Consider the following large-scale time-delay Lurie indirect control system with unbounded coefficients and a single nonlinearity:
$$ \textstyle\begin{cases} {{{\dot{x}}}_{i}} ( t )=\sum _{j=1}^{m}{{{A}_{ij}} ( t ){{x}_{j}}} ( t )+\sum_{j=1}^{m}{{{B}_{ij}} ( t ){{x}_{j}} \bigl( t-{{\tau}_{j}} ( t ) \bigr)}+{{b}_{i}} ( t )f \bigl( \sigma( t ) \bigr), \\ \quad i=1,2,\ldots,m, \\ \dot{\sigma} ( t )=\sum_{i=1}^{m}{{{c}_{i}^{T}} ( t ){{x}_{i}}} ( t )-\rho( t )f \bigl( \sigma( t ) \bigr), \end{cases} $$
(2)
where \({{x}_{i}} ( t )\in{{R}^{{{n}_{i}}}}\) (\(i=1,2,\ldots,m \)) and \(\sigma ( t )\in R\) are the state vectors, the vector functions \({{b}_{i}} ( t ),{{c}_{i}} ( t )\in{{R}^{{{n}_{i}}}}\) (\(i=1,2,\ldots,m\)) are continuous in \([ 0,\infty )\), \(\sum _{i=1}^{m}{{{n}_{i}}}=n\); the matrix functions \({{A}_{ij}} ( t ),{{B}_{ij}} ( t )\in {{R}^{{{n}_{i}}\times{{n}_{j}}}}\) (\(i,j=1,2,\ldots,m \)) are continuous in \([ 0,\infty )\); \({{\tau}_{j}} ( t )\) (\(j=1,2,\ldots,m\)) refers to the time-delay; \(\rho ( t )\) is a continuous function in \([ 0,\infty )\) and satisfies \(\rho ( t )\ge\rho>0\) with constant ρ. The continuous nonlinearity \(f ( \cdot )\) satisfies the following sector condition:
$${{F}_{ [ {{k}_{1}},{{k}_{2}} ]}} = \bigl\{ f(\cdot)\vert f ( 0 )=0;{{k}_{1}} {{\sigma}^{2}}(t)\le\sigma(t)f\bigl( \sigma(t)\bigr)\le {{k}_{2}} {{\sigma}^{2}}(t),\sigma(t)\in R - \{0\} \bigr\} , $$
where \({{k}_{1}}\), \({{k}_{2}}\) are constants such that \({{k}_{2}}>{{k}_{1}}>0\).
Definition 1
[24]
System (2) is said to be absolutely stable if its zero solution is globally asymptotically stable for any nonlinearity \(f ( \cdot )\in {{F}_{ [ {{k}_{1}},{{k}_{2}} ]}}\).
We make the following assumptions for system (2).
-
A1
The time-delay \({{\tau}_{i}} ( t )\) (\(i=1,2,\ldots,m\)) are continuous and piecewise differentiable functions with
$$0\le{{\tau}_{i}} ( t )\le{{\tau}_{i}},\qquad {{\dot{\tau }}_{i}} ( t )\le{{\alpha}_{i}}< 1, $$
where \({{\tau}_{i}}\), \({{\alpha}_{i}}\) (\(i=1,2,\ldots,m\)) are constants. At the nondifferentiability points of \({{\tau}_{i}} ( t )\), \({{\dot{\tau}}_{i}} ( t )\) represents \(\max [ {{{\dot{\tau }}}_{i}}(t-0),{{{\dot{\tau}}}_{i}}(t+0) ]\).
-
A2
For any \(t\in[0,\infty)\), there exist matrices \({{P}_{i}}>0\), \({{G}_{i}}>0\) (\(i=1,2,\ldots,m \)) such that
$$\lambda\bigl( {{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}} \bigr)\le-{{\delta }_{i}} ( t )\le-{{\xi}_{i}}< 0, $$
where \({{\delta}_{i}} ( t )>0\), \({{\xi}_{i}}>0\) (\(i=1,2,\ldots,m \)) are functions and constants, respectively.
