- Research
- Open access
- Published:
Existence of positive mild solutions for a class of fractional evolution equations on the half line
Advances in Difference Equations volume 2017, Article number: 279 (2017)
Abstract
The equivalent integral equation of a new form for a class of fractional evolution equations is obtained by the method of Laplace transform, which is different from those given in the existing literature. By the monotone iterative method without the assumption of lower and upper solutions, we present some new results on the existence of positive mild solutions for the abstract fractional evolution equations on the half-line.
1 Introduction
In this paper, we are concerned with the following fractional evolution equation in the Banach space E:
where \({}^{C}D_{0+}^{\alpha}\) is the Caputo fractional derivative, \(0<\alpha< 1\), \(\mu>0\), \(\beta>0\), A is the infinitesimal generator of a \(C_{0}\) semigroup \(\{T(t)\}_{t \geq0} \) of operators on Banach E, and \(f:[0,+\infty)\times E\rightarrow E\) satisfies certain conditions.
Fractional calculus, a generalization of the ordinary differentiation and integration, has played a significant role in science, economy, engineering, and other fields (see [1–3]). Today there is a large number of papers dealing with the fractional differential equations (see [4–16]) due to their various applications. One of the branches is the research on the theory about the evolution equations of fractional order, which comes from physics. Recently, fractional evolution equations have attracted increasing attention around the world, see [7–16] and the references therein. Among the existing literature, most of them are focused on the existence of the solutions on the finite interval, see [7–16].
In [8], El-Sayed investigated the Cauchy problem in a Banach space for a class of fractional evolution equations
where \(0<\alpha\leq1\), \(T>0\). The existence and uniqueness of the solution for the above Cauchy problem were studied for a wide class of the family of operators \(\{B(t):t\geq0\}\).
As far as we know, for the first time, the equivalent integral equation of the above equation was given in terms of some probability densities by the method of Laplace transform. And since then, most of the research in this direction has been based on this paper. However, many of the previous papers about the existence of solutions of fractional evolution equations are only on the finite interval, and those presenting the existence results on the half-line are still few.
Motivated by [8, 9, 17], in this paper, we study the differential equation (1.1) under certain conditions on the unbounded domains. Here, by a method similar to that used in [8, 9], we give a corrected form of the equivalent integral equation of the main problem (1.1), which is different from those obtained in the existing literature. Employing the monotone iterative method, without the assumption of lower and upper solutions, we present some new results on the existence of positive mild solutions for the abstract evolution equations of fractional order. And to our best knowledge, there is not any paper to deal with the abstract problems of fractional order on the unbounded domains.
The rest of the paper is organized as follows. In Section 2, we introduce the definitions of fractional integral and fractional derivative, some results about fractional differential equations and some useful preliminaries. In Section 3, we obtain the existence result of the solution for problem (1.1) by the monotone iterative method. Then an example is given in Section 4 to demonstrate the application of our result.
2 Preliminaries
First of all, we present some fundamental facts on the fractional calculus theory which we will use in the next section.
Definition 2.1
The Riemann-Liouville fractional integral of order \(\nu>0\) of a function \(h:(0, \infty)\rightarrow\mathbb{R}\) is given by
provided that the right-hand side is pointwise defined on \((0, \infty)\).
Definition 2.2
The Caputo fractional derivative of order \(\nu>0\) of a continuous function \(h:(0, \infty)\rightarrow\mathbb{R}\) is given by
where \(n=[\nu]+1\), provided that the right-hand side is pointwise defined on \((0, \infty)\).
Lemma 2.1
Assume that \({}^{C}D^{\nu}_{0+}h(t) \in L^{1}(0,+\infty)\), \(\nu>0\). Then we have
for some \(C_{i} \in\mathbb{R}, i=1, 2,\ldots,N\) , where N is the smallest integer greater than or equal to ν.
