First, we define \(A^{\prime}\). \(A^{\prime}\) is described by the following homogeneous wave equation:
$$ \textstyle\begin{cases} \alpha_{k}(t) z_{tt}- [\beta_{k}(x,t)z_{x} ]_{x}+\gamma_{k}(x)z_{tx}=0, &\mbox{in }Q,\\ z(0,t)=0,\qquad z(1,t)=0, &\mbox{on }(0,T),\\ z(0)=z^{0},\qquad z_{t}(0)=z^{1}, &\mbox{in }(0,1), \end{cases} $$
(3.1)
where \(k\in(0, 1)\), \((z^{0}, z^{1})\in H_{0}^{1}(0, 1)\times L^{2}(0, 1)\) is any given initial value, and \(\alpha_{k}\), \(\beta_{k}\) and \(\gamma_{k}\) are given in (2.2). Equation (3.1) has a unique weak solution,
$$ z\in C \bigl([0,T];H_{0}^{1}(0, 1) \bigr)\cap C^{1} \bigl([0,T];L^{2}(0, 1) \bigr). $$
Set \(B^{\prime}\) the adjoint of the extension operator B in (1.2), and if \(\overline{v}\in[H^{1}(Q_{1})]^{\prime}\), then \(B^{\prime}: H^{1}(Q)\rightarrow H^{1}(Q_{1})\). Hence \(A^{\prime}\) is defined as follows:
$$A^{\prime} \bigl(z^{0},z^{1} \bigr)=B^{\prime} \bigl( \alpha_{k}(t)z \bigr)=\alpha_{k}(t)z(x,t), \quad (x,t)\in Q_{1}, \forall \bigl(z^{0},z^{1} \bigr) \in{F^{\prime}}, $$
where z is the solution of (3.1). Therefore, (2.5) is equivalent to the following inequality:
$$ \bigl\vert \alpha_{k}(t)z \bigr\vert _{H^{1}(Q_{1})}\geq C \bigl\vert \bigl(z^{0},z^{1} \bigr) \bigr\vert _{F^{\prime}}, \quad\forall \bigl(z^{0},z^{1} \bigr) \in{F^{\prime}}. $$
(3.2)
In the following, we shall give a proof of (3.2) by the multiplier method.
Define the following weighted energy for (3.1):
$$ E(t)=\frac{1}{2} \int_{0}^{1} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2} +\beta_{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx \quad \mbox{for }t\geq0, $$
It follows that
$$ E_{0}\triangleq E(0)=\frac{1}{2} \int_{0}^{1} \bigl[ \bigl\vert z^{1}(x) \bigr\vert ^{2}+ \beta _{k}(x,0) \bigl\vert z^{0}_{x}(x) \bigr\vert ^{2} \bigr]\,dx. $$
We obtain the following lemma (see the detailed proof in [8]).
Lemma 3.1
For any
\((z^{0}, z^{1})\in H^{1}_{0}(0, 1)\times L^{2}(0, 1)\)
and
\(t\in[0, T]\), any solution
z
of (3.1) satisfies the following estimate:
$$ E(t)=\frac{1}{\alpha_{k}(t)}E_{0}. $$
(3.3)
Equation (3.2) is derived with a special multiplier. Set
$$ F(x,k)= \frac{\beta_{k,x}(x,t)}{\beta_{k}(x,t)}= \frac {-2k^{2}x}{1-k^{2}x^{2}}\leq0,\quad (x,k)\in[0,1]\times(0,1). $$
It is easy to check \(F_{x}(x,k)<0,(x,k)\in[0,1]\times(0,1)\). We have
$$F(1,k)=\frac{-2k^{2}}{1-k^{2}}\leq F(x,k),\quad (x,k)\in[0,1]\times(0,1). $$
We see \(F_{k}(1,k)= \frac{-4k}{(1-k^{2})^{2}}<0, k\in(0,1)\). Therefore, we obtain, for any \(\eta>0\),
$$F_{0}\triangleq F(1,1-\eta) =\frac{-2(1-\eta)^{2}}{1-(1-\eta)^{2}}\leq F(1,k),\quad k\in(0,1- \eta]. $$
Hence, we derive
$$ F_{0}\leq F(1,k) \leq F(x,k)\leq0,\quad (x,k)\in[0,1] \times(0,1-\eta]. $$
(3.4)
Assume that \(\lambda\in(0,1)\) and a point \(x_{0}\in(m,n)\) to be unknown for now. We require the multiplier to satisfy the following lemma.
