The N-soliton solution in Casoratian form for the modified two-dimensional Toda lattice equation (4)-(5) is given in [2] and [29]. In this section, we first derive the Grammian formulation of the N-soliton solution for the modified two-dimensional Toda lattice equation, and then we construct the modified two-dimensional Toda lattice equation with self-consistent sources via the source generation procedure.
If we choose \(\lambda=1\), \(\nu=\mu=0\), then the modified two-dimensional Toda lattice (4)-(5) becomes
$$\begin{aligned}& \bigl(D_{x}e^{\frac{1}{2}D_{n}}+e^{-\frac{1}{2}D_{n}}\bigr)f_{n} \cdot f'_{n}=0, \end{aligned}$$
(8)
$$\begin{aligned}& \bigl(D_{s}-e^{D_{n}}\bigr)f_{n}\cdot f'_{n}=0. \end{aligned}$$
(9)
Proposition 1
The modified two-dimensional Toda lattice (8)-(9) has the following Grammian determinant solution:
$$\begin{aligned}& f_{n}=\det \biggl\vert c_{ij}+(-1)^{n} \int_{-\infty}^{x}\phi_{i}(n)\psi _{j}(-n)\,dx \biggr\vert _{1\leq i,j \leq N}= \vert M \vert , \end{aligned}$$
(10)
$$\begin{aligned}& f'_{n}(n,x,s)= \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{}} M & \Phi(n) \\ \Psi(n)^{T} & -\phi_{N+1}(n) \end{array}\displaystyle \right \vert , \end{aligned}$$
(11)
where
$$\begin{aligned}& \Phi(n)=\bigl(-\phi_{1}(n),\ldots,-\phi_{N}(n) \bigr)^{T}, \end{aligned}$$
(12)
$$\begin{aligned}& \begin{aligned}[b] \Psi(n)&=\biggl(c_{N+1,1}+(-1)^{n} \int_{-\infty}^{x}\phi_{N+1}(n)\psi _{1}(-n)\,dx,\ldots, \\ &\quad c_{N+1,N}+ \int_{-\infty}^{x}(-1)^{n}\phi_{N+1}(n) \psi_{N}(-n)\,dx\biggr)^{T}, \end{aligned} \end{aligned}$$
(13)
in which the
\(\phi_{i}(n)\)
denote
\(\phi_{i}(n,x,s)\)
and the
\(\psi_{i}(-n)\)
denote
\(\psi_{i}(-n,x,s)\)
for
\(i=1,\ldots,N+1\). In addition, \(c_{ij}\) (\(1\leq i,j \leq N+1\)) are arbitrary constants and
\(\phi_{i}(n)\), \(\psi_{i}(-n)\) (\(i=1,\ldots,N+1\)) satisfy the following dispersion relations:
$$\begin{aligned}& \frac{\partial\phi_{i}(n)}{\partial x}= \phi_{i}(n+1),\quad \quad\frac{ \partial\psi_{i}(-n)}{\partial x}= \psi_{i}(-n+1), \end{aligned}$$
(14)
$$\begin{aligned}& \frac{\partial\phi_{i}(n)}{\partial s}= -\phi_{i}(n-1),\quad \quad\frac{ \partial\psi_{i}(-n)}{\partial s}= - \psi_{i}(-n-1). \end{aligned}$$
(15)
Proof
The Grammian determinants \(f_{n}\) in (10) and \(f'_{n}\) in (11) can be expressed in terms of the following Pfaffians:
$$\begin{aligned}& f_{n}=\bigl(a_{1},\ldots,a_{N},a^{*}_{N}, \ldots,a^{*}_{1}\bigr)=(\star), \end{aligned}$$
(16)
$$\begin{aligned}& f'_{n}=\bigl(a_{1},\ldots,a_{N+1},d^{*}_{0},a_{N}^{*}, \ldots,a^{*} _{1}\bigr)=\bigl(a_{N+1},d^{*}_{0}, \star\bigr), \end{aligned}$$
(17)
where the Pfaffian elements are defined by
$$\begin{aligned}& \bigl(a_{i},a^{*}_{j}\bigr)_{n}=c_{ij}+(-1)^{n} \int_{-\infty}^{x}(-1)^{n} \phi_{i}(n)\psi_{j}(-n)\,dx, \end{aligned}$$
(18)
$$\begin{aligned}& \bigl(d^{*}_{m},a_{i}\bigr)= \phi_{i}(n+m),\bigl(d_{m},a^{*}_{j} \bigr)=(-1)^{n+m}\psi _{j}(-n+m), \end{aligned}$$
(19)
$$\begin{aligned}& (a_{i},a_{j})_{n}=\bigl(a^{*}_{i},a^{*}_{j} \bigr)_{n}=(d_{m},d_{k})=\bigl(d_{m},d ^{*}_{k}\bigr)=\bigl(d^{*}_{m},d^{*}_{k} \bigr)=0, \end{aligned}$$
(20)
in which \(i,j=1,\ldots,N+1\) and k, m are integers.
