Lemma 1
For
\(p(x)\in \mathbf{P}_{n}\), let
$$ p(x) = \sum_{k = 0}^{n} {{d_{k}}C_{\alpha ,p,q,k}^{\lambda }} (x)\quad (d_{k} \in\mathbf{R}). $$
(13)
Then
$$ {d_{k}}=\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - p ^{2}{x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) p(x)\,dx}. $$
(14)
Proof
Let us take \(p(x) = \sum_{k = 0}^{n} {{d_{k}}C _{\alpha ,p,q,k}^{\lambda }} (x) \in \mathbf{P}_{n}\), \(d_{k}\) ∈R. Then by (4) and (12), we get
$$\begin{aligned} \bigl\langle {p(x),C_{\alpha ,p,q,k}^{\lambda }(x)} \bigr\rangle =& {d_{k}} \bigl\langle {C_{\alpha ,p,q,k}^{\lambda }(x),C_{\alpha ,p,q,k} ^{\lambda }(x)} \bigr\rangle \\ =& {d_{k}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} {{{ \bigl(\alpha q - p^{2}{x^{2}} \bigr)}^{\lambda - \frac{1}{2}}}C _{\alpha ,p,q,k}^{\lambda }(x)C_{\alpha ,p,q,k}^{\lambda }(x)\,dx} \\ = &{d_{k}}\frac{{{q^{k + \lambda }}}}{p\alpha^{\lambda +k} }\frac{ {\pi {2^{1 - 2\lambda }}\Gamma (k + 2\lambda )}}{{k!(k + \lambda ) {{(\Gamma (\lambda ))}^{2}}}}. \end{aligned}$$
Thus, by the above equation, we get
$$ {d_{k}} = \frac{p\alpha^{\lambda +k} }{{{q^{k + \lambda }}}}\frac{ {k!(k + \lambda ){{(\Gamma (\lambda ))}^{2}}}}{{\pi {2^{1 - 2\lambda }}\Gamma (k + 2\lambda )}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}} ^{\frac{{\sqrt{\alpha q }}}{p}} {{{ \bigl(\alpha q - p^{2}{x^{2}} \bigr)}^{ \lambda - \frac{1}{2}}}p(x)C_{\alpha ,p,q,k}^{\lambda }(x)\,dx} . $$
From the above equation and (3), we have
$$\begin{aligned}& {d_{k}} = \frac{p\alpha^{\lambda +k}}{{{q^{k + \lambda }}}}\frac{ {k!(k + \lambda ){{(\Gamma (\lambda ))}^{2}}}}{{\pi {2^{1 - 2\lambda }}\Gamma (k + 2\lambda )}}\frac{\alpha^{-\lambda -k}}{{{p^{k}}}} \frac{ {{{( - 2)}^{k}}{{(\lambda )}_{k}}}}{{k!{{(k + 2\lambda )}_{k}}}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - p ^{2}{x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) p(x)\,dx} \\& \quad = \frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - p ^{2}{x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) p(x)\,dx}. \end{aligned}$$
This proves Lemma 1. □
Theorem 1
For
\(n\in \mathbf{Z}_{+}\), we have
$$ {x^{n}} = \sum_{0 \le k \le n,n - k \equiv 0(\bmod 2)} {\frac{\sqrt{ \alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}} \frac{ {(k + \lambda )n!\Gamma (\lambda )}}{{{2^{n}}(\frac{{n - k}}{2})! \Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}C_{\alpha ,p,q,k}^{\lambda }(x). $$
Proof
Let \(p(x)=x^{n}\in \mathbf{P}_{n}\), from (14) we have