Lemma 3.2
Assume that
\(p(x)\)
be a solution of first-order linear differential equation
$$ p^{\prime}(x)=\textstyle\begin{cases} \lambda-1, &x\in(0,m),\\ \lambda,&x\in(m,x_{0}),\\ \lambda+F_{0}p(x), &x\in(x_{0},n),\\ \lambda-1+F_{0}p(x),&x\in(n,1), \end{cases} $$
(3.5)
then there exist a unique
\(\lambda\in(0,1)\)
and a unique
\(x_{0}\in(m,n)\)
such that
\(p(x)\)
belongs to
\(C[0,1]\)
and satisfies
$$ p(0)=p(1)=p(x_{0})=0. $$
(3.6)
Proof
By (3.5), (3.6) and the constant variation method, it follows that
$$ p(x)=\textstyle\begin{cases} (\lambda-1)x\leq0,&x\in(0,m),\\ (x-x_{0})\lambda\leq0,&x\in(m,x_{0}),\\ \frac{\lambda}{F_{0}}[e^{F_{0}(x-x_{0})}-1]\geq0,&x\in(x_{0},n),\\ \frac{(\lambda-1)}{F_{0}}[e^{F_{0}(x-1)}-1]\geq0,&x\in(n,1). \end{cases} $$
Note that \(p(x)\in C[0,1]\), we have
$$p(m-0)=p(m+0),\qquad p(n-0)=p(n+0). $$
From this, we obtain
$$\begin{aligned} & \lambda\triangleq\lambda_{-}= \frac{m}{x_{0}},\quad x_{0}\in(m,n), \end{aligned}$$
(3.7)
$$\begin{aligned} & \lambda\triangleq\lambda_{+}= \frac{e^{F_{0}(n-1)}-1}{ e^{F_{0}(n-1)}-e^{F_{0}(n-x_{0})}},\quad x_{0}\in(m,n). \end{aligned}$$
(3.8)
By (3.7) and (3.8), we have \(\lambda_{-}\) and \(\lambda_{+}\) are monotone decreasing and increasing with respect to \(x_{0}\) and satisfy
$$\lambda_{-},\lambda_{+}\in(0,1);\qquad \lambda_{-}(m)> \lambda_{+}(m);\qquad \lambda _{-}(n)< \lambda_{+}(n). $$
Hence there exists a unique \(x_{0}\in(m,n)\) of the equation \(\lambda_{-}=\lambda_{+}\), the corresponding value
$$\lambda=\lambda_{-}=\lambda_{+}\in(0,1). $$
□
Remark 3.1
It is easy to verify that
$$M\triangleq\max_{0\leq x\leq1} \bigl\vert p(x) \bigr\vert =\max \bigl\{ \bigl\vert p(m) \bigr\vert ,p(n) \bigr\} . $$
In the following, we prove (3.2) by the above multiplier \(p(x)\). Multiplying the first equation of (3.1) by \(qz_{x}\) and integrating on Q, we have
$$ \begin{aligned} 0={}& \int_{0}^{T} \int_{0}^{1} \alpha_{k}(t)z_{tt}(x,t)p(x)z_{x}(x,t)\,dx\,dt - \int_{0}^{T} \int_{0}^{1} \bigl[\beta_{k}(x,t)z_{x}(x,t) \bigr]_{x}p(x)z_{x}(x,t)\,dx\,dt \\ &{}+ \int_{0}^{T} \int_{0}^{1}\gamma_{k}(x)z_{tx}(x,t)p(x)z_{x}(x,t)\,dx\,dt \\ \triangleq{}& D_{1}+D_{2}+D_{3}. \end{aligned} $$
In the following, we calculate the above three integrals \(D_{i}\ (i=1, 2, 3)\), respectively. It is easy to check that