If h is an abstract function with values in the Banach space E, then the integrals appearing in Definition 2.1, Definition 2.2 and Lemma 2.1 are taken in Bochner’s sense. And a measurable function h is Bochner integrable if the norm of h is Lebesgue integrable.
Now let us recall some definitions and standard facts about the cone.
Let P be a cone in the ordered Banach space E, which defines a partial order on E by \(x\leq y\) if and only if \(y-x \in P\). P is normal if there exists a positive constant N such that \(\theta\leq x \leq y\) implies \(\Vert x \Vert \leq N \Vert y \Vert \), where θ is the zero element of the Banach space E. The infimum of all N with the property above is called the normal constant of P. For more details on the cone P, we refer readers to [18, 19].
Throughout the paper, we set E to be an ordered Banach space with the norm \(\Vert \cdot \Vert \) and the partial order ‘≤’. Let \(P=\{x\in E \mid x\geq\theta\}\) be a positive cone, which is normal with normal constant N. Let \(J=[0,+\infty)\). Set
Obviously, \(\operatorname{BC}(J,E)\) is a Banach space with the norm \(\Vert u\Vert _{\operatorname{BC}}=\sup_{t\in J}\Vert u(t) \Vert \). Let
It is easy to see that \(P_{\operatorname{BC}}\) is also normal with the same normal constant N of the cone P. Besides, \(\operatorname{BC}(J,E)\) is also an ordered Banach space with the partial order ‘≤’ induced by the positive cone \(P_{\operatorname{BC}}\) (without confusion, we denote by ‘≤’ the partial order on both E and \(\operatorname{BC}(J,E)\)).
We denote by \([v,w]\) the order interval \(\{u\in P_{\operatorname {BC}}\mid v\leq u\leq w, v, w\in\operatorname{BC}(J,E)\}\) on \(\operatorname{BC}(J,E)\), and use \([v(t),w(t)]\) to denote the order interval \(\{z\in E\mid v(t)\leq z\leq w(t)\}\) on E for \(t\in J\).
Next, we give some facts about the semigroups of linear operators. These results can be found in [20, 21].
For a strongly continuous semigroup (i.e., \(C_{0}\)-semigroup) \(\{T(t)\} _{t\geq0}\), the infinitesimal generator of \(\{T(t)\}_{t \geq0}\) is defined by
We denote by \(D(A)\) the domain of A, that is,
Lemma 2.2
Let \(\{T(t)\}_{{t}\geq0}\) be a \(C_{0}\)-semigroup, then there exist constants \(C\geq1\) and \(\omega\in\mathbb{R}\) such that \(\Vert T(t) \Vert \leq C e^{\omega t}, t\geq0\).
Lemma 2.3
A linear operator A is the infinitesimal generator of a \(C_{0}\)-semigroup \(\{T(t)\}_{{t}\geq0}\) if and only if
-
(i)
A is closed and \(\overline{D(A)}=E\).
-
(ii)
The resolvent set \(\rho(A)\) of A contains \(\mathbb{R}^{+}\) and, for every \(\lambda>0\), we have
$$ \bigl\Vert R(\lambda,A) \bigr\Vert \leq\frac{1}{\lambda}, $$where
$$ R(\lambda,A):=(\lambda I-A)^{-1}= \int_{0}^{+\infty}e^{-\lambda t}T(t)x\,dt, \quad x\in E. $$
Definition 2.3
A \(C_{0}\)-semigroup \(\{T(t)\}_{t \geq0}\) is said to be uniformly exponentially stable if \(\omega_{0}<0\), where \(\omega_{0}\) is the growth bound of \(\{T(t)\}_{t \geq0}\), which is defined by
Definition 2.4
[17]
A \(C_{0}\)-semigroup \(\{T(t)\}_{t \geq0}\) is said to be positive on E if order inequality \(T(t)x\geq\theta, x\in E\) and \(t\geq0\).