$$\begin{aligned} {d_{k}} =&\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{ {\sqrt{\alpha q} }}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - p^{2}{x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) x^{n}\,dx} \\ =&\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} {{x^{n}}\,d\biggl( { \frac{{{d^{k - 1}}}}{{d{x^{k - 1}}}} {{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) } \\ =&( - n)\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} {{x^{n - 1}} \biggl( { \frac{{{d^{k - 1}}}}{{d{x^{k - 1}}}} {{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) }\,dx \\ =&\cdots \\ =&\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )\frac{{n!}}{{(n - k)!}}}}{{{{( 2)}^{k}}\sqrt{ \pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{ \frac{{\sqrt{\alpha q }}}{p}} {{x^{n - k}} {{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)} ^{k + \lambda - \frac{1}{2}}}\,dx} \\ =& \bigl(1 + {( - 1)^{n - k}} \bigr)\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{ {(k + \lambda )\Gamma (\lambda )\frac{{n!}}{{(n - k)!}}}}{{{{2}^{k}}\sqrt{ \pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{0}^{\frac{{\sqrt{ \alpha q} }}{p}} {{x^{n - k}} {{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}\,dx} \\ =& \bigl(1 + {( - 1)^{n - k}} \bigr)\frac{\sqrt{\alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{ {{p^{n}}}}\frac{{(k + \lambda )\Gamma (\lambda ) \frac{{n!}}{{(n - k)!}}}}{{{2^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{0}^{1} {{y^{n - k}} {{ \bigl(1 - {y^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}\,dy}. \end{aligned}$$
Let us assume that \(n-k\equiv 0(\bmod 2)\) and \(y=\sqrt{x}\). Then we get
$$\begin{aligned} {d_{k}} =& \frac{\sqrt{\alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}\frac{{(k + \lambda )\Gamma (\lambda )\frac{{n!}}{ {(n - k)!}}}}{{{2^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{0}^{1} {{x^{\frac{{n - k - 1}}{2}}} {{(1 - x)}^{k + \lambda - \frac{1}{2}}}\,dx} \\ =& \frac{\sqrt{\alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{ {{p^{n}}}}\frac{{(k + \lambda )\Gamma (\lambda ) \frac{{n!}}{{(n - k)!}}}}{{{2^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}}B \biggl(k + \lambda + \frac{1}{2},\frac{{n - k + 1}}{2} \biggr) \\ =& \frac{\sqrt{\alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{ {{p^{n}}}}\frac{{(k + \lambda )\Gamma (\lambda ) \frac{{n!}}{{(n - k)!}}}}{{{2^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}}\frac{{\Gamma (\frac{{n - k + 1}}{2})\Gamma (k + \lambda + \frac{1}{2})}}{{\Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}, \end{aligned}$$
where \(B(\alpha ,\beta )\) is the beta function which is defined by \(B(\alpha ,\beta )=\frac{\Gamma (\alpha )\Gamma (\beta )}{\Gamma ( \alpha +\beta )}\).
It is not difficult to show that
$$ \Gamma \biggl(\frac{n-k+1}{2} \biggr)=\frac{(n-k)!\sqrt{\pi }}{2^{n-k}( \frac{n-k}{2})!}. $$
Therefore, from (13), we get
$$ {x^{n}} = \sum_{0 \le k \le n,n - k \equiv 0(\bmod 2)} {\frac{\sqrt{ \alpha }^{n+k+2\lambda }{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}} \frac{ {(k + \lambda )n!\Gamma (\lambda )}}{{{2^{n}}(\frac{{n - k}}{2})! \Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}C_{\alpha ,p,q,k}^{\lambda }(x). $$