$$\begin{aligned} D_{1}={}& \int_{0}^{1} \alpha_{k}(t)p(x)z_{t}(x,t)z_{x}(x,t)\,dx \Big| _{0}^{T} \\ &{} - \int_{0}^{T} \int_{0}^{1} \bigl[ \alpha_{k, t}(t)p(x)z_{t}(x,t)z_{x}(x,t) + \alpha_{k}(t)p(x)z_{t}(x,t)z_{tx}(x,t) \bigr]\,dx\,dt \\ ={}& \int_{0}^{1} \alpha_{k}(t)p(x)z_{t}(x,t)z_{x}(x,t)\,dx \Big| _{0}^{T} \\ & {}- \int_{0}^{T} \int_{0}^{1} \alpha_{k, t}(t)p(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt \\ &{}+\frac{1}{2} \int_{0}^{T} \int_{0}^{1} \alpha_{k}(t)p_{x}(x) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}\,dx\,dt, \end{aligned}$$
(3.9)
$$\begin{aligned} D_{2}={}& {-} \int_{0}^{T} \beta_{k}(x,t)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dt\Big| _{0}^{1} \\ & {}+ \int_{0}^{T} \int_{0}^{1} \bigl[\beta_{k}(x,t)p_{x}(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} + \beta_{k}(x,t)p(x)z_{x}(x,t)z_{xx}(x,t) \bigr]\,dx\,dt \\ ={}& - \int_{0}^{T} \beta_{k}(x,t)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dt \Big| _{0}^{1} \\ &{}+ \int_{0}^{T} \int_{0}^{1} \beta_{k}(x,t)p_{x}(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dx\,dt \\ &{} +\frac{1}{2} \int_{0}^{T}\beta_{k}(x,t)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dt \Big| _{0}^{1} \\ &{}-\frac{1}{2} \int_{0}^{T} \int_{0}^{1} \bigl[\beta_{k}(x,t)p(x) \bigr]_{x} \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dx\,dt \\ ={}& \frac{1}{2} \int_{0}^{T} \int_{0}^{1} \bigl[\beta_{k}(x,t)p_{x}(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} - \beta_{k, x}(x,t)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx\,dt \\ ={}&\frac{1}{2} \int_{0}^{T} \int_{0}^{1} \biggl[\frac{p(x)}{\beta_{k}(x,t)} \biggr]_{x} \bigl[\beta_{k}(x,t) \bigr]^{2} \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dx\,dt \end{aligned}$$
(3.10)
and
$$ \begin{aligned} D_{3}= \frac{1}{2} \int_{0}^{1} \gamma_{k}(x)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dx \Big|_{0}^{T}. \end{aligned} $$
(3.11)
Write
$$ \begin{aligned} i(t)\triangleq \int_{0}^{1} \biggl[\alpha_{k}(t)p(x)z_{t}(x,t)z_{x}(x,t)+ \frac{1}{2} \gamma_{k}(x)p(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \biggr]\,dx. \end{aligned} $$
(3.12)
By (3.9)-(3.12), we obtain
$$\begin{aligned} &\frac{1}{2} \int_{0}^{T} \int_{0}^{1} \biggl[\alpha_{k}(t)p_{x}(x) \bigl\vert z_{t}(x,t) \bigr\vert ^{2} + \biggl[ \frac{p(x)}{\beta_{k}(x,t)} \biggr]_{x} \bigl[\beta_{k}(x,t) \bigr]^{2} \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \biggr]\,dx\,dt \\ &\quad = \int_{0}^{T} \int_{0}^{1}\alpha_{k, t}(t)p(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt+ i(0)-i(T). \end{aligned}$$
(3.13)
By Lemma 3.2, it follows that
$$p_{x}(x)=\lambda-1,\quad x\in[0,m] $$
and
$$p(x)\leq0,\quad x\in[0,m]. $$
Then we have
