- Research
- Open access
- Published:
Some results on the fractional order Sturm-Liouville problems
Advances in Difference Equations volume 2017, Article number: 320 (2017)
Abstract
In this work, we introduce some new results on the Lyapunov inequality, uniqueness and multiplicity results of nontrivial solutions of the nonlinear fractional Sturm-Liouville problems
where α, β, γ, δ are constants satisfying \(0\neq \vert\beta\gamma+\alpha\gamma\int_{0}^{1}\frac{1}{p(\tau)}\,d\tau +\alpha \delta\vert<+\infty\), \(p(\cdot)\) is positive and continuous on \([0,1]\). In addition, some existence results are given for the problem
where \(\lambda\geq0\) is a parameter. The proof is based on the fixed point theorems and the Leray-Schauder nonlinear alternative for single-valued maps.
1 Introduction
On the one hand, since a Lyapunov-type inequality has found many applications in the study of various properties of solutions of differential equations, such as oscillation theory, disconjugacy and eigenvalues problems, there have been many extensions and generalizations as well as improvements in this field, e.g., to nonlinear second order equations, to delay differential equations, to higher order differential equations, to difference equations and to differential and difference systems. We refer the readers to [1–4] (integer order). Fractional differential equations have gained considerable popularity and importance due to their numerous applications in many fields of science and engineering including physics, population dynamics, chemical technology, biotechnology, aerodynamics, electrodynamics of complex medium, polymer rheology, control of dynamical systems. With the rapid development of the theory of fractional differential equation, there are many papers which are concerned with the Lyapunov type inequality for a certain fractional order differential equations, see [5–7] and the references therein. Recently, Ghanbari and Gholami [7] introduced the Lyapunov type inequality for a certain fractional order Sturm-Liouville problem in sense of Riemann-Liouville
like this
On the other hand, many authors have studied the existence, uniqueness and multiplicity of solutions for nonlinear boundary value problems involving fractional differential equations, see [8–19]. But Lan and Lin [20] pointed out that the continuity assumptions on nonlinearities used previously are not sufficient and obtained some new results on the existence of multiple positive solutions of systems of nonlinear Caputo fractional differential equations with some of general separated boundary conditions
where \(z(t)=(z_{1}(t),\ldots,z_{n}(t))\), \(f_{i}:[0,1]\times \mathbb{R}_{+}^{n}\rightarrow\mathbb{R}_{+}\) is continuous on \([0,1]\times\mathbb{R}_{+}^{n}\), \({}^{c}D^{q}\) is the Caputo differential operator of order \(q\in(1,2)\). The α, β, γ, δ are positive real numbers. The relations between the linear Caputo fractional differential equations and the corresponding linear Hammerstein integral equations are studied, which shows that suitable Lipschitz type conditions are needed when one studies the nonlinear Caputo fractional differential equations.
Motivated by these excellent works, in this paper we focus on the representation of the Lyapunov type inequality and the existence of solutions for a certain fractional order Sturm-Liouville problem
where α, β, γ, δ are constants satisfying \(0\neq \vert\beta\gamma+\alpha\gamma\int_{0}^{1}\frac{1}{p(\tau)}\,d\tau +\alpha \delta\vert<+\infty\), \(p(\cdot)\) is a positive continuous function on \([0,1]\), \(\Lambda(t): [0, 1] \rightarrow\mathbb{R}\) is a nontrivial Lebesgue integrable function, \(f: \mathbb{R}\rightarrow\mathbb{R}\) is continuous. In addition, some existence results are given for the problem
where \(\lambda\geq0\) is a parameter, \(f: \mathbb{R}\times \mathbb{R}_{+}\rightarrow\mathbb{R}\) is continuous. For the Sturm-Liouville problems, there are many literature works on the studies of the existence and behavior of solutions to nonlinear Sturm-Liouville equations, for example, [21, 22] (integer order) and [23, 24] (fractional order).
The discussion of this manuscript is based on the fixed point theorems and the Leray-Schauder nonlinear alternative for single-valued maps. For convenience, we list the crucial lemmas as follows.