□
Theorem 2
For
\(n\in \mathbf{Z}_{+}\), we have the identities
$$\begin{aligned}& \frac{{{B_{n}}(x)}}{{n!}} = \Gamma (\lambda )\sum_{k = 0} ^{n} {\left ( {\frac{{(k + \lambda )}}{{{2^{k}}(n - k)!}} \sum _{0 \le l \le n - k,l \equiv 0(\bmod 2)} { \frac{{\frac{\sqrt{ \alpha }^{2k+2\lambda +l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}} \binom{n - k}{l} {B_{n - k - l}}l!}}{{{2^{l}}(\frac{l}{2})!\Gamma (\frac{ {2k + 2\lambda + l + 2}}{2})}}} } \right ) } \\& \hphantom{\frac{{{B_{n}}(x)}}{{n!}} = }{}\times C_{\alpha ,p,q,k}^{\lambda }(x), \\& \frac{{{E_{n}}(x)}}{{n!}} = \Gamma (\lambda )\sum_{k = 0} ^{n} {\left ( {\frac{{(k + \lambda )}}{{{2^{k}}(n - k)!}} \sum _{0 \le l \le n - k,l \equiv 0(\bmod 2)} { \frac{{\frac{\sqrt{ \alpha }^{2k+2\lambda +l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}} \binom{n - k}{l} {E_{n - k - l}}l!}}{{{2^{l}}(\frac{l}{2})!\Gamma (\frac{ {2k + 2\lambda + l + 2}}{2})}}} } \right ) } \\& \hphantom{\frac{{{B_{n}}(x)}}{{n!}} = }{} \times C_{\alpha ,p,q,k}^{\lambda }(x). \end{aligned}$$
Proof
Let us take \(p(x)=B_{n}(x)\in \mathbf{P}_{n}\). Then, applying (9) and (14), we get
$$\begin{aligned} {d_{k}} &=\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}} ^{\frac{{\sqrt{\alpha q }}}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}} {{ \bigl(\alpha q - p^{2}{x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) B _{n}(x)\,dx} \\ &=(-n)\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \\ &\quad {}\times \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} { \biggl( {\frac{{{d^{k - 1}}}}{{d{x^{k - 1}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) {B_{n - 1}}(x)\,dx} \\ &=\cdots \\ &=\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )\frac{{n!}}{{(n - k)!}}}}{{{{(2)}^{k}}\sqrt{\pi } \Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{\alpha q} }}{p}} {{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}} {B_{n - k}}(x)\,dx}. \end{aligned}$$
From (8), we have
$$\begin{aligned}& \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{ \frac{{\sqrt{\alpha q }}}{p}} {{{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}} {B_{n - k}}(x)\,dx} \\& \quad = \sum_{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) } {B_{n - k - l}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}} ^{\frac{{\sqrt{\alpha q }}}{p}} {{{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}} {x^{l}}\,dx} \\& \quad = \sum_{0 \le l \le n - k,l = 0(\bmod 2)} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) {B_{n - k - l}}} \frac{{{(\alpha q)^{k + \lambda + \frac{l}{2}}}}}{{{p^{l + 1}}}} \int_{0}^{1} {{{(1 - x)}^{k + \lambda - \frac{1}{2}}} {x^{\frac{{l - 1}}{2}}}\,dx} \\& \quad = \sum_{0 \le l \le n - k,l = 0(\bmod 2)} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) {B_{n - k - l}}} \frac{{{(\alpha q)^{k + \lambda + \frac{l}{2}}}}}{{{p^{l + 1}}}}\frac{{\Gamma (k + \lambda + \frac{1}{2})\Gamma (\frac{{l + 1}}{2})}}{{\Gamma (\frac{{2k + 2\lambda + l + 2}}{2})}}. \end{aligned}$$