$$ F(x,k)p(x)= \frac{\beta_{k,x}(x,t)}{\beta_{k}(x,t)}p(x)\geq0,\quad (x,t)\in [0,m]\times[0,T] $$
and
$$ p_{x}(x)\leq \frac{\beta_{k,x}(x,t)}{\beta_{k}(x,t)}p(x)+\lambda-1,\quad (x,t)\in[0,m] \times[0,T]. $$
From this, we have
$$ p_{x}(x)\beta_{k}(x,t)-\beta_{k,x}(x,t)p(x) \leq(\lambda-1)\beta_{k}(x,t),\quad (x,t)\in[0,m]\times[0,T]. $$
(3.14)
Similarly, we obtain
$$ p_{x}(x)\beta_{k}(x,t)-\beta_{k,x}(x,t)p(x) \leq\lambda\beta _{k}(x,t), \quad (x,t)\in[m,x_{0}]\times[0,T]; $$
(3.15)
for any \(\eta>0\), \(k\in(0,1-\eta]\),
$$ p_{x}(x)\beta_{k}(x,t)-\beta_{k,x}(x,t)p(x) \leq\lambda\beta _{k}(x,t),\quad (x,t)\in[x_{0},n]\times[0,T], $$
(3.16)
and
$$ p_{x}(x)\beta_{k}(x,t)-\beta_{k,x}(x,t)p(x) \leq(\lambda-1)\beta _{k}(x,t),\quad (x,t)\in[n,1]\times[0,T]. $$
(3.17)
By (3.13)-(3.17), it follows that for any \(\eta>0\), \(k\in(0,1-\eta]\),
$$\begin{aligned} &\frac{\lambda}{2} \int_{0}^{T} \int_{m}^{n} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta _{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx\,dt \\ &\qquad{} +\frac{\lambda-1}{2} \int_{0}^{T} \int_{(0,1)\backslash(m,n)} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta_{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx\,dt \\ &\quad\geq \int_{0}^{T} \int_{0}^{1}\alpha_{k, t}(t)p(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt+ i(0)-i(T). \end{aligned}$$
Therefore, we have, for any \(\eta>0\), \(k\in(0,1-\eta]\),
$$\begin{aligned} &\frac{1}{2} \int_{0}^{T} \int_{m}^{n} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta _{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx\,dt \\ &\quad\geq\frac{1-\lambda}{2} \int_{0}^{T} \int_{0}^{1} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta_{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr]\,dx\,dt \\ &\qquad{}+ \int_{0}^{T} \int_{0}^{1}kp(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt+ i(0)-i(T). \end{aligned}$$
(3.18)
For each \(t\in[0, T]\) and \(\varepsilon>0\), we have
$$\begin{aligned} \bigl\vert i(t) \bigr\vert ={}& \biggl\vert \int_{0}^{1} \biggl[\alpha_{k}(t)q(x)z_{t}(x,t)z_{x}(x,t) +\frac{1}{2} \gamma_{k}(x)q(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \biggr]\,dx \biggr\vert \\ \leq{}& \biggl\vert \int_{0}^{1}\alpha_{k}(t)q(x)z_{t}(x,t)z_{x}(x,t)\,dx \biggr\vert + k \biggl\vert \int_{0}^{1}xq(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2}\,dx \biggr\vert \\ \leq{}& \sqrt{1+kt} \biggl[\frac{1}{2\varepsilon} \int^{1}_{0} \alpha_{k}(t) \bigl\vert z_{t}(x, t) \bigr\vert ^{2}\,dx +\frac{\varepsilon}{2} \int^{1}_{0} q^{2}(x) \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\,dx \biggr]\\ &{}+kM \int^{1}_{0} \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\,dx \\ \leq{}&\frac{\sqrt{1+kt}}{2\varepsilon} \int^{1}_{0} \alpha_{k}(t) \bigl\vert z_{t}(x, t) \bigr\vert ^{2}\,dx+\frac{\sqrt{1+kt}\varepsilon M^{2}+2kM}{2} \int^{1}_{0} \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\,dx \\ \leq{}&\frac{\sqrt{1+kt}}{\varepsilon}\frac{1}{2} \int^{1}_{0} \alpha _{k}(t) \bigl\vert z_{t}(x, t) \bigr\vert ^{2}\,dx \\ &{} +\frac{(\sqrt{1+kt}\varepsilon M^{2}+2kM)(1+kt)}{1-k^{2}}\frac{1}{2} \int ^{1}_{0} \beta_{k}(x, t) \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\,dx. \end{aligned}$$
Take \(\varepsilon= \frac{1-k}{\sqrt{1+kt}M}\), then it is easy to check that
$$\varepsilon>0 \quad\mbox{and}\quad \frac{\sqrt{1+kt}}{\varepsilon}=\frac{(\sqrt {1+kt}\varepsilon M^{2}+2kM)(1+kt)}{1-k^{2}} = \frac{M(1+kt)}{1-k}. $$
This implies that, for any \(t\in[0, T]\),
$$\bigl\vert i(t) \bigr\vert \leq\frac{M(1+kt)}{1-k} E(t)=\frac{M}{1-k}E_{0}. $$
It follows that
$$ \biggl\vert \int_{0}^{1} \biggl[\alpha_{k}(t)q(x)z_{t}(x,t)z_{x}(x,t) +\frac{1}{2} \gamma_{k}(x)q(x) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \biggr]\,dx \Big| ^{T}_{0} \biggr\vert \leq \frac {2M}{1-k} E_{0}. $$
(3.19)
For each \(\varepsilon\in (0, 1-\lambda )\), we have
$$\begin{aligned} & \biggl\vert \int_{0}^{T} \int_{0}^{1}kp(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt \biggr\vert \\ &\quad= \biggl\vert \int_{0}^{T} \int_{0}^{1} \sqrt{1+kt}z_{t}(x,t) \frac{\sqrt{1-k^{2}x^{2}}}{\sqrt {1+kt}}z_{x}(x,t)\frac{kp(x)}{\sqrt{1-k^{2}x^{2}}}\,dx\,dt \biggr\vert \\ &\quad\leq \frac{\varepsilon}{2} \int_{0}^{T} \int^{1}_{0} \alpha_{k}(t) \bigl\vert z_{t}(x, t) \bigr\vert ^{2}\,dx\,dt \\ &\qquad{}+\frac{1}{2\varepsilon} \int_{0}^{T} \int^{1}_{0} \beta_{k}(x, t) \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\frac{k^{2}p^{2}(x)}{1-k^{2}x^{2}}\,dx\,dt. \end{aligned}$$
(3.20)
Define
$$G(x)=\frac{k^{2}p^{2}(x)}{1-k^{2}x^{2}},\quad x\in[0,1]. $$
We see
$$M_{1}=\max_{x\in[0,1]} G(x)=\max \bigl\{ G(m),G(n) \bigr\} = \max \biggl\{ \frac {k^{2}p^{2}(m)}{1-k^{2}m^{2}},\frac{k^{2}p^{2}(n)}{1-k^{2}n^{2}} \biggr\} . $$
By (3.20), we obtain, for each \(\varepsilon\in (0, 1-\lambda )\),
$$\begin{aligned} & \biggl\vert \int_{0}^{T} \int_{0}^{1}kp(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt \biggr\vert \\ &\quad \leq \frac{\varepsilon}{2} \int_{0}^{T} \int^{1}_{0} \alpha_{k}(t) \bigl\vert z_{t}(x, t) \bigr\vert ^{2}\,dx\,dt +\frac{M_{1}}{2\varepsilon} \int_{0}^{T} \int^{1}_{0} \beta_{k}(x, t) \bigl\vert z_{x}(x, t) \bigr\vert ^{2}\,dx\,dt. \end{aligned}$$