-
A3
For any \(t\in[0,\infty)\),
$$\frac{ \Vert {{P}_{i}}{{A}_{ij}} ( t )+A_{ji}^{T} ( t ){{P}_{j}} \Vert }{\sqrt{{{\delta}_{i}} ( t ){{\delta}_{j}} ( t )}}\le{{\eta }_{ij}},\qquad \frac{ \Vert {{P}_{i}}{{B}_{ij}} ( t ) \Vert }{\sqrt {{{\delta}_{i}} ( t ) ( 1-\alpha_{j} ){{\lambda}_{\min}} ( {{G}_{j}} )}}\le{{\gamma }_{ij}}, $$
where \({{\eta}_{ij}}\) (\(i,j=1,2,\ldots,m\); \(i\ne j \)), \({{\gamma }_{ij}}\) (\(i,j=1,2,\ldots,m \)) are constants, and \({{\eta }_{ij}}={{\eta}_{ji}}\).
-
A4
For any \(t\in[0,\infty)\),
$$\frac{ \Vert {{P}_{i}}{{b}_{i}} ( t )+\frac{1}{2}{{c}_{i}} ( t ) \Vert }{\sqrt{{{\delta}_{i}} ( t )\rho ( t )}}\le{{\mu}_{i}}, $$
where \({{\mu}_{i}}\) (\(i=1,2,\ldots,m \)) are constants.
To simplify the statements, we define the following auxiliary matrices:
Notice that by A3 the matrix D is symmetric.
Theorem 1
Under A1-A4, system (2) is absolutely stable if
\(D+R{{R}^{T}}+U{{U}^{T}}<0\).
Proof
By utilizing \({{P}_{i}}\), \({{G}_{i}}\) (\(i=1,2,\ldots,m \)) appearing in the assumptions, we choose the following Lyapunov-Krasovskii functional:
$$V ( t,\phi)=\sum_{i=1}^{m}{ \biggl({{x}_{i}^{T}} ( t ){{P}_{i}} {{x}_{i}} ( t )+ \int_{t-{{\tau}_{i}} ( t )}^{t}{{{x}_{i}^{T}} ( s ){{G}_{i}} {{x}_{i}} ( s )}\,ds \biggr)+ \int_{0}^{\sigma ( t )}{f ( s )\,ds}}. $$
We can verify that if \(f\in{{F}_{ [ {{k}_{1}},{{k}_{2}} ]}}\), then \(\frac{1}{2}{{k}_{1}}{{\sigma}^{2}} ( t )\le\int_{0}^{\sigma ( t )}{f ( s )\,ds}\le\frac{1}{2}{{k}_{2}}{{\sigma}^{2}} ( t )\). Letting \(\tau =\max \{ {{\tau}_{i}},i=1,2,\ldots,m \}\), \(V ( t,\phi )\) satisfies
$$\begin{aligned} \begin{aligned} &\sum_{i=1}^{m}{{{\lambda }_{\min}} ( {{P}_{i}} ){{ \bigl\Vert {{x}_{i}} (t ) \bigr\Vert }^{2}}}+\frac{1}{2}{{k}_{1}} {{\sigma}^{2}} ( t ) \\ &\quad \le V ( t,\phi)\le\sum_{i=1}^{m}{\biggl( {{\lambda}_{\max}} ( {{P}_{i}} ){{ \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert }^{2}}+{{\lambda }_{\max}} ( {{G}_{i}} ) \int_{t-\tau}^{t}{{{ \bigl\Vert {{x}_{i}} (s ) \bigr\Vert }^{2}}}\,ds \biggr)}+\frac{1}{2}{{k}_{2}} {{\sigma}^{2}} ( t ). \end{aligned} \end{aligned}$$
Further, we have
$$\begin{aligned} \begin{aligned} &\min\biggl\{ {{\lambda}_{\min}}( {{P}_{1}}), \ldots,{{\lambda}_{\min}} ( {{P}_{m}} ),\frac{1}{2}{{k}_{1}} \biggr\} {{\bigl\Vert \phi(0)\bigr\Vert }^{2}} \\ &\quad\le V(t,\phi) \\ & \quad\le\max\biggl\{ {{\lambda}_{\max}}({{P}_{1}}),\ldots,{{\lambda}_{\max}}({{P}_{m}} ),\frac{{k}_{2}}{2}\biggr\} {{\bigl\Vert \phi(0)\bigr\Vert }^{2}}\\ &\qquad {}+\max\bigl\{ {{\lambda}_{\max}}({{G}_{1}}), \ldots,{{\lambda}_{\max}}({{G}_{m}})\bigr\} \int_{-\tau}^{{{0}}}{{{\bigl\Vert \phi(s)\bigr\Vert }^{2}}}\,ds. \end{aligned} \end{aligned}$$
Namely, let