Lemma 1.1
([25])
Let ν be a positive measure and Ω be a measurable set with \(\nu(\Omega)=1\). Let I be an interval and suppose that u is a real function in \(L(d\nu)\) with \(u(t) \in I\) for all \(t\in\Omega\). If f is convex on I, then
If f is concave on I, then inequality (1.3) holds with ‘≥’ substituted by ‘≤’.
Lemma 1.2
([26])
Let E be a Banach space, \(E_{1}\) be a closed, convex subset of E, Ω be an open subset of \(E_{1}\), and \(0\in\Omega\). Suppose that \(T:\overline{\Omega}\rightarrow E_{1}\) is completely continuous. Then either
-
(i)
T has a fixed point in Ω̅, or
-
(ii)
there are \(u\in\partial\Omega\) (the boundary of Ω in \(E_{1}\)) and \(\lambda\in(0,1)\) with \(u=\lambda Tu\).
Lemma 1.3
([26])
Let E be a Banach space and \(K\subset E\) be a cone in E. Assume that \(\Omega_{1}\), \(\Omega_{2}\) are open subsets of E with \(0\in\Omega_{1}\), \(\overline{\Omega}_{1}\subset\Omega_{2}\), and let \(T:K\cap(\overline{\Omega}_{2}\setminus\Omega_{1})\rightarrow K\) be a completely continuous operator such that either
-
(i)
\(\Vert Tu \Vert \leq \Vert u \Vert \), \(u\in K\cap\partial\Omega_{1}\) and \(\Vert Tu \Vert \geq \Vert u \Vert \), \(u\in K\cap\partial\Omega_{2}\); or
-
(ii)
\(\Vert Tu \Vert \geq \Vert u \Vert \), \(u\in K\cap\partial\Omega_{1}\) and \(\Vert Tu \Vert \leq \Vert u \Vert \), \(u\in K\cap\partial\Omega_{2}\).
Then T has a fixed point in \(K\cap(\overline{\Omega}_{2}\setminus \Omega_{1})\).
Lemma 1.4
([26])
Let E be a Banach space and \(K\subset E\) be a cone in E. Assume that \(\Omega_{1}\), \(\Omega_{2}\) are open subsets of E with \(\Omega_{1}\cap{K}\neq\emptyset\), \(\overline{\Omega_{1}\cap K}\subset \Omega_{2}\cap K\). Let \(T:\overline{\Omega_{2}\cap K}\rightarrow{K}\) be a completely continuous operator such that:
-
(A)
\(\parallel Tu\parallel\leq\parallel u\parallel\), \(\forall u\in \partial(\Omega_{1}\cap K)\), and
-
(B)
there exists \(e\in K\setminus{\{0\}}\) such that
$$u\neq Tu+\mu e,\quad \textit{for } u\in\partial(\Omega_{2}\cap K) \textit{ and } \mu>0. $$
Then T has a fixed point in \(\overline{\Omega_{2}\cap K}\setminus \Omega_{1}\cap K\). The same conclusion remains valid if (A) holds on \(\partial(\Omega_{2}\cap K)\) and (B) holds on \(\partial (\Omega_{1}\cap K)\).
2 Preliminaries
Definition 2.1
([26])
For a function u given on the interval [a,b], the Riemann-Liouville derivative of fractional order q is defined as
where \(n=[q]+1\).
Definition 2.2
([27])
The Riemann-Liouville fractional integral of order q for a function u is defined as
provided that such integral exists.
