Let
$$\begin{aligned} l^{p}&\equiv l^{p} \bigl(\mathbb{Z}^{m} \bigr) \\ &:= \biggl\{ u=\{u_{n}\}: n\in\mathbb{Z}^{m}, u_{n}\in\mathbb{R}, \Vert u \Vert _{l^{p}}= \biggl( \sum _{n\in\mathbb{Z}^{m}}\vert u_{n} \vert ^{p} \biggr) ^{1/p}< \infty \biggr\} , \quad p\in[1,+\infty), \end{aligned}$$
be real sequence spaces. The following elementary embedding relations hold:
$$ l^{p}\subset l^{q}, \qquad \Vert u \Vert _{l^{q}}\leq \Vert u \Vert _{l^{p}}, \qquad1\le p\le q\le \infty, \quad\mbox{where } \Vert u \Vert _{l^{\infty}}:=\max_{n\in\mathbb{Z}^{m}} \vert u_{n} \vert . $$
Let \(L:=-\triangle+V\) be defined by \(Lu_{n}:=-\triangle u_{n}+v_{n} u_{n}\) for \(u\in l^{2}\). Let E be the form domain of L, that is, \(E:=\mathcal{D}(L^{1/2})\) (the domain of \(L^{1/2}\)). Under our assumptions, the operator L is an unbounded self-adjoint operator in \(l^{2}\). Since the operator −△ is bounded in \(l^{2}\), it is easy to see that \(E=\{u\in l^{2}: V^{1/2}u\in l^{2} \}\), where \(V^{1/2}u\) is defined by \(V^{1/2}u_{n}:= v^{1/2}_{n} u_{n}\) for \(u\in l^{2}\). We define respectively on E the inner product and norm by
$$ (u,v)_{E}:=(u,v)_{l^{2}}+ \bigl(L^{1/2}u,L^{1/2}v \bigr)_{l^{2}}\quad\mbox{and} \quad \Vert u \Vert _{E}=(u,u)_{E}^{1/2}, $$
where \((u,v)_{l^{2}}\) is the inner product in \(l^{2}\). Then E is a Hilbert space.
Lemma 2.1
[26]
If (1.3) holds, then we have:
-
(1)
The embedding maps from
E
into
\(l^{p}\)
are compact for all
\(p\in[2,\infty]\), and there exist
\(\gamma_{q}>0\)
such that
$$ \Vert u \Vert _{l^{q}}\leq\gamma_{q}\Vert u \Vert , \quad\forall u\in E. $$
-
(2)
The spectrum
\(\sigma(L-\omega)\)
consists of the eigenvalues:
$$\lambda_{1}-\omega< \lambda_{2}-\omega< \cdots< \lambda_{k}-\omega< \cdots\to+\infty. $$
Let \(e_{k}\) be the eigenfunctions with \((L-\omega)e_{k} = (\lambda _{k}-\omega)e_{k}\) and \(\Vert e_{k} \Vert _{l^{2}}=1\), \(k = 1, 2,\ldots\) . Moreover, \(\{e_{k}: k = 1, 2,\ldots\}\) is an orthonormal basis of \(l^{2}\). Let \(\sharp(D)\) denote the number of i such that \(i\in D\). Let
$$ \begin{aligned} &k_{1}: = \sharp \bigl(\{i: \lambda_{i}- \omega< 0\} \bigr), \\ & k_{0}: = \sharp \bigl(\{i: \lambda _{i}-\omega=0\} \bigr), \\ & k_{2}: = k_{0}+k_{1} \end{aligned} $$
(2.1)
and
$$\begin{aligned}& E^{-}:=\operatorname{span}\{e_{1},\ldots,e_{k_{1}} \}, \\& E^{0}:=\operatorname{span}\{e_{k_{1}+1},\ldots ,e_{k_{2}} \}, \\& E^{+}:=\overline{\operatorname{span} \{e_{k_{2}+1},\ldots\}}, \end{aligned}$$
where the closure is taken with respect to the norm \(\Vert \cdot \Vert _{E}\). Then we have the orthogonal decomposition
$$ E=E^{-}\oplus E^{0}\oplus E^{+} $$
with respect to the inner product \((\cdot,\cdot)_{E}\). Now, we introduce respectively on E the following inner product and norm:
$$ (u,v):= \bigl(u^{0},v^{0} \bigr)_{l^{2}}+ \bigl(L^{\frac{1}{2}}u,L^{\frac{1}{2}}v \bigr)_{l^{2}},\quad \Vert u \Vert =(u,u)^{\frac{1}{2}}, $$
where \(u, v\in E=E^{-}\oplus E^{0}\oplus E^{+}\) with \(u=u^{-} + u^{0} + u^{+}\) and \(v=v^{-} +v^{0} + v^{+}\). Clearly, the norms \(\Vert \cdot \Vert \) and \(\Vert \cdot \Vert _{E}\) are equivalent, and the decomposition \(E=E^{-}\oplus E^{0}\oplus E^{+}\) is also orthogonal with respect to both inner products \((\cdot,\cdot)\) and \((\cdot ,\cdot)_{l^{2}}\).
