First we introduce some usual notations and a lemma due to Lopez-Marcos [28] that play a crucial role in convergence analysis of the scheme.
Let \(\Omega_{h}=\{x_{j}\vert0 \leq i \leq N\}\) and \(\Omega_{\tau}=\{ t_{n}\vert0 \leq n \leq M\}\) be uniform partitions of the intervals \([a,b]\) and \([0,L]\), respectively, where \(x_{i}=ih\) and \(t_{n}=n \tau\) with \(\tau=\frac {T}{M}\). Let \(u_{j}^{n}\) be approximation to exact solution at the point \((x_{j},t_{n})\) and \(V=\{v_{j}\vert0\leq j\leq M\}\) and \(W=\{w_{j}\vert0\leq j\leq M\}\) be two grid functions defined on \(\Omega_{h} \). Introduce
$$\begin{gathered} \delta^{2} V=v_{i+1}-2v_{i}+v_{i-1}, \qquad (V,W)=\sum_{i=1}^{M} h v_{i} w_{i},\\ \Vert V \Vert ^{2}=(V,V), \qquad(V_{xx},V)=-(V_{x},V_{x}). \end{gathered} $$
From [28], we have the following important lemma regarding the nonnegative nature of some real quadratic forms possessing a convolution structure.
Lemma 5.1
Let
\(\{w_{n}\}_{n=0}^{\infty}\)
be a monotonically decreasing sequence of nonnegative real numbers with the property
\(a_{n+1}+a_{n-1}\geq2 a_{n}\) (\(n\geq1\)), then for any positive integer
K
and real vector
\((V_{1},v_{2},\ldots, V_{K})\in R^{K}\), we have
$$\sum_{n=0}^{K-1} \Biggl(\sum _{p=0}^{n}w_{p} V_{n+1-p} \Biggr)V_{n+1} \geq0. $$
Let C be a positive number which assumes different values at different locations and is independent of i, n, h and τ such that
$$ \vert u_{tt} \vert \leq C,\qquad \vert u_{xxxx} \vert \leq C\quad \text{for }(x,t)\in\Omega_{h} \times\Omega_{\tau}. $$
(23)
Then, for scheme (7), we have
$$ \begin{gathered}[b] \alpha_{0} \sum _{k=0}^{n} b_{k} \bigl(u(x_{j},t_{n+1-k})-2u(x_{j},t_{n-k})+u(x_{j},t_{n-1-k}) \bigr)+\alpha u\bigl(x_{j},t^{n+1}\bigr) \\ \quad =\frac{\partial^{2} u(x_{j},t^{n+1})}{\partial x^{2}}+ f\bigl(x_{j},t^{n+1}\bigr)+O \bigl(\tau^{2}+\tau h^{2}\bigr) \end{gathered} $$
(24)
and
$$ \alpha_{0} \sum_{k=0}^{n} b_{k} \bigl(u_{j}^{n+1-k}-2u_{j}^{n-k}+u_{j}^{n-1-k} \bigr)+\alpha u_{j}^{n+1}=\frac{\partial^{2} u_{j}^{n+1}}{\partial x^{2}}+ f_{j}^{n+1}, $$
(25)
where \(u(x_{j},t_{n})\) is exact and \(u_{j}^{n}\) is approximate solution at the point \((x_{j},t_{n})\) and \(f_{j}^{n+1}=f(x_{j},t_{n})\).
Theorem 2
Let
\(u(x,t)\)
and
\(u_{i}^{n}\)
be solutions of (1) and (24), respectively, and
\(u(x,t)\)
satisfies the smoothness condition (23), then for sufficiently small
h
and
τ, it holds that
$$ \bigl\Vert e^{n+1} \bigr\Vert \leq O\bigl( \tau^{2}+\tau h^{2}\bigr), $$
(26)
where
\(e_{i}^{n+1}=u(x_{i},t^{n+1})-u_{i}^{n+1}\).
Proof
To obtain the error equation, we subtract (24) from (25) to get
$$ \alpha_{0} \sum_{k=0}^{n} b_{k} \delta^{2}e_{j}^{n+1-k}+\alpha e_{j}^{n+1}=\bigl(e_{j}^{n+1} \bigr)_{xx}+r_{j}^{n+1}, $$
(27)
where \(r_{j}^{n+1}=O(\tau^{2}+\tau h^{2})\).
