 Research
 Open access
 Published:
Global existence of solutions for a fractional Caputo nonlocal thermistor problem
Advances in Difference Equations volumeÂ 2017, ArticleÂ number:Â 363 (2017)
Abstract
We begin by proving a local existence result for a fractional Caputo nonlocal thermistor problem. Then additional existence and continuation theorems are obtained, ensuring global existence of solutions.
1 Introduction
Fractional calculus is acknowledged as an important research tool that opens up many horizons in the field of dynamical systems [1]. According to Professor Katsuyuki Nishimoto, â€˜the fractional calculus is the calculus of the XXIst centuryâ€™ [2]. This opinion is strengthened by a huge increase of interest in this research tool, expressed by an increase in the number of theoretical developments and basic theory on this subject; see, e.g., [3â€“7]. Recently, it has also been proved that fractional differential equations are significant and essential tools when applied in the study of nonlocal or timedependent processes and in the modeling of many applications, including chaotic dynamics, material sciences, mechanic of fractal and complex media, quantum mechanics, physical kinetics, chemistry, biology, economics and control theory [8]. For instance, a fractional generalization of the Newtonian equation to describe the dynamics of complex phenomena, in both science and engineering, has been proposed in [9]; a fractional Langevin equation, with applications in polymer layers, has been investigated in [10]. One can say that realworld problems require the definitions of fractional derivatives for initial and boundary value problems [11, 12]. Fractional mathematical models describing natural phenomena, like shallow water waves and ion acoustic waves in plasma and vibration of large membranes, as well as personal and interpersonal realities, like smoking, romantic relationships and marriages, can be found in [13, 14] and [15, 16], respectively. Details of the geometric and physical interpretation of fractional differentiation can be found in [6].
Thermistor is a thermoelectric device constructed from a ceramic material whose electrical conductivity depends strongly on the temperature. This makes thermistor problems highly nonlinear [17]. They can be used as a switching device in many electronic circuits. AÂ broad application spectrum of thermistor problems in heating processes and current flow can be found in several areas of electronics and its related industries [18]. Generally, there are two kinds of thermistors: the first have an electrical conductivity that decreases with the increasing of temperature; the second have an electrical conductivity that increases with the increasing of temperature [19, 20]. Here we consider a prototype of electrical conductivity that depends strongly in both time and temperature. Our goal consists in proving global existence of solutions for a fractional Caputo nonlocal thermistor problem. The results are obtained via Schauderâ€™s fixed point theorem. Precisely, we consider the following fractional order initial value problem:
where \(_{C}D^{2 \alpha }_{0, t}\) is the fractional Caputo derivative operator of order 2Î± with \(0 < \alpha < \frac{1}{2}\) a real parameter. The function u denotes the temperature and Î» is a positive real. We shall assume the following hypotheses:
 \((H_{1})\) :

\(f: \mathbb{R}^{+} \times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) is a Lipschitz continuous function with Lipschitz constant \(L_{f}\) with respect to the second variable such that \(c_{1} \leq f(s,u) \leq c_{2}\) with \(c_{1}\) and \(c_{2}\) two positive constants;
 \((H_{2})\) :

there exists a positive constant M such that \(f(s, u) \leq M s^{2}\);
 \((H_{3})\) :

\(\vert f(s, u) f(s, v) \vert \leq s^{2} \vert uv\vert \) or, in a more general manner, there exists a constant \(\omega \geq 2\) such that \(\vert f(s,u) f(s,v) \vert \leq s^{\omega } \vert uv\vert \).
In the literature, questions involving the existence and uniqueness of solution for fractional differential equations (FDEs) have been intensely studied by many mathematicians [4, 5, 21, 22]. However, much of published papers have been concerned with existenceuniqueness of solutions for FDEs on a finite interval. Since continuation theorems for FDEs are not well developed, results as regards global existenceuniqueness of the solution of FDEs on the half axis \([0,+\infty)\), by using directly the results from local existence, have only recently flourished [23, 24].