Lemma 2.3
([27])
Let \(q> 0\). Then
Lemma 2.4
Let \(h(t)\in AC[0,1]\). Then the fractional Sturm-Liouville problem
has a unique solution \(u(t)\) in the form
where
Proof
From Definitions 2.1, 2.2 and Lemma 2.3, it follows that
Furthermore, we have
Combining the boundary conditions, we directly get
Finally, substituting \(c_{1}\) and \(c_{2}\), we obtain
For \(0\leq t\leq s\leq1\),
For \(0\leq s\leq t\leq1\),
□
Lemma 2.5
Assume that \(\alpha,\beta,\gamma, \delta>0\), and \(p(\cdot ):[0,1]\rightarrow(0,+\infty)\). The Green function \(G(t,s)\) satisfies the following properties:
-
(i)
\(G(t,s)\geq0\) for \(0\leq t,s\leq1 \);
-
(ii)
For \(0\leq t,s\leq1\), there exists \(C(t)>0\) such that \(G(t,s)\) satisfies the inequalities
$$C(t)G(s,s)\leq G(t,s) $$and
$$\min_{t\in[\theta,1-\theta]} C(t)< 1\quad \textit{for }\theta\in\biggl(0, \frac{1}{2}\biggr). $$ -
(iii)
The maximum value estimate of \(G(t,s)\)
$$\begin{aligned} \overline{G} =&\max_{0\leq t,s\leq1}G(t,s) \\ =& \max\Bigl\{ \max_{s\in[0,1]}G(s,s),\max_{s\in[0,1]}G \bigl(t_{0}(s),s\bigr)\Bigr\} , \end{aligned}$$where
$$t_{0}(s)=s+\biggl[\frac{\alpha\delta(1-s)^{q-1}+\alpha\gamma\int_{s}^{1}\frac {(\tau-s)^{q-1}}{p(\tau)}\,d\tau}{\rho}\biggr]^{\frac{1}{{q-1}}}. $$
Proof
(i) On the one hand, since \(\alpha,\beta, \gamma, \delta>0\), and \(\beta \gamma+\alpha\gamma\int_{0}^{1}\frac{1}{p(\tau)}\,d\tau+\alpha\delta >0 \), it is clear that \(G(t,s)\geq0\) for \(0\leq t\leq s\leq1\). On the other hand, for \(0\leq s\leq t\leq1\), we can verify the following inequalities:
Then we get \(G(t,s)\geq0\) for \(0\leq s\leq t\leq1\).
(ii) For \(0 \leq t \leq s \leq1\),
Then it is easy to obtain
For \(0 \leq s \leq t \leq1\),
Let
It is clear that \(F'(t)=-\rho(q-1)(t-s)^{q-2}<0\), which implies that \(F(\cdot)\) is decreasing on \(t\in(s,1]\). Since \(F(s)>0\) and \(F(1)<0\), there exists unique \(t_{0}(s)\in(s,1)\) such that \(F(t_{0})=0\), namely,
From the above discussion, we get the conclusions
Furthermore, we obtain the estimate
For \(0 \leq t \leq s \leq1\),
For \(0 \leq s \leq t \leq1\),
Choosing \(C(t)=\min\{C_{1}(t), C_{2}(t)\}\), we get \(C(t)G(s,s)\leq G(t,s)\). □
3 Existence results I
Theorem 3.1
(Lyapunov type inequality)
Assume that \(\alpha,\beta,\gamma, \delta>0\), \(p(\cdot):[0,1]\rightarrow(0,+\infty)\), and let \(\Lambda(t): [0, 1] \rightarrow R\) be a nontrivial Lebesgue integrable function. Then, for any nontrivial solution of the fractional Sturm-Liouville problem
the following so-called Lyapunov type inequality will be satisfied:
where G̅ is defined in (iii) of Lemma 2.5.
Proof
From Lemma 2.4 and the triangular inequality, we get
Let E denote the Banach space \(C[0,1]\) with the norm defined by \(\Vert u \Vert =\max_{t\in[0,1]} \vert u(t) \vert \). Via some simple computations, we can obtain
namely,
□
Theorem 3.2
(Generalized Lyapunov type inequality)
Assume that \(\alpha,\beta,\gamma, \delta>0\), \(p(\cdot):[0,1]\rightarrow(0,+\infty)\), and let \(\Lambda(t): [0, 1] \rightarrow\mathbb{R}\) be a nontrivial Lebesgue integrable function, \(f(u)\) is a positive function on \(\mathbb{R}\). Then, for any nontrivial solution of the fractional Sturm-Liouville problem (1.1), the following so-called Lyapunov type inequality will be satisfied:
where
Proof
From the similar proof of Theorem 3.1, we get
Since f is continuous and concave, then using Jensen”s inequality (1.3), we obtain
namely,
□
For convenience, we give some notations:
Theorem 3.3
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and \(f:\mathbb{R}\rightarrow\mathbb{R}\) be a continuous function satisfying the Lipschitz condition
Then problem (1.1) has a unique solution if \(L\varpi<1\).