It is easy to show that
$$ \Gamma \biggl(\frac{l+1}{2} \biggr)= \biggl(\frac{l-1}{2} \biggr) \biggl( \frac{l-3}{2} \biggr)\cdots \biggl(\frac{1}{2} \biggr) \Gamma \biggl( \frac{1}{2} \biggr)= \frac{(\frac{l}{2})^{l}l!\Gamma (\frac{1}{2})}{( \frac{l}{2})!}=\frac{l!\sqrt{\pi }}{2^{l}(\frac{l}{2})!}. $$
So, we get
$$ {d_{k}} = \frac{{n!(k + \lambda )\Gamma (\lambda )}}{{{2^{k}}(n - k)!}}\sum_{0 \le l \le n - k,l = 0(\bmod 2)} { \frac{\sqrt{\alpha } ^{2k+2\lambda +l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}}} \frac{{ \binom{n - k}{l} {B_{n - k - l}}l!}}{{{2^{l}}(\frac{l}{2})!\Gamma (\frac{ {2k + 2\lambda + l + 2}}{2})}}. $$
By the same method, we have
$$ {d_{k}} = \frac{{n!(k + \lambda )\Gamma (\lambda )}}{{{2^{k}}(n - k)!}}\sum_{0 \le l \le n - k,l=0(\bmod 2)} { \frac{\sqrt{\alpha }^{2k+2 \lambda +l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}}} \frac{{ \binom{n - k}{l} {E_{n - k - l}}l!}}{{{2^{l}}(\frac{l}{2})!\Gamma (\frac{ {2k + 2\lambda + l + 2}}{2})}}. $$
Now Theorem 2 follows from (13). □
Theorem 3
For
\(n,k\in \mathbf{Z}_{+}\)
with
\(n\geq k\), we have
$$\begin{aligned} C_{\alpha ,p,q,n - k}^{\lambda }(x)C_{\alpha ,p,q,k}^{\lambda }(x) &= {2^{\lambda + 1}}\left ( { \textstyle\begin{array}{@{}c@{}} {n - k + 2\lambda - 1} \\ {n - k} \end{array}\displaystyle } \right ) \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda - 1} \\ k \end{array}\displaystyle } \right ) \\ &\quad {}\times \sum_{r = 0}^{n} {\sum _{i = r}^{n} {\sum_{m = 0}^{i} { \biggl\{ {{( - 1)}^{i + r}}} } } \times (r + \lambda ) \\ &\quad {}\times \frac{{\binom{n - k}{i - m} \binom{k}{m} {{(2\lambda + k)}_{m}}{{(2\lambda + n - k)}_{i - m}}i!{{( \lambda + \frac{1}{2})}_{i}}}}{{{{(\lambda + \frac{1}{2})}_{m}}{{( \lambda + \frac{1}{2})}_{i - m}}(i - r)!{{(2\lambda )}_{r + i + 1}}}} \biggr\} \\ &\quad {}\times \frac{\sqrt{\alpha }^{-2\lambda -n+r}\sqrt{q}^{n-r}}{p ^{r}} C_{\alpha ,p,q,r}^{\lambda }(x). \end{aligned}$$
Proof
From the front expression, we get
$$\begin{aligned} C_{\alpha ,p,q,n - k}^{\lambda }(x)C_{\alpha ,p,q,k}^{\lambda }(x) &= \left ( { \textstyle\begin{array}{@{}c@{}} {n - k + 2\lambda - 1} \\ {n - k} \end{array}\displaystyle } \right ) \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda - 1} \\ k \end{array}\displaystyle } \right ) \\ & \quad {}\times \sum_{i = 0}^{n} {\left ( { \sum_{m = 0}^{i} {\frac{{\binom{n - k}{i - m} \binom{k}{m} {{(2\lambda + k)}_{m}}{{(2\lambda + n - k)}_{i - m}}}}{{{{( \lambda + \frac{1}{2})}_{m}}{{(\lambda + \frac{1}{2})}_{i - m}}}}} } \right ) } \\ &\quad {}\times { \biggl(\frac{{px - \sqrt{\alpha q} }}{2} \biggr)^{i}} {q^{ \frac{{n - i}}{2}}} \alpha^{-2\lambda -\frac{n}{2}-\frac{i}{2}}, \end{aligned}$$