$$\begin{aligned} \begin{aligned} &{{W}_{1}} ( s )=\min\biggl\{ {{\lambda }_{\min}} ( {{P}_{1}} ),\ldots,{{\lambda}_{\min}} ({{P}_{m}} ),\frac{1}{2}{{k}_{1}}\biggr\} {{s}^{2}}, \\ &{{W}_{2}} ( s )=\max\biggl\{ {{\lambda}_{\max}} ({{P}_{1}} ),\ldots,{{\lambda}_{\max}} ( {{P}_{m}} ),\frac{1}{2}{{k}_{2}}\biggr\} {{s}^{2}}, \\ &{{W}_{3}} ( s )=\max\bigl\{ \left . {{\lambda}_{\max}} ({{G}_{1}} ),\ldots,{{\lambda}_{\max}} ( {{G}_{m}} ) \bigr\} \right .{{s}^{2}}. \end{aligned} \end{aligned}$$
Then we obtain, for \(t\ge0\), the following inequalities:
$${{W}_{1}} \bigl( \bigl\Vert \phi( 0 ) \bigr\Vert \bigr)\le V ( t, \phi)\le{{W}_{2}} \bigl( \bigl\Vert \phi( 0 ) \bigr\Vert \bigr)+{{W}_{3}} \bigl( \bigl\vert \Vert \phi \Vert \bigr\vert \bigr). $$
Thus, condition (i) of Lemma 2 is satisfied. Moreover, \(\lim_{s\to \infty}W_{1}(s)=\infty\).
The derivative of \(V ( t,\phi )\) along the trajectory of system (2) is
$$\begin{aligned} &\dot{V} ( t,\phi){\vert_{\text{(2)}}} \\ & \quad=\sum_{i=1}^{m} \bigl(2{{x}_{i}^{T}} ( t ){{P}_{i}} {{{\dot{x}}}_{i}} ( t )+{{x}_{i}^{T}} ( t ){{G}_{i}} {{x}_{i}} ( t ) \bigr) \\ &\qquad{}-\sum_{i=1}^{m} \bigl( 1-{{{\dot{\tau}}}_{i}} ( t ) \bigr){{x}_{i}^{T}} \bigl(t-{{\tau}_{i}} ( t ) \bigr){{G}_{i}} {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr) +\dot{\sigma} ( t )f \bigl( \sigma ( t ) \bigr) \\ &\quad=\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \bigl( {{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}} \bigr){{x}_{i}}} ( t )+2\sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}} {{A}_{ij}} ( t ){{x}_{j}}} ( t ) \\ &\qquad{}+2\sum_{i=1}^{m}{\sum _{j=1}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}}}} {{B}_{ij}} ( t ){{x}_{j}} \bigl(t-{{\tau}_{j}} ( t ) \bigr)+2\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}} {{b}_{i}} ( t )f \bigl( \sigma( t ) \bigr)} \\ &\qquad{}-\sum_{i=1}^{m}{ \bigl( 1-{{{\dot{\tau}}}_{i}} ( t ) \bigr){{x}_{i}^{T}} \bigl(t-{{\tau}_{i}} ( t ) \bigr){{G}_{i}} {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr)}+\sum_{i=1}^{m}{x_{i}^{T} ( t ){{c}_{i}} ( t )}f \bigl( \sigma( t ) \bigr) \\ &\qquad{}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr) \\ &\quad=\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \bigl({{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}}\bigr){{x}_{i}}} ( t )+2 \sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}} {{A}_{ij}} ( t ){{x}_{j}} ( t )} \\ &\qquad{}+2\sum_{i=1}^{m}{\sum _{j=1}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}}}} {{B}_{ij}} ( t ){{x}_{j}} \bigl( t - {{\tau}_{j}} ( t ) \bigr)+2\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \biggl({{P}_{i}} {{b}_{i}} ( t )+ \frac{1}{2}{{c}_{i}} ( t )\biggr)f \bigl( \sigma( t ) \bigr)} \\ &\qquad{}-\sum_{i=1}^{m}{ \bigl( 1-{{{\dot{\tau}}}_{i}} ( t ) \bigr){{x}_{i}^{T}} \bigl(t-{{\tau}_{i}} ( t ) \bigr){{G}_{i}} {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr)}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr) \\ &\quad= \sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \bigl({{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}}\bigr){{x}_{i}}} ( t )+ \sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{x_{i}^{T} ( t )} \bigl({{P}_{i}} {{A}_{ij}} ( t )+A_{ji}^{T} ( t ){{P}_{j}}\bigr){{x}_{j}} ( t ) \\ &\qquad{}+2\sum_{i=1}^{m}{\sum _{j=1}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}}}} {{B}_{ij}} ( t ){{x}_{j}} \bigl(t-{{\tau}_{j}} ( t ) \bigr)+2\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \biggl({{P}_{i}} {{b}_{i}} ( t )+ \frac{1}{2}{{c}_{i}} ( t )\biggr)f \bigl( \sigma( t ) \bigr)} \\ &\qquad{}-\sum_{i=1}^{m}{ \bigl( 1-{{{\dot{\tau}}}_{i}} ( t ) \bigr){{x}_{i}^{T}} \bigl(t-{{\tau}_{i}} ( t ) \bigr){{G}_{i}} {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr)}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr). \end{aligned}$$
From A1 and A2, using properties of the matrix norm, we get
$$\begin{aligned} \begin{aligned} &\dot{V} ( t,\phi){\vert_{\text{(2)}}} \\ &\quad\le\sum_{i=1}^{m}{{x}_{i}^{T}} (t ) \bigl({{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} (t ){{P}_{i}}+{{G}_{i}}\bigr){{x}_{i}} ( t )+ \sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{x_{i}^{T}} (t ) \bigl( {{P}_{i}} {{A}_{ij}} ( t )+A_{ji}^{T} ( t ){{P}_{j}}\bigr){{x}_{j}} ( t ) \\ &\qquad{}+2\sum_{i=1}^{m}{\sum _{j=1}^{m}{{{x}_{i}^{T}} ( t ){{P}_{i}}}} {{B}_{ij}} ( t ){{x}_{j}} \bigl(t-{{\tau}_{j}} ( t ) \bigr)+2\sum_{i=1}^{m}{{{x}_{i}^{T}} ( t ) \biggl({{P}_{i}} {{b}_{i}} ( t )+ \frac{1}{2}{{c}_{i}} ( t )\biggr)f \bigl( \sigma( t ) \bigr)} \\ &\qquad{}-\sum_{i=1}^{m}{ ( 1-{{\alpha }_{i}} ){{x}_{i}^{T}} \bigl( t-{{\tau }_{i}} ( t ) \bigr){{G}_{i}} {{x}_{i}} \bigl(t-{{\tau}_{i}} ( t ) \bigr)}-\rho( t ){{f}^{2}} \bigl(\sigma( t ) \bigr) \\ &\quad\le-\sum_{i=1}^{m}{{{\delta }_{i}} ( t ){{ \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert }^{2}}}+\sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i} ^{m}{ \bigl\Vert {{P}_{i}} {{A}_{ij}} ( t )+A_{ji}^{T} ( t ){{P}_{j}} \bigr\Vert \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \bigl\Vert {{x}_{j}} ( t ) \bigr\Vert } \\ &\qquad{}+2\sum_{i=1}^{m}{\sum _{j=1}^{m}{ \bigl\Vert {{P}_{i}} {{B}_{ij}} ( t ) \bigr\Vert \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \bigl\Vert {{x}_{j}} \bigl( t - {{\tau}_{j}} ( t ) \bigr) \bigr\Vert }}\\ &\qquad {}+2\sum_{i=1}^{m}{\biggl\Vert {{P}_{i}} {{b}_{i}} ( t )+\frac{{{c}_{i}(t)}}{2} \biggr\Vert \bigl\Vert {{x}_{i}}(t) \bigr\Vert \bigl\vert f\bigl(\sigma(t)\bigr)\bigr\vert } \\ &\qquad{}-\sum_{i=1}^{m}{ ( 1-{{\alpha }_{i}} ){{\lambda}_{\min}} ( {{G}_{i}} ){{ \bigl\Vert {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr) \bigr\Vert }^{2}}}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr). \end{aligned} \end{aligned}$$
To fully utilize A3, A4, and the unbounded terms in system coefficients, we take \(\sqrt{{{\delta}_{i}} ( t )} \Vert {{x}_{i}} ( t ) \Vert \), \(\sqrt{ ( 1-{{\alpha}_{i}} ){{\lambda}_{\min}} ({{G}_{i}} )} \Vert x ( t-{{\tau}_{i}} ( t ) ) \Vert \) (\(i=1,2,\ldots,m \)), and \(\sqrt{\rho ( t )} \vert f ( \sigma ( t ) ) \vert \) as the variables of the following quadratic form. Then the inequality becomes
$$\begin{aligned} &\dot{V} ( t,\phi){\vert_{\text{(2)}}} \\ &\quad\le- \sum_{i=1}^{m}{{{\delta }_{i}}(t){{ \bigl\Vert {{x}_{i}}(t) \bigr\Vert }^{2}}}+\sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{\frac{ \Vert {{P}_{i}}{{A}_{ij}}(t)+A_{ji}^{T}(t){{P}_{j}} \Vert }{\sqrt{{{\delta}_{i}}(t){{\delta}_{j}}(t)}}\sqrt{{{\delta }_{i}}(t)} \bigl\Vert {{x}_{i}}(t) \bigr\Vert \cdot \sqrt{{{\delta}_{j}}(t)} \bigl\Vert {{x}_{j}} ( t ) \bigr\Vert }\\ &\qquad{}+2\sum_{i=1}^{m}{\sum_{j=1}^{m}{\frac{\Vert{{P}_{i}}{{B}_{ij}}(t) \Vert}{\sqrt{{{\delta }_{i}}(t)( 1 - {{\alpha}_{j}}){{\lambda}_{\min}}({{G}_{j}})}}\sqrt{{{\delta}_{i}}(t)}\bigl\Vert {{x}_{i}}(t)\bigr\Vert \cdot\sqrt{(1 - {{\alpha}_{j}}){{\lambda}_{\min}}( {{G}_{j}})} {{x}_{j}}\bigl(t - {{\tau}_{j}}(t)\bigr)}} \\ &\qquad{}+2\sum_{i=1}^{m}{\frac{ \Vert {{P}_{i}}{{b}_{i}} ( t )+\frac{1}{2}{{c}_{i}} ( t ) \Vert }{\sqrt{{{\delta}_{i}} ( t )\rho ( t )}}\sqrt{{{\delta }_{i}} ( t )} \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \cdot\sqrt{\rho( t )} \bigl\vert f \bigl( \sigma( t ) \bigr) \bigr\vert } \\ &\qquad{}-\sum_{i=1}^{m}{ ( 1-{{\alpha }_{i}} ){{\lambda}_{\min}} ( {{G}_{i}} ){{ \bigl\Vert {{x}_{i}} \bigl( t-{{\tau}_{i}} ( t ) \bigr) \bigr\Vert }^{2}}}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr) \\ &\quad\le-\sum_{i=1}^{m}{{{\delta }_{i}} ( t ){{ \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert }^{2}}}+\sum_{i=1}^{m}\mathop{\sum_{j=1}}_{j\ne i}^{m}{{{\eta}_{ij}}\sqrt{{{\delta}_{i}} ( t )} \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \cdot\sqrt{{{\delta}_{j}} ( t )} \bigl\Vert {{x}_{j}} ( t ) \bigr\Vert } \\ &\qquad{}+\sum_{i=1}^{m}{\sum _{j=1}^{m}{2{{\gamma}_{ij}}\sqrt{{{\delta }_{i}} ( t )} \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \cdot\sqrt{ ( 1-{{\alpha}_{j}} ){{\lambda}_{\min}} ({{G}_{j}} )} \bigl\Vert {{x}_{j}} \bigl( t-{{\tau }_{j}} ( t ) \bigr) \bigr\Vert }} \\ &\qquad{}+\sum_{i=1}^{m}{2{{\mu }_{i}}\sqrt{{{\delta}_{i}} ( t )} \bigl\Vert {{x}_{i}} ( t ) \bigr\Vert \cdot}\sqrt{\rho( t )} \bigl\vert f \bigl( \sigma(t) \bigr) \bigr\vert - \sum_{i=1}^{m}{( 1 - {{\alpha}_{i}} ){{\lambda}_{\min}} ({{G}_{i}} ){{ \bigl\Vert {{x}_{i}} \bigl( t - {{\tau }_{i}} ( t ) \bigr) \bigr\Vert }^{2}}} \\ &\qquad{}-\rho( t ){{f}^{2}} \bigl( \sigma( t ) \bigr) \\ &\quad={{Y}^{T}}\hat{D}Y, \end{aligned}$$
where
Using the preceding notations, we have
By Lemma 1, \(D+R{{R}^{T}}+U{{U}^{T}}<0\) implies \(\hat{D}<0\). Let −β (\(\beta>0\)) be the maximum eigenvalue of D̂. Then, \(\dot{V} ( t,\phi ){\vert_{\text{(2)}}}\) satisfies
$$\begin{aligned} \begin{aligned} & \dot{V} ( t,\phi){\vert_{\text{(2)}}} \\ &\quad\le-\beta\Biggl(\sum_{i=1}^{m}{\bigl( {{\delta}_{i}}(t){{ \bigl\Vert {{x}_{i}}(t) \bigr\Vert }^{2}}+ ( 1-{{\alpha}_{i}} ){{\lambda }_{\min}} ( {{G}_{i}} ){{ \bigl\Vert {{x}_{i}} \bigl(t-{{\tau}_{i}}(t)\bigr) \bigr\Vert }^{2}} \bigr)}+ \rho(t){{ \bigl\vert f\bigl(\sigma(t)\bigr) \bigr\vert }^{2}} \Biggr) \\ &\quad\le-\beta\Biggl(\sum_{i=1}^{m}{{{\xi}_{i}} {{ \bigl\Vert {{x}_{i}}(t) \bigr\Vert }^{2}}}+\rho{{ \bigl\vert f\bigl(\sigma(t)\bigr) \bigr\vert }^{2}}\Biggr). \end{aligned} \end{aligned}$$
Since \(\sigma ( t )f ( \sigma ( t ) )\ge{{k}_{1}}{{\sigma}^{2}} (t )\), we obtain \(\vert f ( \sigma ( t ) ) \vert \ge{{k}_{1}} \vert \sigma ( t ) \vert \). Hence,
$$\begin{aligned} \begin{aligned} & \dot{V} ( t,\phi){\vert_{\text{(2)}}} \\ &\quad\le-\beta\Biggl( \sum_{i=1}^{m}{{{\xi}_{i}} {{ \bigl\Vert {{x}_{i}}(t) \bigr\Vert }^{2}}}+\rho k_{1}^{2}{{\sigma}^{2}}(t) \Biggr) \\ &\quad\le-\beta\min\bigl\{ {{\xi}_{1}},\ldots,{{\xi }_{m}},\rho k_{1}^{2} \bigr\} \Biggl( \sum _{i=1}^{m}{{{ \bigl\Vert {{x}_{i}}(t) \bigr\Vert }^{2}}}+{{\sigma}^{2}}(t)\Biggr). \end{aligned} \end{aligned}$$
Letting \({{W}_{4}}(s)=-\beta\min \{ {{\xi}_{1}},\ldots,{{\xi }_{m}},\rho k_{1}^{2} \}{{s}^{2}}\), we have
$$\dot{V} ( t,\phi){\vert_{ ( 2 )}}\le{{W}_{4}} \bigl( \bigl\Vert \phi(0) \bigr\Vert \bigr). $$
This means that condition (ii) of Lemma 2 is satisfied. Thus, by Lemma 2 and Definition 1, system (2) is absolutely stable. This completes the proof. □
-
A5
For any \(t\in[0,\infty)\), there exist matrices \({{P}_{i}}>0\), \({{G}_{i}}>0\) (\(i=1,2,\ldots,m \)) such that
$$\lambda\bigl( {{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}} \bigr)\le-{{\delta }_{i}} ( t )< 0, $$
where \({{\delta}_{i}} ( t )>0\) (\(i=1,2,\ldots,m\)). Let \(\delta ( t )=\min \{ {{\delta}_{1}} ( t ),{{\delta}_{2}} ( t ),\ldots,{{\delta }_{m}} ( t ) \}\) and assume that \(\lim_{t\to\infty}\delta ( t )=\infty\).