In contrast with our previous work [25â€“27] on fractional nonlocal thermistor problems, which was focused on local existence and numerical methods, here we are concerned with continuation theorems and global existence for the steady state fractional Caputo nonlocal thermistor problem. The paper is organized as follows. In SectionÂ 2, we collect some background material and necessary results from fractional calculus. Then we are concerned in SectionÂ 3 with local existence on a finite interval for (1) (TheoremÂ 3.2). SectionÂ 4 is devoted to the (non)continuation (TheoremÂ 4.1) associated with problem (1), which allows one to generalize the main result of SectionÂ 3. Our proofs rely on Schauderâ€™s fixed point theorem and some extensions of the continuation theorems for ordinary differential equations (ODEs) to the fractional order case. One of the main difficulties lies in handling the nonlocal term \(\frac{\lambda f(t, u(t))}{(\int_{0}^{t}f(x, u(x))\,dx)^{2}}\), representing a heat source and that depends continuously on time; another one in the fact that electrical conductivity depends on both time and temperature. Based on the results of SectionÂ 4, in SectionÂ 5 we prove existence of a global solution for (1): see Theorems 5.2 and 5.3. We end with SectionÂ 6 presenting conclusions.
2 Preliminaries and basic results
In this section, we collect from the literature [4, 5, 22, 28â€“30] some background material and basic results that will be used in the remainder of the paper.
Let \(C[a,b]\) be the Banach space of all real valued continuous functions on \([a,b]\) endowed with the norm \(\Vert x\Vert _{[a,b]}=\max_{t\in [a,b]}\vert x(t)\vert \). According to the RiemannLiouville approach to fractional calculus, we introduce the fractional integral of order Î±, \(\alpha >0\), as follows.
Definition 2.1
The RiemannLiouville integral of a function g with order \(\alpha >0\) is defined by
where Î“ is the Euler gamma function given by
\(\alpha >0\).
The natural next step, after the notion of fractional integral has been introduced, is to define the fractional derivative of order Î±, \(\alpha >0\).
Definition 2.2
The RiemannLiouville derivative of the function g with order \(\alpha >0\) is defined by
where \(n1<\alpha <n\in \mathbb{Z}^{+}\).
Note the remarkable fact that, in the RiemannLiouville sense, the fractional derivative of the constant function is not zero. We now give an alternative and more restrictive definition of fractional derivative, first introduced by Caputo in the end of the 1960s [31, 32] and then adopted by Caputo and Mainardi in [33, 34]. In Caputo sense, the fractional derivative of a constant is zero.
Definition 2.3
The Caputo derivative of the function \(g(t)\) with order \(\alpha >0\) is defined by
where \(n1<\alpha <n\in \mathbb{Z}^{+}\).
For proving our main results, we make use of the following auxiliary lemmas.
Lemma 2.1
(See [24])
Let M be a subset of \(C([0,T])\). Then M is precompact if and only if the following conditions hold:

1.
\(\{u(t):u \in M\}\) is uniformly bounded,

2.
\(\{u(t):u \in M\}\) is equicontinuous on \([0,T]\).
Lemma 2.2
(Schauder fixed point theorem [24])
Let U be a closed bounded convex subset of a Banach space X. If \(T:U\to U\) is completely continuous, then T has a fixed point in U.
Finally we recall a generalization of Gronwallâ€™s lemma, which is essential for the proof of our TheoremÂ 5.3.
Lemma 2.3
(Generalized Gronwall inequality [35, 36])
Let \(v:[0,b]\to [0,+\infty)\) be a real function and \(w(\cdot)\) be a nonnegative, locally integrable function on \([0,b]\). Suppose that there exist \(a>0\) and \(0<\alpha <1\) such that
Then there exists a constant \(k=k(\alpha)\) such that
for \(t\in [0,b]\).
3 Local existence theorem
In this section, a local existence theorem of solutions for (1) is obtained by applying Schauderâ€™s fixed point theorem. In order to transform (1) into a fixed point problem, we give in the following lemma an equivalent integral form of (1).