\(p(x)=C_{\alpha ,p,q,n - k}^{\lambda }(x)C_{\alpha ,p,q,k}^{\lambda }(x) \in \mathbf{P}_{n}\), \(p(x) = \sum_{r = 0}^{n} {{d_{r}}C_{ \alpha ,p,q,r}^{\lambda }(x)}\), by (14)
$$\begin{aligned} {d_{r}} &= \frac{{{p^{1 - r}}}}{{{q^{r + \lambda }}}}\frac{{(r + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{r}}\sqrt{\pi }\Gamma (r + \lambda + \frac{1}{2})}} \\ &\quad \times \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{ \alpha q} }}{p}} { \biggl( {\frac{{{d^{r}}}}{{d{x^{r}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{r + \lambda - \frac{1}{2}}}} \biggr) C_{\alpha ,p,q,n - k}^{\lambda }(x)C_{\alpha ,p,q,k}^{\lambda }(x)\,dx} \\ &= \frac{{{p^{1 - r}}}}{{{q^{r + \lambda }}}}\frac{{(r + \lambda ) \Gamma (\lambda )}}{{{{( - 2)}^{r}}\sqrt{\pi }\Gamma (r + \lambda + \frac{1}{2})}}\left ( { \textstyle\begin{array}{@{}c@{}} {n - k + 2\lambda - 1} \\ {n - k} \end{array}\displaystyle } \right ) \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda - 1} \\ k \end{array}\displaystyle } \right ) \\ &\quad \times \sum_{i = 0}^{n} {\left ( { \sum_{m = 0}^{i} {\frac{{\binom{n - k}{i - m} \binom{k}{m} {{(2\lambda + k)}_{m}}{{(2\lambda + n - k)}_{i - m}}}}{{{{( \lambda + \frac{1}{2})}_{m}}{{(\lambda + \frac{1}{2})}_{i - m}}}}} } \right ) } {q^{\frac{{n - i}}{2}}} \alpha^{-2\lambda -\frac{n}{2}-\frac{i}{2}} \\ &\quad {}\times \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} { \biggl( {\frac{{{d^{r}}}}{{d{x^{r}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{r + \lambda - \frac{1}{2}}}} \biggr) {{ \biggl(\frac{{px - \sqrt{ \alpha q} }}{2} \biggr)}^{i}}\,dx} \\ &= \frac{{{p^{1 - r}}}}{{{q^{r + \lambda }}}}\frac{{(r + \lambda ) \Gamma (\lambda )}}{{{{( - 2)}^{r}}\sqrt{\pi }\Gamma (r + \lambda + \frac{1}{2})}}\left ( { \textstyle\begin{array}{@{}c@{}} {n - k + 2\lambda - 1} \\ {n - k} \end{array}\displaystyle } \right ) \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda - 1} \\ k \end{array}\displaystyle } \right ) \\ &\quad {}\times \sum_{i = r}^{n} {\left ( { \sum_{m = 0}^{i} {\frac{{\binom{n - k}{i - m} \binom{k}{m} {{(2\lambda + k)}_{m}}{{(2\lambda + n - k)}_{i - m}}}}{{{{( \lambda + \frac{1}{2})}_{m}}{{(\lambda + \frac{1}{2})}_{i - m}}}}} } \right ) } {q^{\frac{{n - i}}{2}}} \alpha^{-2\lambda -\frac{n}{2}-\frac{i}{2}} \\ &\quad \times \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} { \biggl( {\frac{{{d^{r}}}}{{d{x^{r}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{r + \lambda - \frac{1}{2}}}} \biggr) {{ \biggl(\frac{{px - \sqrt{ \alpha q} }}{2} \biggr)}^{i}}\,dx}. \end{aligned}$$
We can show that