Corollary 1
Under A1, A3, A4, and A5, system (2) is absolutely stable if
\(D+R{{R}^{T}}+ U{{U}^{T}}<0\).
Indeed, by exploiting the limit property, we derive from \(\lim_{t\to \infty}\delta ( t )=\infty\) that, for any \({{\xi}_{i}}>0\) (\(i=1,2,\ldots,m\)) (here let \({{\xi }_{i}}=1\)), there exists \(T\ge0\) such that, for \(t>T\),
$$-\delta( t )\le-{{\xi}_{i}}. $$
This implies that
$$\lambda\bigl( {{P}_{i}} {{A}_{ii}} ( t )+{{A}_{ii}^{T}} ( t ){{P}_{i}}+{{G}_{i}} \bigr)\le-{{\delta }_{i}} ( t )\le-\delta( t )< -{{\xi}_{i}}. $$
The result then follows immediately from Theorem 1.
In fact, we only need to ensure that the conditions mentioned are satisfied when time t is sufficiently large, because asymptotic stability refers to the behavior of the dynamic systems as time tends to infinity. In other words, A2-A5 can be written as follows: There exists \(T\ge0\) such that the corresponding conditions are satisfied for \(t>T\). In particular, A3 and A4 can be rewritten as follows.
-
A6
$$\overline{\lim_{t\to\infty}}\frac{ \Vert {{P}_{i}}{{A}_{ij}} ( t )+A_{ji}^{T} ( t ){{P}_{j}} \Vert }{\sqrt{{{\delta}_{i}} ( t ){{\delta}_{j}} ( t )}}={{\eta }_{ij}},\qquad \overline{\lim_{t\to\infty}}\frac{ \Vert {{P}_{i}}{{B}_{ij}} ( t ) \Vert }{\sqrt{{{\delta}_{i}} ( t ) (1-{{\alpha}_{j}} ){{\lambda}_{\min}} ( {{G}_{j}} )}}={{\gamma}_{ij}}, $$
where \({{\eta}_{ij}}\) (\(i,j=1,2,\ldots,m\); \(i\ne j \)) and \({{\gamma }_{ij}}\) (\(i,j=1,2,\ldots,m \)) are constants, and \({{\eta }_{ij}}={{\eta}_{ji}}\).
-
A7
$$\overline{\lim_{t\to\infty}}\frac{ \Vert {{P}_{i}}{{b}_{i}} ( t )+\frac{1}{2}{{c}_{i}} ( t ) \Vert }{\sqrt{{{\delta}_{i}} ( t )\rho ( t )}}={{\mu }_{i}}, $$
where \({{\mu}_{i}}\) (\(i=1,2,\ldots,m \)) are constants.
Corollary 2
Under A1, A2, A6, and A7, system (2) is absolutely stable if
\(D+R{{R}^{T}}+ U{{U}^{T}}<0\).
Corollary 3
Under A1, A2, A6, and A7, system (2) is absolutely stable if one of the following two conditions is satisfied:
-
(I)
\({{\gamma}_{ij}}=0\) (\(i,j=1,2,\ldots,m\)) and
\(D+U{{U}^{T}}<0\).
-
(II)
\({{\mu}_{i}}=0\) (\(i=1,2,\ldots,m\)) and
\(D+R{{R}^{T}}<0\).
Corollary 4
Under A1, A5, A6, and A7, system (2) is absolutely stable if
\({{\gamma}_{ij}}={{\mu}_{i}}=0\) (\(i,j=1,2,\ldots,m\)) and
\(D<0\).
The proofs of these corollaries are relatively simple and are omitted here.
Remark 1
It should be pointed out that Lurie system (2) under consideration is an extension of Lurie indirect control systems discussed in [4, 17] since the coefficient matrices are norm-unbounded. This is the main feature of this paper. All the theorems and corollaries are applicable to the large-scale time-delay Lurie systems with unbounded coefficients. Particularly, for this class of systems with bounded or constant coefficients, these results are also effective.