Using the dispersion relations (14)-(15), we can compute the following differential and difference formula for the Pfaffians (16)-(17):
$$\begin{aligned}& f_{n+1,x}=\bigl(d_{-1},d^{*}_{1}, \star\bigr), \qquad f_{n+1}=(\star)+\bigl(d_{-1},d^{*}_{0}, \star\bigr), \end{aligned}$$
(21)
$$\begin{aligned}& f_{ns}=\bigl(d_{-1},d^{*}_{-1}, \star\bigr),\quad\quad f'_{nx}=\bigl(a_{N+1},d^{*}_{1}, \star \bigr), \quad\quad f'_{n-1}=\bigl(a_{N+1},d^{*}_{-1}, \star\bigr) \end{aligned}$$
(22)
$$\begin{aligned}& f'_{n+1}=\bigl(a_{N+1},d^{*}_{1}, \star\bigr)+ \bigl(a_{N+1},d_{-1},d^{*}_{o},d ^{*}_{1},\star\bigr), \end{aligned}$$
(23)
$$\begin{aligned}& f'_{ns}=\bigl(a_{N+1},d_{-1},d^{*}_{-1},d^{*}_{0}, \star\bigr)-\bigl(a_{N+1},d^{*} _{-1},\star\bigr). \end{aligned}$$
(24)
Substituting equations (21)-(24) into the modified two-dimensional Toda lattice (8)-(9) gives the following two Pfaffian identities:
$$\begin{aligned}& \bigl(d_{-1},d^{*}_{1},\star\bigr) \bigl(a_{N+1},d^{*}_{0},\star\bigr)- \bigl(d_{-1},d^{*} _{0},\star\bigr) \bigl(a_{N+1},d^{*}_{1},\star\bigr)+(\star) \bigl(a_{N+1},d_{-1},d^{*} _{0},d^{*}_{1}, \star\bigr)=0, \\& \bigl(d_{-1},d^{*}_{0},\star\bigr) \bigl(a_{N+1},d^{*}_{-1},\star\bigr)- \bigl(d_{-1},d^{*} _{-1},\star\bigr) \bigl(a_{N+1},d^{*}_{0},\star\bigr)+(\star) \bigl(a_{N+1},d_{-1},d^{*} _{-1},d^{*}_{0}, \star\bigr)=0. \end{aligned}$$
□
In order to construct the modified two-dimensional Toda lattice with self-consistent sources, we change the Grammian determinant solutions (10)-(11) into the following form:
$$\begin{aligned}& f(n,x,s)=\det \biggl\vert \gamma_{ij}(s)+(-1)^{n} \int_{-\infty}^{x}(-1)^{n} \phi_{i}(n)\psi_{j}(-n)\,dx \biggr\vert _{1\leq i,j \leq N}= \vert F \vert , \end{aligned}$$
(25)
$$\begin{aligned}& f'_{n}(n,x,s)= \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{}} F & \Phi(n) \\ \Psi(n)^{T} & -\phi_{N+1}(n) \end{array}\displaystyle \right \vert , \end{aligned}$$
(26)
where Nth column vectors \(\Phi(n)\), \(\Psi(n)\) are given in (12)-(13) and \(\phi_{i}(n)\), \(\psi_{i}(-n)\) (\(i=1,\ldots, {N+1}\)) also satisfy the dispersion relations (14)-(15). In addition, \(\gamma_{ij}(s)\) satisfies
$$\begin{aligned} \gamma_{ij}(s) = \textstyle\begin{cases} \gamma_{i}(s), & i=j\text{ and } 1\leq i \leq K \leq N, \\ c_{ij}, & \text{otherwise}, \end{cases}\displaystyle \end{aligned}$$
(27)
with \(\gamma_{i}(s)\) being an arbitrary function of s and K being a positive integer.