In view of the above arguments, we consider the functional Φ on E defined by
$$\begin{aligned} \Phi(u)&=\frac{1}{2} \bigl((L-\omega)u,u \bigr)_{l^{2}}-\sum_{n\in\mathbb{Z}^{m}}F_{n}(u_{n}) \\ &=\frac{1}{2} \bigl\Vert u^{+} \bigr\Vert ^{2} - \frac{1}{2} \bigl\Vert u^{-} \bigr\Vert ^{2} -\sum _{n\in\mathbb{Z}^{m}}F_{n}(u_{n}). \end{aligned}$$
(2.2)
Under our assumptions, \(\Phi\in C^{1}(E,\mathbb{R})\), and the derivative is given by
$$ \bigl\langle \Phi'(u),v \bigr\rangle = \bigl(u^{+},v^{+} \bigr)- \bigl(u^{-},v^{-} \bigr)-\sum_{n\in\mathbb{Z}^{m}}f_{n}(u_{n})v_{n}, $$
(2.3)
where \(u, v\in E=E^{-}\oplus E^{0}\oplus E^{+}\) with \(u=u^{-} + u^{0} + u^{+}\) and \(v=v^{-} +v^{0} + v^{+}\). The standard argument shows that nonzero critical points of Φ are nontrivial solutions of (1.1).
Definition 2.1
We say that
-
(1)
\(I\in C^{1}(X,\mathbb{R})\) satisfies \((C)\)-condition if any sequence \(\{u^{k}\}\) such that \(I(u^{k})\) is bounded and
$$ \bigl\Vert I^{'} \bigl(u^{k} \bigr) \bigr\Vert \bigl(1+ \bigl\Vert u^{k} \bigr\Vert \bigr)\rightarrow0, \quad k\rightarrow\infty, $$
(2.4)
has a convergent subsequence.
-
(2)
\(I\in C^{1}(X,\mathbb{R})\) satisfies \((PS)\)-condition if any sequence \(\{u^{k}\}\) such that \(I(u^{k})\) is bounded and
$$ I' \bigl(u^{k} \bigr)\rightarrow0,\quad k\rightarrow \infty, $$
has a convergent subsequence.
We shall use the following two lemmas to prove our main results:
Lemma 2.2
[30]
Let
E
be a real Banach space, and let
\(I\in C^{1}(E,\mathbb{R})\)
satisfy (PS)-condition. Suppose
\(I(0)=0\)
and
-
(1)
there are constants
\(\rho, \alpha>0\)
such that
\(I|_{\partial B_{\rho}}\geq\alpha\);
-
(2)
there is
\(e\in E\setminus B_{\rho}\)
such that
\(I(e)\leq0\). Then
I
possesses a critical value
\(c\geq\alpha\). Moreover, c
can be characterized as
\(c=\inf_{g\in\Gamma}\max_{u\in g([0,1])}I(u)\), where
\(\Gamma=\{g\in C([0,1],E)\mid g(0)=0,g(1)=e\}\).