(3.21)
Take \(\varepsilon= \sqrt{M_{1}}<1-\lambda\), then it is easy to check that
$$\varepsilon=\frac{M_{1}}{\varepsilon}=\sqrt{M_{1}}< 1-\lambda, $$
i.e.,
$$\max \biggl\{ \frac{k^{2}p^{2}(m)}{1-k^{2}m^{2}},\frac{k^{2}p^{2}(n)}{1-k^{2}n^{2}} \biggr\} < (1- \lambda)^{2}. $$
From the above inequality, it follows that
$$k\in \biggl(0,\min \biggl\{ \frac{1-\lambda}{\sqrt{p^{2}(m)+(1-\lambda)^{2}m^{2}}},\frac {1-\lambda}{\sqrt{p^{2}(n)+(1-\lambda)^{2}n^{2}}} \biggr\} \biggr). $$
From (3.21), we get
$$ \begin{aligned} &k\in \biggl(0,\min \biggl\{ \frac{1-\lambda}{\sqrt{p^{2}(m)+(1-\lambda)^{2}m^{2}}},\frac {1-\lambda}{\sqrt{p^{2}(n)+(1-\lambda)^{2}n^{2}}} \biggr\} \biggr), \\ & \biggl\vert \int_{0}^{T} \int_{0}^{1}kp(x)z_{t}(x,t)z_{x}(x,t)\,dx\,dt \biggr\vert \leq\sqrt{M_{1}} \int_{0}^{T}E(t)\,dt. \end{aligned} $$
(3.22)
Write
$$ \tilde{k}=\min \biggl\{ \frac{1-\lambda}{\sqrt{p^{2}(m)+(1-\lambda)^{2}m^{2}}},\frac {1-\lambda}{\sqrt{p^{2}(n)+(1-\lambda)^{2}n^{2}}},1- \eta \biggr\} . $$
By (3.3), (3.18), (3.20) and (3.22), we derive, for each \(k\in(0,\tilde{k})\),
$$\begin{aligned} &\frac{1}{2} \int_{0}^{T} \int_{m}^{n} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta _{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr] \\ &\quad\geq(1-\lambda-\sqrt{M_{1}}) \int_{0}^{T}E(t)\,dt -\frac{2M}{1-k} E_{0} \\ &\quad = \biggl[\frac{1-\lambda-\sqrt{M_{1}}}{k}\ln(1+kT)-\frac{2M}{1-k} \biggr] E_{0}. \end{aligned}$$
(3.23)
Set
$$ T^{*}_{k}= \frac{e^{\frac{2kM}{(1-\lambda-\sqrt{M_{1}})(1-k)}}-1}{k}. $$
If \(T>T^{*}_{k}\), we have \(\frac{1-\lambda-\sqrt{M_{1}}}{k}\ln(1+kT)- \frac{2M}{1-k}>0\). Also,
$$\begin{aligned} &\frac{1}{2} \int_{0}^{T} \int_{m}^{n} \bigl[\alpha_{k}(t) \bigl\vert z_{t}(x,t) \bigr\vert ^{2}+ \beta _{k}(x,t) \bigl\vert z_{x}(x,t) \bigr\vert ^{2} \bigr] \\ &\quad\geq \biggl[ \frac{1-\lambda-\sqrt{M_{1}}}{k}\ln(1+kT)- \frac {2M}{1-k} \biggr] E_{0} \\ &\quad\geq C \biggl[ \frac{1-\lambda-\sqrt{M_{1}}}{k}\ln(1+kT)- \frac {2M}{1-k} \biggr] \bigl( \bigl\vert z^{0} \bigr\vert ^{2}_{H^{1}_{0}(0, 1)}+ \bigl\vert z^{1} \bigr\vert ^{2}_{L^{2}(0, 1)} \bigr). \end{aligned}$$
(3.24)
Equation (3.2) is deduced by (3.24).
Remark 3.2
We can finally check that
$$T^{0}\triangleq\lim_{k\rightarrow0}T^{*}_{k} =2\max\{m,1-n\}. $$
It is well known that (1.2) in the cylindrical domain is interiorly controllable at any time \(T>T^{0}\). However, we do not know whether \(T^{*}_{k}\) is sharp.