$$\begin{aligned} &\int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{ \frac{{\sqrt{\alpha q }}}{p}} { \biggl( {\frac{{{d^{r}}}}{{d{x^{r}}}} {{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{r + \lambda - \frac{1}{2}}}} \biggr) {{ \biggl(\frac{{px - \sqrt{\alpha q} }}{2} \biggr)}^{i}}\,dx} \\ &\quad = \frac{{{{( - 1)}^{r}}i!}}{{{2^{i}}(i - r)!}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{ \frac{{\sqrt{\alpha q }}}{p}} {{{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{r + \lambda - \frac{1}{2}}} {{(\sqrt{\alpha q} - px)}^{i - r}} {{( - 1)} ^{i - r}}\,dx} \\ &\quad = \frac{{{{( - 1)}^{i}}i!}}{{{2^{i}}(i - r)!}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{ \frac{{\sqrt{\alpha q }}}{p}} {{{(\sqrt{\alpha q} + px)}^{r + \lambda - \frac{1}{2}}} {{(\sqrt{\alpha q} - px)}^{i + \lambda - \frac{1}{2}}}\,dx} \\ &\quad = \frac{{{{( - 1)}^{i}}i!}}{{{2^{i}}(i - r)!}}\frac{{{{\sqrt{ \alpha q }}^{i + r + 2\lambda }}}}{p} \int_{0}^{1} {{{(2x)}^{r + \lambda - \frac{1}{2}}} {{(2 - 2x)}^{i + \lambda - \frac{1}{2}}}2\,dx} \\ &\quad = \frac{{{{( - 1)}^{i}}{2^{r + 2\lambda }}i!}}{{(i - r)!}}\frac{ {{{\sqrt{\alpha q }}^{i + r + 2\lambda }}}}{p}\frac{{\Gamma (i + \lambda + \frac{1}{2})\Gamma (r + \lambda + \frac{1}{2})}}{{\Gamma (r + i + 2\lambda + 1)}}. \end{aligned}$$
Applying some identities about gamma function, we get
$$\begin{aligned} {d_{r}} &= {2^{\lambda + 1}}(r + \lambda )\left ( { \textstyle\begin{array}{@{}c@{}} {n - k + 2\lambda - 1} \\ {n - k} \end{array}\displaystyle } \right ) \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda - 1} \\ k \end{array}\displaystyle } \right ) \\ &\quad {}\times \sum_{i = r}^{n} {\left ( { \sum_{m = 0}^{i} {( - 1)^{r + i} \frac{{\binom{n - k}{i - m} \binom{k}{m} {{(2\lambda + k)}_{m}}{{(2\lambda + n - k)}_{i - m}}i!{{( \lambda + \frac{1}{2})}_{i}}}}{{{{(\lambda + \frac{1}{2})}_{m}}{{( \lambda + \frac{1}{2})}_{i - m}}(i - r)!{{(2\lambda )}_{r + i + 1}}}}} } \right ) } \\ &\quad {}\times \frac{\sqrt{\alpha }^{-2\lambda -n+r}{{{\sqrt{q} }^{n - r}}}}{ {{p^{r}}}}. \end{aligned}$$
This proves Theorem 3. □
Theorem 4
For
\(n\in \mathbf{Z}_{+}\), we have
$$\begin{aligned} {C_{\alpha ,p,q,n}}(x) &=\sum_{k = 0}^{n} { \Biggl\{ \frac{{{{( \lambda + 1)}_{k - 1}}(k + \lambda ){2^{2k}} \binom{n + k + 2\lambda - 1}{n - k} }}{{\binom{n + \lambda - \frac{1}{2}}{n - k} }}} {\sqrt{q} ^{n - k}}\sqrt{\alpha }^{3k-n} \\ &\quad {}\times \sum_{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ {n - k - l} \end{array}\displaystyle } \right ) } \left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ l \end{array}\displaystyle } \right ) {( -1)^{l}} \frac{{ \binom{k + \lambda + l - \frac{1}{2}}{l} \binom{\lambda + n - l - \frac{1}{2}}{n - l} }}{{ \binom{n}{l} \binom{k + 2\lambda + n}{n + k} \binom{n + k}{k} k!}} \Biggr\} C_{\alpha ,p,q,k}^{\lambda }(x). \end{aligned}$$