Lemma 2.3
[31]
Let
X
be an infinite-dimensional Banach space such that
\(X=Y\oplus Z\), where
Y
is finite-dimensional. Let
\(I\in C^{1}(X,\mathbb{R})\)
be an invariant functional. Suppose that, for any
\(k\in N\), there exist
\(\rho _{k}>r_{k}>0\)
such that
-
(1)
I
satisfies
\((C)\)-condition for all
\(c>0\);
-
(2)
\(a_{k}:=\max_{u\in Y_{k},\Vert u \Vert =\rho _{k}}I(u)\leq0\);
-
(3)
\(b_{k}:=\inf_{u\in Y_{k},\Vert u \Vert =\rho _{k}}I(u)\rightarrow\infty\), \(k\rightarrow\infty\).
Then
I
has an unbounded sequence of critical values.
Let \(\{e_{j}\}_{j=1}^{\infty}\) be an orthonormal basis of E, and let \(X_{j}:=\mathbb{R}e_{j}\). Then \(Y_{k}=\bigoplus_{j=1}^{k} X_{j}=\operatorname{span}\{e_{1},\ldots,e_{k}\}\) and \(Z_{k}=\overline {\bigoplus_{j=k}^{\infty}X_{j}}=\overline{\operatorname{span}\{ e_{k},\ldots\}}\) for all \(k\in\mathbb{N}\).
Lemma 2.4
If assumptions
\((V_{1})\)
and
\((F_{1})\)-\((F_{5})\)
hold, then Φ satisfies (C)-condition.
Proof
We assume that, for any sequence \(\{u^{k}\}\subset E\), \(\Phi (u^{k})\) is bounded and \(\Vert \Phi'(u^{k}) \Vert (1+\Vert u^{k} \Vert )\rightarrow0\). Then there exists a constant \(M>0\) such that
$$ \bigl\vert \Phi \bigl(u^{k} \bigr) \bigr\vert \leq M,\quad \bigl\Vert \Phi' \bigl(u^{k} \bigr) \bigr\Vert \bigl(1+ \bigl\Vert u^{k} \bigr\Vert \bigr)\leq M. $$
(2.5)
(i) First, we prove the boundedness of \(\{u^{k}\}\). If not, then \(\Vert u^{k} \Vert \rightarrow\infty\) as \(k\rightarrow\infty\). Let \(v^{k}=\frac{u^{k}}{\Vert u^{k} \Vert }\). Then \(\Vert v^{k} \Vert =1\). We can assume that \(v^{k}\rightharpoonup v=\{v_{n}\}_{n\in\mathbb {Z}^{m}}\) in E passing to a subsequence, which, together with Lemma 2.1, implies \(v^{k}\rightarrow v\) in \(l^{q}\) for \(2\leq q<\infty\) and \(v_{n}^{k}\rightarrow v_{n}\) for all \(n\in\mathbb {Z}^{m}\). By the space decomposition we have
$$ \Vert u \Vert ^{2}= \bigl\Vert u^{+} \bigr\Vert ^{2}+ \bigl\Vert u^{-}+u^{0} \bigr\Vert ^{2}. $$
(2.6)
Then, by (2.2), (2.5), and (2.6) we have
$$ \sum_{n\in\mathbb{Z}^{m}}\frac{F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}}= \frac{1}{2}-\frac{\Phi(u^{k})}{\Vert u^{k} \Vert ^{2}}-\frac {1}{2}\frac{\Vert (u^{k})^{-} \Vert ^{2}+\Vert (u^{k})^{-}+(u^{k})^{0} \Vert ^{2}}{\Vert u^{k} \Vert ^{2}}, $$
(2.7)
which implies that, for k large enough, we have
$$ \sum_{n\in\mathbb{Z}^{m}}\frac{F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}}\leq \frac{1}{2}+\frac{M}{\Vert u^{k} \Vert ^{2}}\leq1. $$
(2.8)
If \(v\neq0\), then we let \(A:=\{n\in\mathbb{Z}^{m}:\vert v_{n} \vert > 0\}\). For all \(n\in A\), by \(v_{n}^{k}=\frac {u_{n}^{k}}{\Vert u^{k} \Vert }\) and \(\Vert u^{k} \Vert \rightarrow\infty\) we have \(\lim_{k\rightarrow\infty} \vert u_{n}^{k} \vert =\infty\). It follows from \((F_{2})\) that \(F_{n}(s)\ge0\) for all \((n,s)\in\mathbb {Z}^{m}\times\mathbb{R}\) (see AX 1 in Appendix) and the Fatou lemma that
$$\begin{aligned} \lim_{k\rightarrow\infty}\sum_{n\in\mathbb{Z}^{m}} \frac {F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} &\geq\lim_{k\rightarrow\infty}\sum _{n\in A}\frac {F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} \\ &=\lim_{k\rightarrow\infty}\sum_{n\in A} \frac {F_{n}(u_{n}^{k})}{\vert u_{n}^{k} \vert ^{2}}\bigl\vert v_{n}^{k} \bigr\vert ^{2} \\ &=+\infty, \end{aligned}$$
which contradicts with (2.8). So, in this case, \(\{u^{k}\}\) is bounded in E.