The Grammian determinants \(f_{n}\) in (25) and \(f'_{n}\) in (26) can be expressed by means of the following Pfaffians:
$$\begin{aligned}& f_{n}=\bigl(1,\ldots,N,N^{*},\ldots,1^{*} \bigr)=(\cdot), \end{aligned}$$
(28)
$$\begin{aligned}& f'_{n}=\bigl(1,\ldots,N+1,d^{*}_{0},N^{*}, \ldots,1^{*}\bigr)=\bigl(N+1,d^{*} _{0},\cdot \bigr), \end{aligned}$$
(29)
where the Pfaffian elements are defined by
$$\begin{aligned}& \bigl(i,j^{*}\bigr)_{n}=\gamma_{ij}(s)+(-1)^{n} \int_{-\infty}^{x}(-1)^{n} \phi_{i}(n)\psi_{j}(-n)\,dx,\quad\quad \bigl(i^{*},j^{*} \bigr)_{n}=0, \end{aligned}$$
(30)
$$\begin{aligned}& \bigl(d^{*}_{m},i\bigr)=\phi_{i}(n+m),\quad\quad \bigl(d_{m},j^{*}\bigr)=(-1)^{n+m}\psi _{j}(-n+m),\quad\quad (i,j)_{n}=0, \end{aligned}$$
(31)
$$\begin{aligned}& (d_{m},i)=\bigl(d^{*}_{m},j^{*} \bigr)=(d_{m},d_{k})=\bigl(d_{m},d^{*}_{k} \bigr)=\bigl(d^{*} _{m},d^{*}_{k} \bigr)=0, \end{aligned}$$
(32)
in which \(i,j=1,\ldots,N+1\) and k, m are integers.
It is easy to show that the functions \(f(n,x,s)\), \(f'(n,x,s)\) given in (28)-(29) still satisfy equation (8). However, they will not satisfy (9), and they satisfy the following new equation:
$$ D_{s}f_{n}\cdot f'_{n}-f_{n+1}f'_{n-1}=- \sum_{j=1}^{K}g_{n}^{(j)}h _{n}^{(j)}, $$
(33)
where the new functions \(g_{n}^{(j)}\), \(h_{n}^{(j)}\) are given by
$$\begin{aligned}& g_{n}^{(j)}=\sqrt{\dot{\gamma}_{j}(t)}\bigl(1, \ldots,N,d^{*}_{0},N ^{*},\ldots, \hat{j^{*}},\ldots,1^{*}\bigr), \end{aligned}$$
(34)
$$\begin{aligned}& h_{n}^{(j)}=\sqrt{\dot{\gamma}_{j}(t)}\bigl(1, \ldots,\hat{j},\ldots ,N+1,N^{*},\ldots,1^{*}\bigr), \end{aligned}$$
(35)
where \(j=1,\ldots,K\) and the dot denotes the derivative of \(\gamma_{j}(t)\) with respect to t. Furthermore, we can show that \(f_{n}\), \(f'_{n}\), \(g_{n}^{(j)}\), \(h_{n}^{(j)}\) (\(j=1,\ldots,K\)) satisfy the following 2K equations:
$$\begin{aligned}& \bigl(D_{x}e^{\frac{1}{2}D_{n}}+e^{-\frac{1}{2}D_{n}}\bigr)f\cdot g_{n}^{(j)}=0, \quad j=1,\ldots,K, \end{aligned}$$
(36)
$$\begin{aligned}& \bigl(D_{x}e^{\frac{1}{2}D_{n}}+e^{-\frac{1}{2}D_{n}}\bigr)h_{n}^{(j)} \cdot f'_{n}=0, \quad j=1,\ldots,K. \end{aligned}$$
(37)