Proof
By (2), (5) and (14), we get
$$\begin{aligned} {d_{k}} &= \frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{ {\sqrt{\alpha q} }}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) C _{\alpha ,p,q,n}^{\lambda }(x)\,dx} \\ &=\frac{(\lambda )_{k}(k+\lambda )\Gamma (\lambda )}{\sqrt{\pi } \Gamma (k+\lambda +\frac{1}{2})}\frac{p}{q^{k+\lambda }} \int_{-\frac{\sqrt{\alpha q}}{p}}^{\frac{\sqrt{\alpha q}}{p}} \bigl( \alpha q-p^{2}x^{2} \bigr)^{k+\lambda -\frac{1}{2}}C_{\alpha ,p,q,n-k}^{ \lambda +k}(x)\,dx \\ &=\frac{{{{(\lambda )}_{k}}(k + \lambda )\Gamma (\lambda )}}{{\sqrt{ \pi }\Gamma (k + \lambda + \frac{1}{2})}} \frac{p}{{{q^{k + \lambda }}}}\frac{{ \binom{n + k + 2\lambda - 1}{n - k} }}{{\binom{n + \lambda - \frac{1}{2}}{n - k} }}\sum _{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ {n - k - l} \end{array}\displaystyle } \right ) } \\ &\quad {}\times \left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ l \end{array}\displaystyle } \right ) {( - 1)^{l}} { \biggl( \frac{1}{2} \biggr)^{n - k}}\alpha^{-\lambda -n+k} \\ &\quad {}\times \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{ \alpha q }}}{p}} {{{(\sqrt{\alpha q} - px)}^{k + \lambda - \frac{1}{2} + l}}} {(\sqrt{\alpha q} + px)^{\lambda + n - \frac{1}{2} - l}}\,dx. \end{aligned}$$
It is not difficult to show that
$$\begin{aligned}& \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{{\sqrt{\alpha q }}}{p}} {{{(\sqrt{\alpha q} - px)}^{k + \lambda - \frac{1}{2} + l}}} {(\sqrt{\alpha q } + px)^{\lambda + n - \frac{1}{2} - l}}\,dx \\& \quad = \frac{{{{\sqrt{\alpha q} }^{k + 2\lambda + n}}}}{p} \int_{0}^{1} {{{(2 - 2x)}^{{k + \lambda - \frac{1}{2} + l}}} {{(2x)}^{{\lambda + n - \frac{1}{2} - l}}}}\,dx \\& \quad = \frac{{{{\sqrt{\alpha q }}^{k + 2\lambda + n}}}}{p}{2^{k + 2 \lambda + n}}\frac{{\Gamma (k + \lambda + l + \frac{1}{2})\Gamma ( \lambda + n - l + \frac{1}{2})}}{{\Gamma (k + 2\lambda + n + 1)}}. \end{aligned}$$
Applying some identities involving gamma function, we get
$$\begin{aligned}& \Gamma \biggl(k + \lambda + l + \frac{1}{2} \biggr) = \left ( { \textstyle\begin{array}{@{}c@{}} {k + \lambda + l - \frac{1}{2}} \\ l \end{array}\displaystyle } \right ) l!\Gamma \biggl(k + \lambda + \frac{1}{2} \biggr), \\& \Gamma \biggl(\lambda + n - l + \frac{1}{2} \biggr) = \left ( { \textstyle\begin{array}{@{}c@{}} {\lambda + n - l - \frac{1}{2}} \\ {n - l} \end{array}\displaystyle } \right ) (n - l)!\Gamma \biggl(\lambda + \frac{1}{2} \biggr), \end{aligned}$$
and
$$ \Gamma (k + 2\lambda + n + 1) = \left ( { \textstyle\begin{array}{@{}c@{}} {k + 2\lambda + n} \\ {n + k} \end{array}\displaystyle } \right ) (n + k)!\Gamma (2\lambda + 1). $$
As we all know, the duplication formula for the gamma function is given by
$$ \Gamma (z)\Gamma \biggl(z + \frac{1}{2} \biggr) = {2^{1 - 2z}} \sqrt{\pi }\Gamma (2z). $$