According to Lemma 2.2 and Definition 2.3, if \(\{ T(t)\}_{t \geq0}\) is a uniformly exponentially stable \(C_{0}\)-semigroup with the growth bound \(\omega_{0}\), there exists a constant \(C\geq1\) such that \(\Vert T(t) \Vert \leq C e^{\omega t}, t\geq0\), for any \(\omega\in(0,|\omega_{0}|]\). Now, we define a norm in E by
Evidently, \(\Vert x \Vert \leq \Vert x \Vert _{\omega}\leq C \Vert x \Vert \), that is to say, the norms \(\Vert \cdot \Vert _{\omega}\) and \(\Vert \cdot \Vert \) are equivalent. We denote by \(\Vert T(t) \Vert _{\omega}\) the norm of \(T(t)\) induced by the norm \(\Vert \cdot \Vert _{\omega}\), then
Also, we can define the equivalent norm on \(\operatorname{BC}(J,E)\) by
3 Main results
In this section, we present the existence theorem for the abstract fractional differential equation on the half-line. In order to prove our main result, we need the following facts and lemmas.
Consider the one-sided stable probability density [9, 10, 22]
where \(0<\alpha<1\).
From [9, 10, 22], the Laplace transform of the one-sided stable probability density \(\psi_{\alpha}(\theta)\) is given by
By Remark 2.8 in [10], for \(0\leq\gamma\leq1\), one has
In the following, we assume that \(\{T(t)\}_{t \geq0}\) is a uniformly exponentially stable \(C_{0}\)-semigroup with the growth bound \(\omega _{0}\), and \(\omega\in(0,\vert \omega_{0} \vert ]\).
Lemma 3.1
Define a linear operator \(V:E\longrightarrow E\) as
Then V is bounded and \(\Vert V \Vert _{\omega}\leq\mu\). Besides, if \(0<\mu<1\), then \((I-V)^{-1}\) is a linear bounded operator and
Proof
Since
Hence, V is bounded and \(\Vert V \Vert _{\omega}\leq\mu\). □
Lemma 3.2
Set
Then \(Q:\operatorname{BC}(J,E)\longrightarrow\operatorname{BC}(J,E)\) and
Proof
Since
then
Therefore,
 □
Lemma 3.3
Let \(h \in\operatorname{BC}(J,E)\) and \(u_{0}\in D(A)\). Then the linear fractional evolution equation
has a unique solution \(u \in\operatorname{BC}(J,E)\) of the following form:
Proof
In view of Definitions 2.1, 2.2 and Lemma 2.1, equation (3.3) can be rewritten by the equivalent integral equation as follows:
Denote by \(U(\lambda)\) and \(H(\lambda)\) the Laplace transforms of \(u(t)\) and \(h(t)\), respectively, using a similar method as that in [7, 8], with the Laplace transform, then we can rewrite the above equation as
Hence,
By virtue of (3.1) and Lemma 2.3, we obtain
By the definition of Laplace transforms and the convolution theorem, applying Lemma 3.2 and the inverse Laplace transforms, one can derive that
Since
Therefore, \(u\in\operatorname{BC}(J,E)\). Then we complete the proof. □
Lemma 3.4
Let \(h \in\operatorname{BC}(J,E)\) and \(u_{0}\in D(A)\). Let \(0<\mu<1\). Then the linear fractional evolution equation
has a unique solution \(u \in\operatorname{BC}(J,E)\) of the following form:
Also, \(L_{A}\) is a linear operator on the Banach space \(\operatorname {BC}(J,E)\) and
where
Proof
In view of Lemma 3.3, one can obtain
From \(u(0)=\mu u(\beta)\), we have
Therefore,
So, we obtain
Then (3.8) is followed.
By (3.8), one has
Therefore,
 □
Now, we state the main result on the existence of the positive solutions to problem (1.1) in the following.