If \(v=0\), then \(v^{k}\rightarrow0\) in \(l^{q}\), \(2\leq q<\infty\), and \(v_{n}^{k}\rightarrow0\) for all \(n\in\mathbb{Z}^{m}\). Since \(\dim (E^{-}\oplus E^{0})<\infty\), it follows from (2.5) and (2.7) that, for k large enough, there exists a constant \(l_{0}>0\) such that
$$\begin{aligned} \sum_{n\in\mathbb{Z}^{m}}\frac{F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} &\geq \frac{1}{2}-\frac{M}{\Vert u^{k} \Vert ^{2}}-\frac{l_{0}}{2}\sum _{n\in\mathbb{Z}^{m}} \biggl(\frac{\vert (u_{n}^{k})^{-} \vert ^{2}+\vert (u_{n}^{k})^{-}+(u_{n}^{k})^{0} \vert ^{2}}{\Vert u^{k} \Vert ^{2}} \biggr) \\ &=\frac{1}{2}-\frac{M}{\Vert u^{k} \Vert ^{2}}-\frac{l_{0}}{2}\sum _{n\in\mathbb{Z}^{m}} \bigl( \bigl\vert \bigl(v_{n}^{k} \bigr)^{-} \bigr\vert ^{2}+ \bigl\vert \bigl(v_{n}^{k} \bigr)^{-}+ \bigl(v_{n}^{k} \bigr)^{0} \bigr\vert ^{2} \bigr) \\ &\geq\frac{1}{4}. \end{aligned}$$
(2.9)
Then by \((F_{1})\), for any \(\varepsilon>0\), there exists \(\sigma>0\) such that
$$ \bigl\vert f_{n}(s) \bigr\vert \leq\varepsilon \vert s \vert , \quad \vert s \vert \leq\sigma, n\in\mathbb{Z}^{m}. $$
It follows from \(F_{n}(s)\ge0\) for all \((n,s)\in\mathbb{Z}^{m}\times \mathbb{R}\) (see AX 1 in Appendix) and \((F_{4})\) that, for all \(n\in\mathbb{Z}^{m}\) and \(\vert s \vert \leq\sigma\),
$$\begin{aligned} F_{n}(s)&= \bigl\vert F_{n}(s)-F_{n}(0) \bigr\vert \\ &= \biggl\vert \int_{0}^{1}f_{n}(ts)s\,dt \biggr\vert \\ &\leq \int_{0}^{1} \bigl\vert f_{n}(ts) \bigr\vert \vert s \vert \, dt \\ &\leq \int_{0}^{1}\varepsilon \vert ts \vert \vert s \vert \,dt \leq \varepsilon \vert s \vert ^{2}. \end{aligned}$$
(2.10)
Let \(\varepsilon=1\). Then there exists \(\sigma_{0}>0\) such that (2.10) holds for all \(n\in\mathbb{Z}^{m}\) and \(\vert s \vert \leq\sigma_{0}\). By \((F_{3})\) we have \(\frac{d}{d\vartheta} \vartheta^{-2}F_{n}(\vartheta s)\ge0\) for all \(\vartheta\geq1\), so \(\vartheta^{-2}F_{n}(\vartheta s)\) is nondecreasing in ϑ for \(\vartheta\geq1\). Then by \((F_{5})\), for all \(\vert s \vert \leq r_{\infty}\), we have