In fact, we have the following differential and difference formula for \(f_{n}\) in (28), \(f'_{n}\) in (29) and \(g_{n}^{(j)}\), \(h _{n}^{(j)}\) (\(j=1,\ldots,K\)) by employing the dispersion relations (14)-(15):
$$\begin{aligned}& \begin{aligned}[b] f_{ns}&=\bigl(d_{-1},d^{*}_{-1}, \cdot\bigr) \\ &\quad{} +\sum_{j=1}^{K}\dot{ \gamma}_{j}(s) \bigl(1,\ldots,\hat{i},\ldots,N,N^{*}, \ldots,\hat{i^{*}},\ldots,1^{*}\bigr), \end{aligned} \end{aligned}$$
(38)
$$\begin{aligned}& \begin{aligned}[b] f'_{ns}&=\bigl(N+1,d_{-1},d^{*}_{-1},d^{*}_{0}, \cdot\bigr)-\bigl(N+1,d^{*}_{-1}, \cdot\bigr) \\ &\quad {}+\sum_{i=1}^{K}\dot{ \gamma}_{i}(s) \bigl(N+1,d^{*}_{0},1,\ldots, \hat{i}, \ldots,N,N^{*},\ldots,\hat{i^{*}}, \ldots,1^{*}\bigr), \end{aligned} \end{aligned}$$
(39)
$$\begin{aligned}& f_{n+1}=(\cdot)+\bigl(d_{-1},d^{*}_{0}, \cdot\bigr),\quad\quad f'_{n-1}=\bigl(N+1,d^{*}_{-1}, \cdot\bigr), \end{aligned}$$
(40)
$$\begin{aligned}& g^{(j)}_{n-1}=\sqrt{\dot{\gamma}_{j}(t)}\bigl(1, \ldots,N,d^{*}_{-1},N ^{*},\ldots, \hat{j^{*}},\ldots,1^{*}\bigr), \end{aligned}$$
(41)
$$\begin{aligned}& \begin{aligned}[b] g_{n-1,x}^{(j)}&=\sqrt{\dot{\gamma}_{j}(t)}\bigl[ \bigl(1,\ldots,N,d^{*} _{0},N^{*},\ldots, \hat{j^{*}},\ldots,1^{*}\bigr) \\ &\quad{} +\bigl(1,\ldots,N,d_{0},d^{*}_{0},d^{*}_{-1},N^{*}, \ldots,\hat{j^{*}}, \ldots,1^{*}\bigr)\bigr], \end{aligned} \end{aligned}$$
(42)
$$\begin{aligned}& f_{n-1}=(\cdot)-\bigl(d_{0},d^{*}_{-1}, \cdot\bigr),\quad\quad f_{nx}=\bigl(d_{0},d^{*}_{0}, \ldots\bigr), \end{aligned}$$
(43)
$$\begin{aligned}& \begin{aligned}[b] h^{(j)}_{n+1}&=\sqrt{\dot{\gamma}_{j}(t)}\bigl[ \bigl(1,\ldots,\hat{j}, \ldots,N+1,N^{*},\ldots,1^{*}\bigr) \\ &\quad{} +\bigl(1,\ldots,\hat{j},\ldots,N+1,d_{-1},d^{*}_{0}N^{*}, \ldots,1^{*}\bigr)\bigr], \end{aligned} \end{aligned}$$
(44)
$$\begin{aligned}& h^{(j)}_{n+1,x}=\sqrt{\dot{\gamma}_{j}(t)} \bigl(1,\ldots,\hat{j}, \ldots,N+1,d_{-1},d^{*}_{1},N^{*}, \ldots,1^{*}\bigr), \end{aligned}$$
(45)
$$\begin{aligned}& f'_{nx}=\bigl(N+1,d^{*}_{1}, \cdot\bigr), \end{aligned}$$
(46)
$$\begin{aligned}& f'_{n+1}=\bigl(N+1,d^{*}_{1}, \cdot\bigr)+ \bigl(N+1,d_{-1},d^{*}_{0},d^{*}_{1}, \cdot\bigr), \end{aligned}$$
(47)
where \(\hat{\ }\) indicates deletion of the letter under it.