Theorem 3.1
Let E be a Banach space, and P is its positive normal with N as the normal constant. Let \(\{T(t)\}_{t \geq0}\) be a uniformly exponentially stable \(C_{0}\)-semigroup with the growth bound \(\omega _{0}\) (\(\omega_{0}<0\)), and A is the infinitesimal generator of \(\{ T(t)\}_{t \geq0}\). Let \(0<\mu<1\). Provided that \(f(t,u):J\times E\longrightarrow E\) is continuous and \(f(t,\theta)\geq\theta\) is bounded on J. If \(f(t,u)\) satisfies the following conditions:
-
(a)
There exists a constant \(\mathcal{K}_{1}<-\omega_{0}\) such that for
$$ f(t,y)-f(t,x)\leq\mathcal{K}_{1}(y-x), \quad\theta\leq x\leq y. $$ -
(b)
There exists a constant \(\mathcal{K}_{2}>\max\{-\mathcal {K}_{1},\omega_{0}\}\) such that for
$$ f(t,y)-f(t,x)\geq-\mathcal{K}_{2}(y-x),\quad \theta\leq x\leq y. $$ -
(c)
$$ 0< \frac{\mathcal{K}_{1}+\mathcal{K}_{2}}{\mathcal{K}_{2}-\omega _{0}}< \frac{1}{\kappa}. $$
Then problem (1.1) has a unique positive mild solution in \(\operatorname{BC}(J,E)\).
Proof
For simplicity of notation, we denote \(f_{0}(t)=f(t,\theta)\), then we have \(f_{0}(t)\in\operatorname{BC}(J,E)\) and \(f_{0}(t)\geq\theta, t\in J\).
In the following, similar to the methods used in [17], we deduce the result of the theorem in four steps.
Step 1: Consider the abstract fractional differential equation
By virtue of the theory of semigroups, we can get that \(\{e^{\mathcal {K}_{1}t}T(t)\}_{t \geq0}\) is a uniformly exponentially stable \(C_{0}\)-semigroup on Banach E generated by \(A+\mathcal{K}_{1}I\). Besides, the semigroup is positive with the growth bound \(\mathcal {K}_{1}+\omega_{0}\) (\(\mathcal{K}_{1}+\omega_{0}<0\)). In view of Lemma 3.4, equation (3.9) has a unique mild solution \(\vartheta_{0}\in\operatorname{BC}(J,E)\) and \(\vartheta _{0}\geq\theta\) as a result of \(f_{0}(t)\geq\theta, t\in J\).
Step 2: For a given function \(g\in\operatorname{BC}(J,E)\), consider the abstract fractional differential equation
It is obvious that \(A-\mathcal{K}_{2}I\) generates a uniformly exponentially stable \(C_{0}\)-semigroup \(\{e^{-\mathcal{K}_{2}t}T(t)\} _{t \geq0}\) on Banach E. Also, it is positive with the growth bound \(-\mathcal{K}_{2}+\omega_{0}\) (\(-\mathcal{K}_{2}+\omega_{0}<0\)).
Based on Lemma 3.4, the unique mild solution of (3.10) is given by \(u=L_{A-\mathcal{K}_{2}I}g\), where \(L_{A-\mathcal{K}_{2}I}:\operatorname{BC}(J,E)\longrightarrow \operatorname{BC}(J,E)\) is a positive bounded linear operator (similar to the operator \(L_{A}\)) with the property that
Combined with the first step, one can notice that \(\vartheta_{0}\) is the mild solution of problem (3.10) for \(g=f_{0}+\mathcal{K}_{1}\vartheta_{0}+\mathcal{K}_{2}\vartheta_{0}\), so
Step 3: Take \(G(u)=f(t,u)+\mathcal{K}_{2}u\). Evidently, \(G(\theta)=f(t,\theta )=f_{0}(t)\geq\theta\) and \(G:\operatorname{BC}(J,E)\longrightarrow \operatorname{BC}(J,E)\) is continuous due to conditions (a), (b) and the normality of the cone \(P_{\operatorname{BC}}\).