Lemma 3.1
Suppose that \((H_{1})\)\((H_{3})\) holds. Then the initial value problem (1) is equivalent to
Proof
It is a simple exercise to see that u is a solution of the integral equation (2) if and only if it is also a solution of the IVP (1).â€ƒâ–¡
Theorem 3.2
Suppose that conditions \((H_{1})\)\((H_{3})\) are verified. Then (1) has at least one solution \(u\in C[0,h]\) for some \(T\geq h>0\).
Proof
Let
where b is a positive constant. Further, put
where
and \(0< \alpha < \frac{1}{2}\). It is clear that \(h \leq T\). Note also that \(D_{h}\) is a nonempty, bounded, closed, and convex subset of \(C[0,h]\). In order to apply Schauderâ€™s fixed point theorem, we define the following operator A:
It is clear that all solutions of (1) are fixed points of (3). Then, by assumptions \((H_{1})\) and \((H_{2})\), we have for any \(u\in C[0,h]\)
It yields \(AD_{h}\subset D_{h}\). Our next step, in order to prove TheoremÂ 3.2, is to show that the following lemma holds.
Lemma 3.3
The operator A is continuous.
Proof
Let \(u_{n}, u\in D_{h}\) be such that \(\Vert u_{n}u\Vert _{C[0,h]}\to 0\) as \(n\to +\infty \). One has
We now focus on both right hand terms separately. By hypotheses \((H_{2})\) and \((H_{3})\), we have
Then
Concerning the second term, we have
It follows that
Collecting inequalities (5) and (6) together, and inserting into (4), we have
Therefore,
Consequently, \(\Vert Au_{n}Au\Vert _{C[0,h]}\to 0\) as \(n\to +\infty \), which proves that A is continuous. This ends the proof of LemmaÂ 3.3.â€ƒâ–¡
To finish the proof of TheoremÂ 3.2, it remains to show the following.
Lemma 3.4
The operator \(AD_{h}\) is continuous.
Proof
Let \(u\in D_{h}\) and \(0\leq t_{1}\leq t_{2}\leq h\). Then
where we have, by direct calculation,
and
The right hand side of inequalities (9) and (10) do not depend on u and converge to zero as \(t_{2} \rightarrow t_{1}\). Then \(\{(Au)(t):u\in D_{h}\}\) is equicontinuous and LemmaÂ 3.4 is proved.â€ƒâ–¡
Taking into account that \(AD_{h}\subset D_{h}\), we infer that \(AD_{h}\) is precompact. This implies that A is completely continuous. As a consequence of Schauderâ€™s fixed point theorem and LemmaÂ 3.1, we conclude that problem (1) has a local solution. This ends the proof of TheoremÂ 3.2.â€ƒâ–¡
4 Continuation results
Our main contribution of this section is to prove a continuation theorem for the fractional Caputo nonlocal thermistor problem (1). First, we present the definition of noncontinuable solution.
Definition 4.1
(See [37])
Let \(u(t)\) on \((0,\beta)\) and \(\tilde{u}(t)\) on \((0,\tilde{\beta })\) be both solutions of (1). If \(\beta <\tilde{\beta }\) and \(u(t)=\tilde{u}(t)\) for \(t\in (0,\beta)\), then we say that \(\tilde{u}(t)\) can be continued to \((0,\tilde{\beta })\). AÂ solution \(u(t)\) is noncontinuable if it has no continuation. The existing interval of the noncontinuable solution \(u(t)\) is called the maximum existing interval of \(u(t)\).
Theorem 4.1
Assume that conditions \((H_{1})\)\((H_{3})\) are satisfied. Then \(u=u(t)\), \(t\in (0,\beta)\), is noncontinuable if and if only for some \(\eta \in ( 0,\frac{\beta }{2} ) \) and any bounded closed subset \(S\subset [\eta,+\infty)\times \mathbb{R}\) there exists a \(t^{\ast }\in [ \eta,\beta)\) such that \((t^{\ast },u(t^{\ast })) \notin S\).