Substitution of equations (38)-(47) into equations (33), (36)-(37) gives the following Pfaffian identities:
$$\begin{aligned}& \bigl[\bigl(d_{-1},d^{*}_{-1},\cdot\bigr) \bigl(N+1,d^{*}_{0},\cdot\bigr)-(\cdot) \bigl(N+1,d _{-1},d^{*}_{-1},d^{*}_{0}, \cdot\bigr)-\bigl(d_{-1},d^{*}_{0},\cdot\bigr) \bigl(N+1,d ^{*}_{-1},\cdot\bigr)\bigr], \\& \quad{} +\sum_{j=1}^{K}\dot{ \gamma}_{j}(s)\bigl[\bigl(1,\ldots,N+1,d^{*}_{0},N^{*}, \ldots,1^{*}\bigr) \bigl(1,\ldots,\hat{i},\ldots,N,N^{*}, \ldots,\hat{i^{*}}, \ldots,1^{*}\bigr) \\& \quad{} -(\cdot) \bigl(1,\ldots,\hat{i},\ldots,N+1,d^{*}_{0},N^{*}, \ldots,i^{*}, \ldots,1^{*}\bigr) \\& \quad{} +\bigl(1,\ldots,N,d^{*}_{0},N^{*}, \ldots,\hat{i^{*}},\ldots,1^{*}\bigr) \bigl(1, \ldots, \hat{i},\ldots,N+1,N^{*},\ldots,1^{*}\bigr)\bigr]=0, \\& \bigl(d_{0},d^{*}_{0},\cdot\bigr) \bigl(1, \ldots,N,d^{*}_{-1},N^{*},\cdot, \hat{j^{*}},\ldots,1^{*}\bigr) \\& \quad{} -(\cdot) \bigl(1,\ldots,N,d_{0},d^{*}_{0},d^{*}_{-1},N^{*}, \cdot, \hat{j^{*}},\ldots,1^{*}\bigr) \\& \quad{} -\bigl(d_{0},d^{*}_{-1},\cdot \bigr) \bigl(1,\ldots,N,d^{*}_{0},N^{*},\cdot, \hat{j^{*}},\ldots,1^{*}\bigr)=0, \end{aligned}$$
and
$$\begin{aligned}& \bigl(N+1,d^{*}_{0},\cdot\bigr) \bigl(1,\ldots,\hat{i}, \ldots,N+1,d_{-1},d^{*} _{1},N^{*}, \ldots,1^{*}\bigr) \\& \quad{} -\bigl(N+1,d^{*}_{1},\cdot\bigr) \bigl(1, \ldots,\hat{i},\ldots,N+1,d_{-1},d^{*} _{0},N^{*}, \ldots,1^{*}\bigr) \\& \quad{} +\bigl(N+1,d_{-1},d^{*}_{0},d^{*}_{1}, \cdot\bigr) \bigl(1,\ldots,\hat{i},\ldots,N+1,N ^{*}, \ldots,1^{*}\bigr)=0, \end{aligned}$$
respectively. Therefore, equations (8), (33), (36)-(37) constitute the modified two-dimensional Toda lattice with self-consistent sources, and it possesses the Grammian determinant solution (28)-(29), (34)-(35).