By condition (b), for \(\theta\leq x \leq y\), one can obtain
that is, G is an increasing operator on the positive cone \(P_{\operatorname{BC}}\).
Let \(\upsilon_{0}=\theta\). Taking account of a composition operator defined by \(\mathcal{F}=L_{A-\mathcal{K}_{2}I}\circ G\) on the order interval \([\theta,\vartheta_{0}]\), it is easy to see that the fixed point of \(\mathcal{F}\) is the mild solution of problem (1.1). Now, our task is to demonstrate that the operator \(\mathcal{F}\) has at least one fixed point.
Consider the following two sequences:
and
By condition (a), we have
then
So, we can get
By the fact that G is an increasing operator on the cone P, therefore, we can obtain
Combining (3.11), (3.14) and the positivity of the linear bounded operator \(L_{A-\mathcal{K}_{2}I}\), one can get
that is,
As \(\mathcal{F}\) is an increasing operator on the order interval \([\theta,\vartheta_{0}]\), by the definition of \(\mathcal{F}\) and (3.15), we can get two sequences \(\{\vartheta_{n}\}\) and \(\{ \upsilon_{n}\}\) (\(n=0,1,2,3,\ldots\)) satisfying
According to the above facts, by condition (a), one can get that
Thus, by induction, we have
On account of the fact that the cone \(P_{\operatorname{BC}}\) is normal with the normal constant N, by virtue of condition (c), we get
Thus, from (3.16), analogous to the nested interval method, there exists a unique \(u^{*}\in\bigcap_{n=1}^{\infty}[\upsilon _{n},\vartheta_{n}]\) such that \(u^{*}=\lim_{n\rightarrow\infty }\vartheta_{n}=\lim_{n\rightarrow\infty}\upsilon_{n}\).
By (3.12) and (3.13), taking limit of \(n\rightarrow\infty\), we obtain that
namely, \(u^{*}\) is a fixed point of the operator \(\mathcal{F}\). Thus, \(u^{*}\) is a mild positive solution of problem (1.1).
Step 4: In this part, we certify the uniqueness of the mild solution for problem (1.1).
By using reduction to absurdity, suppose that \(u_{1}^{*}\) and \(u_{2}^{*}\) are two different positive mild solutions for the fractional evolution equation (1.1), thus, \(\Vert u_{1}^{*}-u_{2}^{*} \Vert _{\operatorname{BC}_{\omega}}> 0\).
Replace \(\vartheta_{0}\) by \(u_{1}^{*}\) and \(u_{2}^{*}\) in (3.12), respectively. Following the same steps as above, for each \(u_{i}^{*}\) (\(i=1,2\)), we can get that \(u_{i}^{*}=\mathcal{F}(u_{i}^{*})\), \(\Vert u_{i}^{*}-\upsilon_{n} \Vert _{\operatorname{BC}_{\omega}}\rightarrow0\) (\(n\rightarrow\infty\)) and \(\vartheta_{n}=u_{i}^{*}\) for each \(n\in\mathbb{N}\) (\(i=1,2\)). Therefore,
which is a contradiction.
Hence, problem (1.1) has a unique positive solution. The proof is completed. □
4 Examples
To illustrate our main result, we present an example. Consider the following partial fractional differential equation.
Example 4.1
where \(\partial^{\alpha}_{t}\) is the Caputo fractional partial derivative of order \(\alpha\in(0,1)\).
Set \(E=L^{2}([0,\pi],\mathbb{R})\) and \(Az= \partial^{2}_{x}z\), according to [23], then \(A:D(A)\longrightarrow E\) is a linear operator with domain \(D(A)= \{u\in E\mid u'\in E, u(0)=u(\pi)=0 \}\). Besides, the operator A generates a uniformly exponentially stable \(C_{0}\)-semigroup \(\{T(t)\}_{t \geq0}\) with the growth bound \(\omega _{0}\leq-1\).