Proof
By Lemma 2.4, the solution of problem (1.1) is equivalent to a fixed point of the operator \(T:E\rightarrow E\) defined by \(T(u(t))=\int_{0}^{1} G(t,s)\Lambda(s)f(u(s))\,ds\).
Let \(\sup_{t\in[0,1]} \vert f(0) \vert =\nu\). Now we show that \(T:B_{r}\subset B_{r}\), where \(B_{r}=\{u\in C[0,1]: \Vert u \Vert < r\} \) with \(r>\frac{\nu\varpi}{1-L\varpi}\). For \(u\in B_{r}\), one has \(\vert f(u) \vert = \vert f(u)-f(0)+f(0) \vert \leq L \vert u \vert +\nu\leq L r+\nu\). Furthermore, we have
which yields \(T:B_{r}\subset B_{r}\).
For any \(x,y\in E\), we have
Since \(L\varpi<1\), from the Banach’s contraction mapping principle it follows that there exists a unique fixed point for the operator T which corresponds to the unique solution for problem (1.1). This completes the proof. □
Theorem 3.4
Let \(\Lambda(t): [0, 1] \rightarrow R^{+}\) be a nontrivial Lebesgue integrable function and \(f:\mathbb{R}\rightarrow\mathbb{R}\) be a continuous function satisfying the following:
-
(F0)
There exists a positive constant K such that \(\vert f(u) \vert \leq K\) for \(u\in\mathbb{R}\).
Then problem (1.1) has at least one solution.
Proof
First, since the function \(p:[0,1]\rightarrow (0,+\infty)\) is continuous, we get \(p_{*}= [4]\min_{t\in[0,1]}p(t)>0\). Further, from (2.1) and (2.2), we get the following estimates respectively:
-
for \(0 \leq t \leq s \leq1\),
$$\begin{aligned} 0 < &\frac{\partial G(t,s)}{\partial t}=\frac{\alpha}{\rho\Gamma(q)p(t)}\biggl[\delta(1-s)^{q-1}+ \gamma \int_{s}^{1}\frac{(\tau-s)^{q-1}\,d\tau}{p(\tau)}\biggr] \\ \leq&\frac{\alpha}{\rho\Gamma(q)p_{*}}\biggl[\delta+\gamma \int _{0}^{1}\frac{d\tau}{p(\tau)}\biggr]; \end{aligned}$$ -
for \(0 \leq s \leq t \leq1\),
$$\begin{aligned} \biggl\vert \frac{\partial G(t,s)}{\partial t} \biggr\vert =& \biggl\vert \frac{1}{\rho\Gamma(q) p(t)} \biggl[-\rho(t-s)^{q-1}+\alpha\delta(1-s)^{q-1}+\alpha\gamma \int _{s}^{1}\frac{(\tau-s)^{q-1}}{p(\tau)}\,d\tau\biggr]\biggr\vert \\ \leq&\frac{1}{\rho\Gamma(q) p_{*}}\biggl[\rho+\alpha\delta+\alpha\gamma \int_{0}^{1}\frac{d\tau}{p(\tau)}\biggr]; \end{aligned}$$which implies that \(\vert \frac{\partial G(t,s)}{\partial t} \vert \) is bounded for \(0 \leq s, t \leq1\), namely, there exists \(S>0\) such that \(\vert \frac{\partial G(t,s)}{\partial t} \vert \leq S\). Combining with \(\vert f(t,u) \vert \leq K\) for \(t\in[0,1]\), \(t\in R\), we obtain
$$\bigl\vert (Tu)'(t) \bigr\vert = \biggl\vert \int_{0}^{1}\frac{\partial G(t,s)}{\partial t}\Lambda(s)f\bigl(u(s) \bigr)\,ds \biggr\vert \leq SK \bigl\Vert \Lambda(t) \bigr\Vert _{L^{1}}. $$
Hence, for any \(t_{1},t_{2}\in[0,1]\), we have
This means that T is equicontinuous on [0,1]. Thus, by the Arzelà-Ascoli theorem, the operator T is completely continuous.