Through the dependent variable transformation
$$ u_{n}=\frac{f_{n+1}f'_{n-1}}{f_{n}f'_{n}}, \quad\quad v_{n}=-\frac{\partial}{ \partial x}\ln \biggl(\frac{f_{n}}{f'_{n-1}}\biggr),\quad\quad G_{n}^{(j)}= \frac{g_{n}^{(j)}}{f _{n}},\quad\quad H_{n}^{(j)}=\frac{h_{n}^{(j)}}{f'_{n}}, $$
(48)
the bilinear modified two-dimensional Toda lattice with self-consistent sources (8, 33, 36)-(37) can be transformed into the following nonlinear form:
$$\begin{aligned}& \frac{\partial}{\partial x}u_{n}=u_{n}(v_{n}-v_{n+1}), \end{aligned}$$
(49)
$$\begin{aligned}& \frac{\partial}{\partial s}v_{n}=v_{n}(u_{n-1}-u_{n})+v_{n} \sum_{j=1}^{K}\bigl[u_{n}G_{n}^{(j)}H_{n}^{(j)}-u_{n-1}G_{n-1}^{(j)}H_{n-1} ^{(j)}\bigr], \end{aligned}$$
(50)
$$\begin{aligned}& \frac{\partial}{\partial x}G_{n-1}^{(j)}+G_{n}^{(j)}u_{n}v_{n}=0, \quad j=1,\ldots,K, \end{aligned}$$
(51)
$$\begin{aligned}& \frac{\partial}{\partial x}H_{n+1}^{(j)}+H_{n}^{(j)}u_{n}v_{n+1}=0, \quad j=1,\ldots,K. \end{aligned}$$
(52)
When we take \(G_{n}^{(j)}=H_{n}^{(j)}=0\), \(j=1,\ldots,K\) in (49)-(52), the nonlinear modified two-dimensional Toda lattice with self-consistent sources (49)-(52) is reduced to the nonlinear modified two-dimensional Toda lattice (6)-(7) with \(\lambda=1\), \(\nu=\mu=0\).
If we choose
$$ \begin{gathered} \phi_{i}(n)=e^{\xi_{i}},\quad\quad \psi_{i}(-n)=(-1)^{n}e^{\eta_{i}}, \\ \xi _{i}=e^{q_{i}}x+q_{i}n-e^{-q_{i}}t,\quad\quad \eta_{i}=-e^{Q_{i}}x-Q_{i}n+e^{-Q _{i}}t, \end{gathered} $$
(53)
where \(i=1,2,\ldots,N+1\) in the Grammian determinants (25)-(26), (34)-(35), then we obtain the N-soliton solution of the modified two-dimensional Toda lattice with self-consistent sources (8), (33), (36)-(37). Here \(q_{i}\), \(Q_{i}\) (\(i=1,2, \ldots,N+1\)) are arbitrary constants.