Let \(u(t)=z(t,\cdot)\), \(f(t,u(t))=F(t,z(t,\cdot))\), then problem (4.1) can be written as
Take \(\alpha=1/2\), \(\mu=3/4\), \(\beta=1\), then we can get
Consider the following function:
where \(a \in C[0,+\infty)\) is bounded and
It is easy for us to certify that
Since
then, for \(\theta\leq x\leq y\),
Noting that \(f(t,\theta)=\theta\). Thereby, f satisfies the conditions of Theorem 3.1, we can conclude that problem (4.1) has a unique positive mild solution.
References
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
Henderson, J, Luca, R: Systems of Riemann-Liouville fractional equations with multi-point boundary conditions. Appl. Math. Comput. 309, 303-323 (2017)
Cabada, A, Kisela, T: Existence of positive periodic solutions of some nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 50, 51-67 (2017)
Ahmad, B, Ntouyas, BK, Tariboon, J: Nonlocal fractional-order boundary value problems with generalized Riemann-Liouville integral boundary conditions. J. Comput. Anal. Appl. 23, 1281-1296 (2017)
Mei, DZ, Peng, JG, Gao, JH: General fractional differential equations of order \(\alpha\in (1,2)\) and type \(\beta\in[0,1]\) in Banach spaces. Semigroup Forum 94, 712-737 (2017)
El-Borai, MM: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14, 433-440 (2002)
Zhou, Y, Jiao, F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., Real World Appl. 11, 4465-4475 (2010)
Wang, J, Zhou, Y: A class of fractional evolution equations and optimal controls. Nonlinear Anal., Real World Appl. 12, 262-272 (2011)
Chen, P, Zhang, PX, Li, Y: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73, 794-803 (2017)
Chen, P, Li, Y, Li, Q: Existence of mild solutions for fractional evolution equations with nonlocal initial conditions. Ann. Pol. Math. 110, 13-24 (2014)
Chen, P, Li, Y, Zhang, X: On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Commun. Pure Appl. Anal. 14, 1817-1840 (2015)
Wang, R, Ma, Q: Some new results for multi-valued fractional evolution equations. Appl. Math. Comput. 257, 285-294 (2015)
Zhao, J, Wang, R: Mixed monotone iterative technique for fractional impulsive evolution equations. Miskolc Math. Notes 17, 683-696 (2016)
Jabeena, T, Lupulescu, V: Existence of mild solutions for a class of non-autonomous evolution equations with nonlocal initial conditions. J. Nonlinear Sci. Appl. 10, 141-153 (2017)
Chen, P, Li, Y, Zhang, X: Existence and uniqueness of positive mild solutions for nonlocal evolution equations. Positivity 19, 927-939 (2015)
Deimling, K: Nonlinear Functional Analysis. Springer, New York (1985)
Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)
Pazy, A: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
Engel, K, Nagel, R: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (1995)
Mainardi, F, Paradisi, P, Gorenflo, R: Probability distributions generated by fractional diffusion equations. In: Kertesz, J, Kondor, I (eds.) Econophysics: An Emerging Science. Kluwer Academic, Dordrecht (2000)
Hernandez, E, Sakthivel, R, Tanaka, AS: Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differ. Equ. 2008, Article ID 28 (2008)
Acknowledgements
This research is supported by the Fundamental Research Funds for the Central Universities (No. 2014QNA52), Natural Science Foundation of Jiangsu Province of China (No. BK20140176), Shandong Provincial Natural Science Foundation (No. ZR2014AP011) and the NNSF (No. 11601508).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All of the authors contributed equally in writing this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chen, Y., Lv, Z. & Zhang, L. Existence of positive mild solutions for a class of fractional evolution equations on the half line. Adv Differ Equ 2017, 279 (2017). https://doi.org/10.1186/s13662-017-1331-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1331-y