Proof
Suppose that there exists a compact subset \(S\subset [ \eta,+\infty)\times \mathbb{R}\) such that
The compactness of S implies \(\beta <+\infty \). The remainder of the proof is given in two lemmas.
Lemma 4.2
The limit \(\lim_{t\to \beta^{}}u(t)\) exists.
Proof
Let \(t_{1},t_{2}\in [ 2\eta,\beta)\) such that \(t_{1}< t_{2}\). From (8), we have
where
and
Under assumptions \((H_{1})\)\((H_{3})\), there exists a positive constant \(M_{3, 1}\) such that
Moreover, there exists a positive constant \(M_{3, 2}\) such that
and we also have \(I_{4}=I_{4,1}+ I_{4, 2}\), where
and
In the same manner as in the proof of LemmaÂ 3.4, there exists positive constants \(M_{4, 1}\) and \(M_{4, 2}\) such that
We have already proved in (10), for some positive constant \(M_{5}\), that
Therefore, we conclude that all \(I_{i}\), \(i=3, 4, 5\), converge to zero when \(t_{2} \rightarrow t_{1}\). Thus, from Cauchyâ€™s convergence criterion, it yields \(\lim_{t\to \beta^{}}u(t)=u^{\ast }\). This finishes the proof of LemmaÂ 4.2.â€ƒâ–¡
The second step of the proof of TheoremÂ 4.1 consists in showing the following result.
Lemma 4.3
Function \(u(t)\) is continuable.
Proof
As S is a closed subset, we can say that \((\beta,u^{\ast })\in S\). Define \(u(\beta)=u^{\ast }\). Hence, \(u(t)\in C[0,\beta ]\). Then we define the operator K by
where
Set
and
where \(h=\min \{ ( b ( \frac{ \lambda M}{\Gamma (2 \alpha +1) c_{1}^{2}} ) ^{1} ) ^{\frac{1}{2 \alpha }},1 \} \). Analogously to the proof of TheoremÂ 3.2, we prove that K is completely continuous on \(E_{b}\). Indeed, let \(\{v_{n}\}\subseteq C[\beta,\beta +h]\). Then \(\Vert v_{n}v\Vert _{[\beta,\beta +h]}\to 0\) as \(n\to +\infty \) and similar arguments to the one above for (7), allow us to declare that there exists a positive constant \(c_{h}\) depending on h such that
Hence, \(\Vert (Kv_{n})(t)(Kv)(t)\Vert _{[\beta,\beta +h]} \to 0\) as \(n\to +\infty \), which shows that the operator K is continuous. We show that \(KE_{h}\) is equicontinuous. For all \(v\in E_{h}\), we have \((Kv)(\beta)=u_{1}(\beta)\) and, in view of the choice of h, it follows from hypotheses \((H_{1})\) and \((H_{2})\) that
Therefore, we get \(KE_{h}\subset E_{h}\). Furthermore, for any \(v\in E_{h}\) and \(\beta \leq t_{1}\leq t_{2}\leq \beta +h\), we have
By a calculation analogous to the earlier one, there exists a positive constant \(M_{6}\) such that
An analogous treatment as in (8)(10) yields the existence of a positive constant \(M_{7}\) such that
Since the right side of inequalities (11) and (12) go to zero as \(t_{2} \rightarrow t_{1}\), we deduce that \(\{ (Kv)(t):v\in E _{h}\}\) is equicontinuous. Consequently, K is completely continuous. Then Schauderâ€™s fixed point theorem can be applied to see that the operator K has a fixed point \(\tilde{u}(t)\in E_{h}\). On other words, we have
where
It follows that \(\tilde{u}(t)\in C[0,\beta +h]\) and
Therefore, according to LemmaÂ 3.1, \(\tilde{u}(t)\) is a solution of (1) on \((0,\beta +h]\). This is absurd because \(u(t)\) is noncontinuable. This completes the proof of LemmaÂ 4.3.â€ƒâ–¡
TheoremÂ 4.1 follows from Lemmas 4.2 and 4.3.â€ƒâ–¡
Remark 4.1
Uniqueness of solution to problem (1) is easily derived from the proof of TheoremÂ 4.1 for a well chosen Î».