For example, if we take \(K=1\), \(N=1\) and
$$ \phi_{1}(n)=e^{\xi_{1}},\quad\quad \phi_{2}(n)=e^{\xi_{2}},\quad\quad \psi_{1}(n)=e^{\eta _{1}},\quad\quad \gamma_{1}(t)= \frac{e^{2a(t)}}{e^{q_{1}}-e^{Q_{1}}},\quad\quad c_{21}=0, $$
(54)
where \(a(t)\) is an arbitrary function of t, then we have
$$\begin{aligned}& f_{n}(x,n,t)=\frac{e^{2a(t)}}{e^{q_{1}}-e^{Q_{1}}}\bigl(1+e^{\xi_{1}+\eta _{1}-2a(t)}\bigr), \end{aligned}$$
(55)
$$\begin{aligned}& f'_{n}(x,n,t)=-\frac{e^{2a(t)+\xi_{2}}}{e^{q_{1}}-e^{Q_{1}}}\biggl(1+ \frac{e ^{q_{2}}-e^{q_{1}}}{e^{q_{2}}-e^{Q_{1}}}e^{\xi_{1}+\eta_{1}-2a(t)}\biggr), \end{aligned}$$
(56)
$$\begin{aligned}& g^{(1)}_{n}(x,n,t)=-\sqrt{ \frac{e^{2\dot{a}(t)}}{e^{q_{1}}-e^{Q1}}}e^{\xi_{1}+a(t)}, \end{aligned}$$
(57)
$$\begin{aligned}& h^{(1)}_{n}(x,n,t)= \sqrt{\frac{e^{2\dot{a}(t)}}{e^{q_{1}}-e^{Q1}}} \frac{1}{e^{q_{2}}-e ^{Q_{1}}}e^{\xi_{2}-\eta_{1}+a(t)}. \end{aligned}$$
(58)
Therefore, the one-soliton solution of the nonlinear modified two-dimensional Toda lattice with self-consistent sources (49)-(52) is given by
$$\begin{aligned}& u_{n}(x,n,t)=\frac{e^{-q_{2}}(1+e^{q_{1}-Q_{1}}e^{\xi_{1}+\eta _{1}-2a(t)})(1+\frac{e ^{q_{2}}-e^{q_{1}}}{e^{q_{2}}-e^{Q_{1}}}e^{Q_{1}-q_{1}}e^{\xi_{1}+\eta _{1}-2a(t)})}{(1+e^{\xi_{1}+\eta_{1}-2a(t)})(1+\frac{e^{q_{2}}-e^{q _{1}}}{e^{q_{2}}-e^{Q_{1}}}e^{\xi_{1}+\eta_{1}-2a(t)})}, \end{aligned}$$
(59)
$$\begin{aligned}& v_{n}(x,n,t)=-\frac{\partial}{\partial x}\ln\biggl(\frac{1+e^{\xi_{1}+ \eta_{1}-2a(t)}}{-e^{\xi_{2}}(1+\frac{e^{q_{2}}-e^{q_{1}}}{e^{q_{2}}-e ^{Q_{1}}}e^{Q_{1}-q_{1}}e^{\xi_{1}+\eta_{1}-2a(t)})}\biggr), \end{aligned}$$
(60)
$$\begin{aligned}& G^{(1)}_{n}(x,n,t)=-\sqrt{2\dot{a}(t) \bigl(e^{q_{1}}-e^{Q1} \bigr)}\frac{e ^{\xi_{1}-a(t)}}{1+e^{\xi_{1}+\eta_{1}-2a(t)}}, \end{aligned}$$
(61)
$$\begin{aligned}& H^{(1)}_{n}(x,n,t)=\frac{-\sqrt{2\dot{a}(t)(e^{q_{1}}-e^{Q1})}}{e ^{q_{2}}-e^{Q_{1}}}\frac{e^{-\eta_{1}-a(t)}}{1+\frac{e^{q_{2}}-e^{q _{1}}}{e^{q_{2}}-e^{Q_{1}}}e^{\xi_{1}+\eta_{1}-2a(t)}}. \end{aligned}$$
(62)
If we take \(K=1\), \(N=2\) and