Finally, let \(B_{r}=\{u\in E: \Vert u \Vert < r\}\) with \(r=K\varpi+1\). If u is a solution for the given problem, then, for \(\lambda\in(0,1)\), we obtain
which yields a contradiction. Therefore, by Lemma 1.2, the operator T has a fixed point in E. □
Theorem 3.5
Let \(\Lambda(t): [0, 1] \rightarrow R^{+}\) be a nontrivial Lebesgue integrable function and \(f:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\) be a continuous function satisfying (F0). In addition, the following assumption holds:
-
(F1)
There exists a positive constant \(r_{1}\) such that
$$f(u)\geq\varsigma^{-1}r_{1}\quad \textit{for } u \in[0,r_{1}]. $$
Then problem (1.1) has at least one solution.
Proof
Define a cone P of the Banach space E as \(P=\{u\in E:u\geq0\}\). From the proof of Theorem 3.4, we know that \(T:P\rightarrow P\) is completely continuous. Set \(P_{r_{i}}=\{u\in P: \Vert u \Vert < r_{i}\}\).
For \(u\in\partial P_{r_{1}}\), one has \(0\leq u\leq r_{1}\). For \(t\in [\theta,1-\theta]\), we have
Choosing \(r_{2}>K\varpi\). Then, for \(u\in\partial P_{r_{2}}\), we have
Then, by Lemma 1.3, problem (1.1) has at least one positive solution \(u(t)\) belonging to E such that \(r_{1} \leq \Vert u \Vert \leq r_{2}\). □
Theorem 3.6
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function, \(f:\mathbb{R}\rightarrow\mathbb{R}\) be a continuous function and satisfy the following assumptions:
-
(F2)
There exists a nondecreasing function \(\varphi:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\) such that
$$\bigl\vert f(u) \bigr\vert \leq\varphi\bigl( \Vert u \Vert \bigr),\quad \forall u\in\mathbb{R}; $$ -
(F3)
There exists a constant \(R>0\) such that \(\frac{R}{\varpi\varphi(R)}>1\).
Then problem (1.1) has at least one solution.
Proof
From the proof of Theorem 3.4, we know that T is completely continuous. Now we show that (ii) of Lemma 1.2 does not hold. If u is a solution of (1.1), then, for \(\lambda\in(0,1)\), we obtain
Let \(B_{R}=\{u\in E: \Vert u \Vert < R\}\). From the above inequality and (F3), it yields a contradiction. Therefore, by Lemma 1.2, the operator T has a fixed point in \(B_{R}\). □
Theorem 3.7
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and \(f:[0,1]\times\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\) be a continuous function. Suppose that (F2) and (F3) hold. In addition, the following assumption holds:
-
(F4)
There exists a positive constant r with \(r< R\) and a function \(\psi:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\) satisfying
$$\begin{aligned}& f(u)\geq\psi\bigl( \Vert u \Vert \bigr), \quad \textit{for } u\in[0,\varsigma r], \\& \psi(\varsigma r)\geq r. \end{aligned}$$
If \(\varsigma<1\), then (1.1) has at least one positive solution \(u(t)\).
Proof
Let \(B_{r}=\{u\in E: \Vert u \Vert < r\}\).
Part (I). For any \(u\in\partial(B_{R}\cap P)\), from (F3) and (F4) it follows that
which implies that (A) of Lemma 1.4 holds.
Now we prove that \(u\neq T(u)+\mu\) for \(u\in\partial(B_{\varsigma r}\cap P)\) and \(\mu>0\). On the contrary, if there exists \(u_{0}\in\partial(B_{\varsigma r}\cap P)\) and \(\mu_{0}>0\) such that \(u_{0}=T(u_{0})+\mu_{0}\), then, for \(t\in[\theta,1-\theta]\), one has \(\min_{t\in[\theta,1-\theta]} C(t)>0\). Furthermore, from (F5) it follows that
Furthermore, we get
which yields a contradiction. So (B) of Lemma 1.4 holds.