5 Global existence
Now we provide two sets of sufficient conditions for the existence of a global solution for (1) (Theorems 5.2 and 5.3). We begin with an auxiliary lemma.
Lemma 5.1
Suppose that conditions \((H_{1})\)\((H_{3})\) hold. Let \(u(t)\) be a solution of (1) on \((0,\beta)\). If \(u(t)\) is bounded on \([\tau,\beta)\) for some \(\tau >0\), then \(\beta =+\infty \).
Proof
The result follows immediately from the results of SectionÂ 4.â€ƒâ–¡
Theorem 5.2
Suppose that conditions \((H_{1})\)\((H_{3})\) hold. Then (1) has a solution in \(C([0,+\infty))\).
Proof
The existence of a local solution \(u(t)\) of (1) is ensured thanks to TheoremÂ 3.2. We already know, by LemmaÂ 3.1, that \(u(t)\) is a also a solution to the integral equation
Suppose that the existing interval of the noncontinuable solution \(u(t)\) is \((0,\beta)\), \(\beta <+\infty \). Then
By LemmaÂ 3.1, there exists a constant \(k(\alpha)\) such that, for \(t\in (0, \beta)\), we have
which is bounded on \((0, \beta)\). Thus, by LemmaÂ 5.1, problem (1) has a solution \(u(t)\) on \((0,+\infty)\).â€ƒâ–¡
Next we give another sufficient condition ensuring global existence for (1).
Theorem 5.3
Suppose that there exist positive constants \(c_{3}\), \(c_{4}\) and \(c_{5}\) such that \(c_{3} \leq \vert f(s, x)\vert \leq c_{4}\vert x\vert + c_{5}\). Then (1) has a solution in \(C([0,+\infty))\).
Proof
Suppose that the maximum existing interval of \(u(t)\) is \((0,\beta)\), \(\beta <+\infty \). We claim that \(u(t)\) is bounded on \([\tau,\beta)\) for any \(\tau \in (0,\beta)\). Indeed, we have
If we take
which is bounded, and
it follows, in accordance with LemmaÂ 2.3, that \(v(t)=\vert u(t)\vert \) is bounded. Thus, by LemmaÂ 5.1, (1) has a solution \(u(t)\) on \((0,+\infty)\).â€ƒâ–¡
6 Conclusion
In our paper we consider a prototype of electrical conductivity that depends strongly in both time and temperature. The model relates to modern developments of thermistors, where fractional PDEs have a crucial role. It turns out that available computational methods are not theoretically sound in the sense they rely on results of local existence. The main novelty of our paper is that we prove global existence for a nonlocal thermistor problem with fractional differentiation in the Caputo sense. Moreover, we extend some results of continuation and global existence to the fractional order initial value thermistor problem. The proofs rely on Schauderâ€™s fixed point theorem. We trust that our results will have a positive impact on the application of computer mathematics to fractional thermistor devices.