Multiplying both sides of (26) by \(he_{j}^{n+1}\) and summing up for j from 1 to M, we obtain
$$\begin{aligned} \bigl\Vert e^{n+1} \bigr\Vert ^{2} &= - \frac{\alpha_{0}}{\alpha}\sum_{k=0}^{n} b_{k} \bigl( \delta^{2}e^{n+1-k}, e^{n+1} \bigr)+\frac{1}{\alpha }\bigl(\bigl(e^{n+1}\bigr)_{xx},e^{n+1} \bigr)+\frac{1}{\alpha}\bigl(r^{n+1},e^{n+1}\bigr) \\ &= -\frac{\alpha_{0}}{\alpha}\sum_{k=0}^{n} b_{k} \bigl( \delta^{2}e^{n+1-k}, e^{n+1} \bigr)- \frac{1}{\alpha}\bigl(\bigl(e^{n+1}\bigr)_{x}, \bigl(e^{n+1}\bigr)_{x}\bigr)+\frac {1}{\alpha} \bigl(r^{n+1},e^{n+1}\bigr) \\ &= -\frac{\alpha_{0}}{\alpha}\sum_{k=0}^{n} b_{k} \bigl( \delta^{2}e^{n+1-k}, e^{n+1} \bigr)- \frac{1}{\alpha} \bigl\Vert \bigl(e^{n+1} \bigr)_{x} \bigr\Vert ^{2} +\frac{1}{\alpha} \bigl(r^{n+1},e^{n+1}\bigr). \end{aligned} $$
Rearranging terms, we obtain
$$ \bigl\Vert e^{n+1} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum _{k=0}^{n} b_{k} \bigl( \delta^{2}e^{n+1-k}, e^{n+1}\bigr)+\frac{1}{\alpha} \bigl\Vert \bigl(e^{n+1}\bigr)_{x} \bigr\Vert ^{2}=\frac{1}{\alpha}\bigl(r^{n+1},e^{n+1}\bigr). $$
Since \(\frac{1}{\alpha} \Vert (e^{n+1})_{x} \Vert ^{2} \geq 0\), therefore
$$ \bigl\Vert e^{n+1} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum _{k=0}^{n} b_{k} \bigl( \delta^{2}e^{n+1-k}, e^{n+1}\bigr)\leq\frac{1}{\alpha } \bigl(r^{n+1},e^{n+1}\bigr). $$
Then
$$ \begin{gathered} \bigl\Vert e^{n} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum_{k=0}^{n-1} b_{k} \bigl( \delta^{2}e^{n-k}, e^{n} \bigr)\leq\frac{1}{\alpha}\bigl(r^{n},e^{n}\bigr), \\ \bigl\Vert e^{n-1} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum _{k=0}^{n-2} b_{k} \bigl( \delta^{2}e^{n-1-k}, e^{n-1}\bigr)\leq\frac{1}{\alpha } \bigl(r^{n-1},e^{n-1}\bigr), \\ \vdots \\ \bigl\Vert e^{2} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum _{k=0}^{1} b_{k} \bigl( \delta^{2}e^{2-k}, e^{2}\bigr)\leq\frac{1}{\alpha} \bigl(r^{2},e^{2}\bigr), \\ \bigl\Vert e^{1} \bigr\Vert ^{2}+\frac{\alpha_{0}}{\alpha}\sum _{k=0}^{0} b_{k} \bigl( \delta^{2}e^{1-k}, e^{1}\bigr)\leq\frac{1}{\alpha} \bigl(r^{1},e^{1}\bigr). \end{gathered} $$
Adding up all the above inequalities gives
$$ \sum_{k=0}^{n} \bigl\Vert e^{k+1} \bigr\Vert ^{2}+\frac{\alpha _{0}}{\alpha}\sum _{p=0}^{n}\sum_{k=0}^{p} b_{k} \bigl( \delta^{2}e^{p+1-k}, e^{p+1} \bigr)\leq\frac{1}{\alpha}\sum_{k=0}^{n} \bigl(r^{k+1},e^{k+1}\bigr). $$
Using Lemma (5.1), it follows that \(\sum_{p=0}^{n}\sum_{k=0}^{p} b_{k} ( \delta^{2}e^{p+1-k}, e^{p+1})\geq0\) so that we obtain from the last inequality
$$ \sum_{k=0}^{n} \bigl\Vert e^{k+1} \bigr\Vert ^{2} \leq\frac {1}{\alpha}\sum _{k=0}^{n}\bigl(r^{k+1},e^{k+1} \bigr). $$
So
$$\bigl\Vert e^{k+1} \bigr\Vert ^{2} \leq\frac{1}{\alpha} \bigl(r^{k+1},e^{k+1}\bigr). $$
By the Cauchy-Schwarz inequality, we obtain
$$\bigl\Vert e^{k+1} \bigr\Vert ^{2} \leq\frac{1}{\alpha } \bigl(r^{k+1},e^{k+1}\bigr)\leq\frac{1}{\alpha} \bigl\Vert r^{k+1} \bigr\Vert \bigl\Vert e^{k+1} \bigr\Vert . $$
Then
$$\bigl\Vert e^{k+1} \bigr\Vert \leq\frac{1}{\alpha} \bigl\Vert r^{k+1} \bigr\Vert , $$
from where (26) can be very easily deduced. □