Therefore, Lemma 1.3 guarantees that T has at least one fixed point. □
Theorem 3.8
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and \(f:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\) be a continuous function satisfying (F0). In addition, the following assumptions hold:
-
(F5)
\(\lim_{u\rightarrow0^{+}}\frac{f(u)}{u}=0\);
-
(F6)
There exists \(\overline{R}>0\) such that \(\min_{u\in[\vartheta\overline{R}, \overline{R}]}f(u)>\sigma \overline{R}\), where
$$\begin{aligned}& 0< \vartheta=\eta\Bigl[\min_{t\in[\theta,1-\theta]} C(t)\Bigr]< 1, \\& 0< \eta=\biggl[\max_{0\leq s\leq1}\frac{G(t_{0}(s),s)}{G(s,s)} \biggr]^{-1}\leq1, \\& \sigma=\biggl[\min_{t\in[\theta,1-\theta]} C(t) \int_{\theta}^{1-\theta} G(s,s)\Lambda(s)\,ds \biggr]^{-1}. \end{aligned}$$
Then problem (1.1) has at least two solutions.
Proof
From Lemma 2.5, we can derive the following inequalities:
and
Combining the two inequalities, we have
Define a subcone P̂ of the Banach space E as \(\widehat{P}=\{u\in E:u\geq C(t)\eta \Vert u(t) \Vert \} \). From the standard process, we know that \(T:\widehat{P}\rightarrow\widehat{P}\) is completely continuous. Set \(\widehat{P}_{r}=\{u\in \widehat{P}: \Vert u \Vert < r\}\).
Since \(\lim_{u\rightarrow0^{+}}\frac{f(u)}{u}=0\), there exist \(\epsilon>0\) and \(r>0\) such that \(f(u)<\epsilon u\), for \(0\leq u\leq r\), where ϵ satisfies \(\epsilon\varpi<1\). For \(u\in \partial\widehat{P}_{r}\), we have
In a similar way, we choose \(R>K\varpi\). Then, for \(u\in\partial \widehat{P}_{R}\), we have
For any \(u\in\partial P_{\overline{R}}\), choosing \(t^{*}\in(\theta,1-\theta)\), it is easy to verify that \(u(t^{*})\in [\vartheta\overline{R},\overline{R}]\). Furthermore, we have
Then by Lemma 1.3, problem (1.1) has at least two positive solutions \(r\leq \Vert u_{1}(t) \Vert \leq\overline{R}\) and \(\overline{R}\leq \Vert u_{2}(t) \Vert \leq R\). □
Example 1
Let us consider the problem
Since \(\vert f(u) \vert = \vert \arctan u \vert <\pi\), this problem has a solution by Theorem 3.4. If \(\Lambda(t)\) satisfies
It is easy to get that
Therefore, this problem has a unique solution by Theorem 3.3.
Example 2
Let us consider the problem
Since \(f(u)=e^{-u^{100}}\leq1\), we can choose \(r_{1}=\varpi+1\). Then it is clear that
which implies that (F1) holds. Finally, for any \(r>0\), we have \(f(u)\geq e^{-r^{100}}\) for \(u\in[0,r]\). Since \(\lim_{r\rightarrow 0^{+}}\frac{e^{-r^{100}}}{\varsigma^{-1}r}=+\infty\), there exists \(r_{2}< r_{1}\) such that \(f(u)\geq\varsigma^{-1}r_{2} \) for \(u\in [0,r_{2}]\), which implies that (F1) holds. Therefore, this problem has a unique solution by Theorem 3.5.
Example 3
Let us consider the problem
It is clear that \(\vert f(u) \vert =\vert e^{-u^{2}}(\arctan u^{\frac{1}{5}}+\sin u^{\frac{1}{3}}+2)\vert\leq \Vert u \Vert ^{\frac{1}{5}}+ \Vert u \Vert ^{\frac{1}{3}}+2=\varphi( \Vert u \Vert )\), \(\forall u\in R\). Then (F2) holds. Furthermore, for sufficiently large \(R>0\), the inequality \(\frac{R}{\varpi\varphi(R)}>1\) obviously holds, namely, (F3) holds. Then this problem has at least one solution by Theorem 3.6.