References
Almeida, R, Pooseh, S, Torres, DFM: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)
Nishimoto, K: An Essence of Nishimotoâ€™s Fractional Calculus. Descartes Press, Koriyama (1991)
Aubin, JP, Lygeros, J, Quincampoix, M, Sastry, S, Seube, N: Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Autom. Control 47(1), 220 (2002)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. NorthHolland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)
Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives. Gordon & Breach, Yverdon (1993). Translated from the 1987 Russian original
Machado, JT, Kiryakova, V, Mainardi, F: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 11401153 (2011)
Baleanu, D, Golmankhaneh, AK, Golmankhaneh, AK, Nigmatullin, RR: Newtonian law with memory. Nonlinear Dyn. 60(12), 8186 (2010)
Baleanu, D, Golmankhaneh, AK, Nigmatullin, R, Golmankhaneh, AK: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8(1), 120125 (2010)
Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus. Series on Complexity, Nonlinearity and Chaos, vol. 5 World Scientific, Hackensack (2017)
Ortigueira, MD: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, vol. 84. Springer, Dordrecht (2011)
Kumar, D, Singh, J, Baleanu, D: A new analysis for fractional model of regularized longwave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40, 56425653 (2017)
Srivastava, HM, Kumar, D, Singh, J: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192204 (2017)
Singh, J, Kumar, D, Qurashi, MA, Baleanu, D: A new fractional model for giving up smoking dynamics. Adv. Differ. Equ. 2017, 88 (2017)
Singh, J, Kumar, D, Qurashi, MA, Baleanu, D: A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships. Entropy 19(7), 375 (2017)
Sidi Ammi, MR, Torres, DFM: Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem. Math. Comput. Simul. 77, 291300 (2008)
Sidi Ammi, MR, Torres, DFM: Optimal control of nonlocal thermistor equations. Int. J. Control 85(11), 17891801 (2012)
Kwok, K: Complete Guide to Semiconductor Devices. McGrawHill, New york (1995)
Maclen, ED: Thermistors. Electrochemical publication, Glasgow (1979)
Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, River Edge (2000)
Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
Arara, A, Benchohra, M, Hamidi, N, Nieto, JJ: Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72(2), 580586 (2010)
Li, C, Sarwar, S: Existence and continuation of solutions for Caputo type fractional differential equations. Electron. J. Differ. Equ. 2016, 207 (2016)
Sidi Ammi, MR, Torres, DFM: Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractionalorder derivatives. Differ. Equ. Appl. 4(2), 267276 (2012)
Sidi Ammi, MR, Torres, DFM: Galerkin spectral method for the fractional nonlocal thermistor problem. Comput. Math. Appl. 73(6), 10771086 (2017)
Sidi Ammi, MR, Torres, DFM: Existence and uniqueness results for a fractional RiemannLiouville nonlocal thermistor problem on arbitrary time scales. J.Â King Saud Univ., Sci. (2017) in press. doi:10.1016/j.jksus.2017.03.004
Li, Y, Chen, Y, Podlubny, I: MittagLeffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 19651969 (2009)
Li, C, Deng, W: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777784 (2007)
Li, CP, Zeng, FH: Numerical Methods for Fractional Differential Calculus. Chapman & Hall, Boca Raton (2015)
Caputo, M: Linear models of dissipation whose Q is almost frequency independent. II. Geophys. J. R. Astron. Soc. 13(5), 529539 (1967)
Caputo, M: ElasticitÃ e Dissipazione. Zanichelli, Bologna (1969)
Caputo, M, Mainardi, F: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II) 1, 161198 (1971)
Mainardi, F: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISM Courses and Lect., vol. 378. Springer, Vienna (1997)
Henderson, J, Ouahab, A: Impulsive differential inclusions with fractional order. Comput. Math. Appl. 59(3), 11911226 (2010)
Ye, H, Gao, J, Ding, Y: A generalized Gronwall inequality and its application to a fractional differential equation. J.Â Math. Anal. Appl. 328(2), 10751081 (2007)
Kou, C, Zhou, H, Li, C: Existence and continuation theorems of RiemannLiouville type fractional differential equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22(4), 1250077 (2012)
Acknowledgements
The authors were supported by the Center for Research and Development in Mathematics and Applications (CIDMA) of University of Aveiro, through FundaÃ§Ã£o para a CiÃªncia e a Tecnologia (FCT), within project UID/MAT/04106/2013. They are grateful to two anonymous referees, for several comments and suggestions of improvement.
Author information
Authors and Affiliations
Contributions
All three authors contributed equally to this work. They all read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisherâ€™s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Sidi Ammi, M.R., Jamiai, I. & Torres, D.F.M. Global existence of solutions for a fractional Caputo nonlocal thermistor problem. Adv Differ Equ 2017, 363 (2017). https://doi.org/10.1186/s1366201714185
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366201714185