$$\begin{aligned}& \phi_{1}(n)=e^{\xi_{1}},\quad\quad \phi_{2}(n)=e^{\xi_{2}},\quad\quad \phi_{3}(n)=e^{\xi _{3}},\quad\quad \psi_{1}(n)=e^{\eta_{1}},\quad\quad \psi_{2}(n)=e^{\eta_{2}}, \\& \gamma_{1}(t)=\frac{e^{2a(t)}}{e^{q_{1}}-e^{Q_{1}}},\quad\quad \gamma _{2}(t)= \frac{1}{e ^{q_{2}}-e^{Q_{2}}},\quad\quad c_{12}=0,\quad\quad c_{21}=0,\quad\quad c_{31}=0, \\& c_{32}=0, \end{aligned}$$
we derive
$$\begin{aligned}& \begin{aligned}[b] f_{n}(x,n,t)&=\frac{e^{2a(t)}}{(e^{q_{1}}-e^{Q_{1}})(e^{q_{2}}-e^{Q _{2}})}\biggl(1+e^{\xi_{1}+\eta_{1}-2a(t)}+e^{\xi_{2}+\eta_{2}} \\ &\quad{} +\frac{(e^{q_{1}}-e^{q_{2}})(e^{Q_{1}}-e^{Q_{2}})}{(e^{q_{1}}-e^{Q _{2}})(e^{Q_{1}}-e^{q_{2}})}e^{\xi_{1}+\eta_{1}+\xi_{2}+\eta_{2}-2a(t)}\biggr), \end{aligned} \end{aligned}$$
(63)
$$\begin{aligned}& \begin{aligned}[b] f'_{n}(x,n,t)&=-\frac{e^{\xi_{3}+2a(t)}}{(e^{q_{1}}-e^{Q_{1}})(e^{q _{2}}-e^{Q_{2}})}\biggl(1+ \frac{e^{q_{3}}-e^{q_{1}}}{e^{q_{3}}-e^{Q_{1}}}e ^{\xi_{1}+\eta_{1}-2a(t)}+\frac{e^{q_{3}}-e^{q_{2}}}{e^{q_{3}}-e^{Q _{2}}}e^{\xi_{2}+\eta_{2}} \\ &\quad{}+\frac{(e^{q_{1}}-e^{q_{2}})(e^{Q_{2}}-e^{Q_{1}})(e^{q_{3}}-e^{q_{2}})(e ^{q_{3}}-e^{q_{1}})}{(e^{q_{1}}-e^{Q_{2}})(e^{q_{2}}-e^{Q_{1}})(e^{q _{3}}-e^{Q_{2}})(e^{q_{3}}-e^{Q_{1}})}e^{\xi_{1}+\eta_{1}+\xi_{2}+\eta _{2}-2a(t)}\biggr), \end{aligned} \end{aligned}$$
(64)
$$\begin{aligned}& g^{(1)}_{n}(x,n,t)=\sqrt{\frac{e^{2\dot{a}(t)}}{e^{q_{1}}-e^{Q _{1}}}} \frac{e^{\xi_{1}+a(t)}}{e^{q_{2}}-e^{Q_{2}}}\biggl(1+\frac{e^{q_{1}}-e ^{q_{2}}}{e^{q_{1}}-e^{Q_{2}}}e^{\xi_{2}+\eta_{2}}\biggr), \end{aligned}$$
(65)
$$\begin{aligned}& \begin{aligned}[b] h^{(1)}_{n}(x,n,t)&=-\sqrt{\frac{e^{2\dot{a}(t)}}{e^{q_{1}}-e^{Q _{1}}}} \frac{e^{\xi_{3}+\eta_{1}+a(t)}}{(e^{q_{2}}-e^{Q_{2}})(e^{q _{3}}-e^{Q_{1}})} \\ &\quad{}\times \biggl(1+ \frac{(e^{q_{2}}-e^{q_{3}})(e^{Q_{1}}-e^{Q_{2}})}{(e^{Q_{2}}-e^{q _{3}})(e^{Q_{1}}-e^{q_{2}})}e^{\xi_{2}+\eta_{2}}\biggr) \end{aligned} . \end{aligned}$$
(66)
Substituting functions (63)-(66) into the dependent variable transformations (48), we obtain two-soliton solution of the nonlinear modified two-dimensional Toda lattice with self-consistent sources (49)-(52).