For \(u\in R^{+}\), since \(f(u)=e^{-u^{2}}(\arctan u^{\frac{1}{5}}+\sin u^{\frac{1}{3}}+2)\geq e^{-u^{2}}\geq e^{- \Vert u \Vert ^{2}}=\psi( \Vert u \Vert )\), we have \(f(u)\geq\psi( \Vert u \Vert ) \) for \(u\in [0,\varsigma r]\), for any \(r>0\). Via some simple computations, we get \(\lim_{r\rightarrow 0^{+}}\frac{\psi(\varsigma r)}{r}=+\infty\). Then there exists sufficiently small \(r>0\) such that \(\psi(\varsigma r)\geq r\). From the above discussions, we have that (F4) holds. Therefore, this problem has at least one positive solution \(u(t)\) for \(\varsigma<1\) by Theorem 3.7.
Example 4
Let us consider the problem
Since \(f(u)=\frac{2\sigma+1}{(2\vartheta)^{2}e^{-2\vartheta}}u^{2}e^{-u}\), via some simple computations, we can verify that (F0) and (F5) hold. In addition, since \(f'(u)=\frac{2\sigma+1}{(2\vartheta)^{2}e^{-2\vartheta }}e^{-u}(2u-u^{2})=\frac{2\sigma+1}{(2\vartheta)^{2}e^{-2\vartheta }}e^{-u}u(2-u)\), it is clear that \(f'(u)>0\) for \(u\in(0,2)\); \(f'(u)<0\) for \(u\in(2,+\infty)\). Let \(\overline{R}=2\), then for any \(u\in[2\vartheta,2]\), we have \(\min_{u\in[2\vartheta, 2]}f(u)=\frac{2\sigma+1}{(2\vartheta)^{2}e^{-2\vartheta}}(2\vartheta )^{2}e^{-2\vartheta}>2\sigma\). Therefore, this problem has at least two positive solutions \(u(t)\) by Theorem 3.8.
4 Existence results II
Theorem 4.1
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and \(f:\mathbb{R}\times[0,+\infty)\rightarrow\mathbb{R}\) be a continuous function satisfying the following:
-
(H)
There exists a positive constant K such that \(\vert f(u,\lambda) \vert \leq K\) for \(u\in\mathbb{R}\), \(\lambda\in\mathbb{R}_{+}\).
Then problem (1.2) has at least one solution.
This result can be directly derived from the proof of Theorem 3.4.
Now define a cone P of the Banach space E as \(P=\{u\in E:u\geq0\}\). Let \(P_{r_{i}}=\{u\in P: {\Vert u \Vert < r_{i}}\}\). Define T by
From the proof of Theorem 3.4, we know that \(T:P\rightarrow P\) is completely continuous.
Theorem 4.2
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and f be a nonnegative continuous function satisfying (H). If \(f(0,0)>0\), then there exists \(\lambda^{*}>0\) such that problem (1.2) has at least one solution for \(0\leq\lambda<\lambda^{*}\).
Proof
Since \(f(u,\lambda)\) is continuous and \(f(0,0)>0\), for any given \(\epsilon>0\) (sufficiently small), there exists \(\delta>0\) such that \(f(u,\lambda)>f(0,0)-\epsilon\) if \(0\leq u<\delta\), \(0\leq\lambda<\delta\). Choosing \(r_{1}<\min\{\delta,\varsigma(f(0,0)-\epsilon)\}\) and \(\lambda^{*}=\delta\). Then, for any \(u\in \partial P_{r_{1}}\) and \(t\in[\theta,1-\theta]\), we have
Choosing \(r_{2}>K\varpi\). Then, for \(u\in\partial P_{r_{2}}\), we have
Then, by Lemma 1.3, problem (1.2) has at least one positive solution \(u(t)\) belonging to E such that \(r_{2} \leq \Vert u \Vert \leq r_{1}\). □
Corollary 4.3
Let \(\Lambda(t): [0, 1] \rightarrow \mathbb{R}_{+}\) be a nontrivial Lebesgue integrable function and f be a nonnegative continuous function satisfying (H). If \(\lim_{u\rightarrow 0^{+}}f(u,\lambda)=f(0,0)>0\), then problem (1.2) has at least one solution for any \(\lambda\geq0\).
