y_{\cdot},z_{\cdot}) \in S^{2}_{\mathbb{G}}\times L^{2}_{\mathbb{G}}\) satisfying BSDE (2.7). And it is a contractive mapping with the norm \(\Vert \cdot \Vert _{\beta}\) with suitable β by the same arguments as Step 1. Thus, it has a fixed point \((y_{t},z_{t} )_{t\in[0,T]}\) which is a solution of the BSDE (1.1). □
References
Di Nunno, G, Sjursen, S: BSDEs driven by time-changed Lévy noises and optimal control. Stoch. Process. Appl. 124, 1679-1709 (2014)
Pardoux, E, Peng, S: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55-61 (1990)
Lepeltier, J-P, San Martin, J: Backward stochastic differential equations with continuous coefficient. Stat. Probab. Lett. 32, 425-430 (1997)
Mao, X: Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58, 281-292 (1995)
Jia, G: Backward stochastic differential equations with a uniformly continuous generator and related g-expectation. Stoch. Process. Appl. 120(11), 2241-2257 (2010)
Fan, S: \(L^{p}\) solutions of multidimensional BSDEs with weak monotonicity and general growth generators. J. Math. Anal. Appl. 432, 156-178 (2015)
Pardoux, E: BSDEs, weak convergence and homogenization of semilinear PDEs. In: Nonlinear Analysis, Differential Equations and Control, Montreal, QC, 1998, pp. 503-549. Kluwer Academic, Dordrecht (1999)
Cohen, S-N, Szpruch, L: On Markovian solutions to Markov chain BSDEs. Numer. Algebra Control Optim. 2, 257-269 (2012)
Nualart, D, Schoutens, W: Chaotic and predictable representations for Lévy processes. Stoch. Process. Appl. 90, 109-122 (2000)
Zhou, Q: On comparison theorem and solutions of BSDEs for Lévy processes. Acta Math. Appl. Sin. 23(3), 513-522 (2007)
Acknowledgements
The authors would like to express great thanks to the anonymous referee for his/her careful reading and helpful suggestions. This research was supported by the National Natural Science Foundation of China (11371362, 11601509) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYLX16_0520).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors contributed equally in this article. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Shen, X., Jiang, L. BSDEs with monotone generator driven by time-changed Lévy noises. Adv Differ Equ 2017, 214 (2017). https://doi.org/10.1186/s13662-017-1278-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1278-z