$$ F_{n}(s)\leq F_{n} \biggl( \frac{r_{\infty}s}{ \vert s \vert } \biggr) \biggl(\frac{\vert s \vert }{r_{\infty}} \biggr)^{2}\leq F_{n} \biggl(\frac{r_{\infty}s}{ \vert s \vert } \biggr)\leq L. $$
(2.11)
Then since \(F_{n}(s)\ge0\) for all \((n,s)\in\mathbb{Z}^{m}\times \mathbb{R}\) (see AX 1 in Appendix), by \((F_{3})\), (2.3), (2.5), (2.10), (2.11), and the Sobolev embedding theorem, for k large enough, we have
$$\begin{aligned} 0&\leq\sum_{n\in\mathbb{Z}^{m}}\frac{F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} \\ &\leq\sum_{\{n\in\mathbb{Z}^{m},\vert u^{k} \vert >r_{\infty}\} }\frac{F_{n}(u_{n}^{k})}{\vert u_{n}^{k} \vert ^{2}} \bigl\vert v_{n}^{k} \bigr\vert ^{2} +\sum _{\{n\in\mathbb{Z}^{m},\vert u^{k} \vert \leq\sigma_{0}\}}\frac {F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} \\ &\quad{}+\sum_{\{n\in\mathbb{Z}^{m},\sigma_{0}\leq \vert u^{k} \vert \leq r_{\infty}\}}\frac{F_{n}(u_{n}^{k})}{\Vert u^{k} \Vert ^{2}} \\ &\leq \bigl\Vert v^{k} \bigr\Vert _{l^{\infty}}^{2} \sum_{\{n\in\mathbb{Z}^{m},\vert u^{k} \vert >r_{\infty}\}}\frac {F_{n}(u_{n}^{k})}{\vert u_{n}^{k} \vert ^{2}} +\sum _{\{n\in\mathbb{Z}^{m},\vert u^{k} \vert \leq\sigma_{0}\}} \bigl\vert v_{n}^{k} \bigr\vert ^{2} \\ &\quad{}+\sum_{\{n\in\mathbb{Z}^{m},\sigma_{0}\leq \vert u^{k} \vert \leq r_{\infty}\}}\frac{F_{n}(u_{n}^{k})\vert u_{n}^{k} \vert ^{2}}{\sigma_{0}^{2}\Vert u^{k} \Vert ^{2}} \\ &\leq\frac{\Vert v^{k} \Vert _{l^{\infty}}^{2}}{b}\sum_{\{n\in \mathbb{Z}^{m},\vert u^{k} \vert >r_{\infty}\}} \widetilde{F}_{n}(u_{n}^{k}+ \biggl(1+ \frac{L}{\sigma_{0}^{2}} \biggr) \bigl\Vert v^{k} \bigr\Vert _{l^{2}}^{2} \\ &\leq\frac{\Vert v^{k} \Vert _{l^{\infty}}^{2}}{b} \bigl(2\Phi \bigl(u^{k} \bigr)- \bigl\langle \Phi' \bigl(u^{k} \bigr),u^{k} \bigr\rangle \bigr)+ \biggl(1+\frac{L}{\sigma_{0}^{2}} \biggr) \bigl\Vert v^{k} \bigr\Vert _{l^{2}}^{2} \\ &\leq\frac{3M}{b} \bigl\Vert v^{k} \bigr\Vert _{l^{\infty}}^{2}+ \biggl(1+\frac{L}{\sigma_{0}^{2}} \biggr) \bigl\Vert v^{k} \bigr\Vert _{l^{2}}^{2} \rightarrow0. \end{aligned}$$
(2.12)
Clearly, (2.12) contradicts with (2.9). Thus \(\Vert u^{k} \Vert \) is still bounded in this case.