Example 5
Let us consider the problem
It is clear that (H) holds and \(f(0,0)>0\). Then there exists \(\lambda ^{*}>0\) such that this problem has at least one solution for \(0\leq\lambda<\lambda^{*}\).
Example 6
Let us consider the problem
It is clear that (H) holds and \(\lim_{u\rightarrow 0^{+}}f(u,\lambda)=f(0,0)>0\). Then this problem has at least one solution for any \(\lambda>0\).
5 Conclusion
In this manuscript, the authors prove some new existence results as well as uniqueness and multiplicity results on fractional boundary value problems.
References
Lyapunov, A: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 9, 203-474 (1907)
Lyapunov, A: The general problem of the stability of motion. Int. J. Control 55, 521-790 (1992)
Yang, X: On Lyapunov type inequalities for certain higher order differential equations. Appl. Math. Comput. 134, 307-317 (2003)
Yang, X, Kim, Y, Lo, K: Lyapunov-type inequalities for a class of higher-order linear differential equations. Appl. Math. Lett. 34, 86-89 (2014)
Ferreira, RAC: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16, 978-984 (2013)
Ferreira, RAC: On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412, 1058-1063 (2014)
Ghanbari, K, Gholami, Y: Lyapunov type inequalities for fractional Sturm-Liouville problems and fractional Hamiltonian system and applications. J. Fract. Calc. Appl. 7, 176-188 (2016)
Ahmad, B, Agarwal, RP, Alsaedi, A: Fractional differential equations and inclusions with semiperiodic and three-point boundary conditions. Bound. Value Probl. 2016, 28 (2016)
Agarwal, RP, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62, 1200-1214 (2011)
Agarwal, RP, Lakshmikantham, V, Nieto, JJ: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859-2862 (2010)
Ahmad, B, Nieto, JJ, Alsaedi, A: Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions. Acta Math. Sci. Ser. B Engl. Ed. 31(6), 2122-2130 (2011)
Ahmad, B, Ntouyas, SK: Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 98, 1 (2012)
Balean, D, Khan, H, Jafari, H, Khan, RA, Alipour, M: On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 2015, 318 (2015)
Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)
Cabada, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403-411 (2012)
Delbosco, D, Rodino, L: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204, 609-625 (1996)
Jia, M, Liu, X: Three nonnegative solutions for fractional differential equations with integral boundary conditions. Comput. Math. Appl. 62, 1405-1412 (2011)
Liang, S, Zhang, J: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545-5550 (2009)
Zhou, W, Chu, Y, Bǎleanu, D: Uniqueness and existence of positive solutions for a multi-point boundary value problem of singular fractional differential equations. Adv. Differ. Equ. 2013, 114 (2013)
Lan, K, Lin, W: Positive solutions of systems of Caputo fractional differential equations. Commun. Appl. Anal. 17, 61-86 (2013)
Guseinov, GS, Yaslan, I: Boundary value problems for second order nonlinear differential equations on infinite intervals. J. Math. Anal. Appl. 290, 620-638 (2004)
Yardimci, S, Uǧurlu, E: Nonlinear fourth order boundary value problem. Bound. Value Probl. 2014(1), 189 (2014)
Baleanu, D, Uǧurlu, E: Regular fractional dissipative boundary value problems. Adv. Differ. Equ. 2016, 175 (2016)
Uǧurlu, E, Baleanu, D, Tas, K: Regular fractional differential equations in the Sobolev space. Fract. Calc. Appl. Anal. 20, 810-817 (2017)
Rudin, W: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)
Guo, D, Lashmikanthan, V: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)
Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Acknowledgements
The authors would like to thank the referees for the helpful suggestions. The second author is supported by NNSF of China (No. 11501165), the Fundamental Research Funds for the Central Universities (2015B19414).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ru, Y., Wang, F., An, T. et al. Some results on the fractional order Sturm-Liouville problems. Adv Differ Equ 2017, 320 (2017). https://doi.org/10.1186/s13662-017-1377-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1377-x