(ii) Second, we prove that \(\{u^{k}\}\) has a convergent subsequence in E. The boundedness of \(\{u^{k}\}\) implies that \(u^{k}\rightharpoonup u\) in \(E^{+}\) passing to a subsequence, where \(u=\{u_{n}\}_{n\in\mathbb {Z}^{m}}\). Now we have
$$ \sum_{n\in\mathbb{Z}^{m}} \bigl[f_{n} \bigl(u_{n}^{k} \bigr) \bigl(u_{n}^{k}-u_{n} \bigr) \bigr]\rightarrow0,\quad k\rightarrow\infty. $$
(2.13)
Note that Lemma 2.1 implies that \(u^{k}\rightarrow u\) in \(l^{q}\) for all \(2\leq q<\infty\), so we have
$$ \bigl\Vert u^{k}-u \bigr\Vert _{l^{2}} \rightarrow0. $$
(2.14)
The boundedness of \(\{u^{k}\}\) and Lemma 2.1 imply that \(\Vert u^{k} \Vert _{q}<\infty\) for all \(2\leq q<\infty\). Then by \((F_{1})\), (2.14), and the Hölder inequality, for \(\varepsilon>0\), there exists \(\delta>0\) such that, for \(\vert s \vert <\delta\), we have
$$\begin{aligned} \biggl\vert \sum_{n\in\mathbb{Z}^{m}} \bigl[f_{n} \bigl(u_{n}^{k} \bigr) \bigl(u_{n}^{k}-u_{n} \bigr) \bigr] \biggr\vert &\leq\sum_{n\in\mathbb {Z}^{m}} \bigl\vert f_{n} \bigl(u_{n}^{k} \bigr) \bigl(u_{n}^{k}-u_{n} \bigr) \bigr\vert \\ &\leq\sum_{n\in\mathbb{Z}^{m}} \bigl(\varepsilon \bigl\vert u_{n}^{k} \bigr\vert \bigl\vert u_{n}^{k}-u_{n} \bigr\vert \bigr) \\ &=\varepsilon\sum_{n\in\mathbb{Z}^{m}} \bigl( \bigl\vert u_{n}^{k} \bigr\vert \bigl\vert u_{n}^{k}-u_{n} \bigr\vert \bigr) \\ &\leq\varepsilon \bigl\Vert u^{k} \bigr\Vert _{l^{2}} \bigl\Vert u^{k}-u \bigr\Vert _{l^{2}} \rightarrow0. \end{aligned}$$
(2.15)
So (2.13) holds. Therefore, since \(\Phi'(u^{k})\rightarrow0\), \(u^{k}\rightharpoonup u\) in \(E^{+}\), by (2.13) and the definition of \(\Phi'\) we have
$$\begin{aligned} 0&=\lim_{k\rightarrow\infty} \bigl\langle \Phi' \bigl(u^{k} \bigr),u^{k}-u \bigr\rangle \\ &=\lim_{k\rightarrow\infty} \bigl(u^{k},u^{k}-u \bigr)- \lim_{k\rightarrow\infty}\sum_{n\in\mathbb{Z}^{m}} \bigl(f_{n} \bigl(u_{n}^{k} \bigr) \bigl(u_{n}^{k}-u_{n} \bigr) \bigr) \\ &=\lim_{k\rightarrow\infty} \bigl\Vert u^{k} \bigr\Vert ^{2}-\Vert u \Vert ^{2}-0, \end{aligned}$$
(2.16)
that is,
$$ \lim_{k\rightarrow\infty} \bigl\Vert u^{k} \bigr\Vert =\Vert u \Vert . $$
(2.17)
Since \(u^{k}\rightharpoonup u\) in \(E^{+}\), it follows that
$$ \bigl\Vert u^{k}-u \bigr\Vert ^{2}= \bigl(u^{k}-u,u^{k}-u \bigr)\rightarrow0, $$
that is, \(\{u^{k}\}\) has a convergent subsequence in \(E^{+}\). Since \(\dim(E^{-}\oplus E^{0})<\infty\), it follows that \(\{u^{k}\}\) has a convergent subsequence in E. Thus Φ satisfies \((C)\)-condition. □