From this formula, we get
$$\begin{aligned}& \int_{ - \frac{{\sqrt{\alpha q}}}{p}}^{ \frac{{\sqrt{\alpha q} }}{p}} {{{(\sqrt{\alpha q } - px)}^{k +\lambda - \frac{1}{2}}} {{(\sqrt{\alpha q} + px)}^{\lambda + n - l -\frac{1}{2}}}}\,dx \\& \quad=\frac{\sqrt{\alpha q }^{k + 2\lambda + n}}{p}{2^{ k + n}} \frac{\binom{k + \lambda + l - \frac{1}{2}}{l} \binom{\lambda + n - l - \frac{1}{2}}{n - l} \Gamma (k + \lambda + \frac{1}{2}) }{\binom{n}{l} \binom{k + 2\lambda + n}{n + k} \binom{n + k}{k} k!2\lambda \Gamma (\lambda )} \sqrt{\pi }. \end{aligned}$$
So, we get
$$\begin{aligned} d_{k} &= (\lambda + 1)_{k - 1}(k + \lambda ){2^{2k}}\frac{\binom{n + k + 2\lambda - 1}{n - k}}{\binom{n + \lambda - \frac{1}{2}}{n - k}} \sum_{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ {n - k - l} \end{array}\displaystyle } \right ) } \left ( { \textstyle\begin{array}{@{}c@{}} {n + \lambda - \frac{1}{2}} \\ l \end{array}\displaystyle } \right ) \\ &\quad {}\times {( - 1)^{l}} {\sqrt{q} ^{n - k}}\sqrt{\alpha }^{3k-n}\frac{ \binom{k + \lambda + l - \frac{1}{2}}{l} \binom{\lambda + n - l - \frac{1}{2}}{n - l}\binom{n}{l}}{\binom{k + 2\lambda + n}{n + k}\binom{n + k}{k}k!}. \end{aligned}$$
This completes the proof of Theorem 4. □
Theorem 5
For
\(n\in \mathbf{Z}_{+}\), we have
$$\begin{aligned}& \frac{{{B_{n + 1}}(x + 1) - {B_{n + 1}}(x)}}{{(n + 1)!}} = \sum_{0 \le k \le n,n - k \equiv 0(\bmod 2)} { \frac{\sqrt{\alpha }^{2\lambda +k+n}{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}} \\& \hphantom{\frac{{{B_{n + 1}}(x + 1) - {B_{n + 1}}(x)}}{{(n + 1)!}} =}{}\times \frac{{(k + \lambda )n!\Gamma (\lambda )}}{{{2^{n}}(\frac{ {n - k}}{2})!\Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}C_{\alpha ,p,q,k} ^{\lambda }(x), \\& \frac{{{E_{n}}(x + 1) + {E_{n}}(x)}}{{2(n)!}} = \sum_{0 \le k \le n,n - k \equiv 0(\bmod 2)} { \frac{\sqrt{\alpha }^{2\lambda +k+n}{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}} \\& \hphantom{\frac{{{E_{n}}(x + 1) + {E_{n}}(x)}}{{2(n)!}} = }{}\times \frac{{(k + \lambda )n!\Gamma (\lambda )}}{{{2^{n}}(\frac{ {n - k}}{2})!\Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}C_{\alpha ,p,q,k} ^{\lambda }(x). \end{aligned}$$
Proof
Applying Theorem 1, we get
$$ {x^{n}} = \sum_{0 \le k \le n,n - k \equiv 0(\bmod 2)} { \frac{\sqrt{ \alpha }^{2\lambda +k+n}{{{\sqrt{q} }^{n - k}}}}{{{p^{n}}}}} \frac{ {(k + \lambda )n!\Gamma (\lambda )}}{{{2^{n}}(\frac{{n - k}}{2})! \Gamma (\frac{{n + k + 2\lambda + 2}}{2})}}C_{\alpha ,p,q,k}^{\lambda }(x). $$
From (6) and (7), we have
$$\begin{aligned}& {e^{xt}} = \frac{1}{t}\frac{t}{{{e^{t}} - 1}}{e^{xt}} \bigl({e^{t}} - 1 \bigr) = \frac{1}{t}\frac{t}{{{e^{t}} - 1}} \bigl({e^{(x + 1)t}} - {e^{xt}} \bigr) \\& \hphantom{{e^{xt}} }= \frac{1}{t} \Biggl(\sum_{n = 0}^{\infty }{{B_{n}}(x + 1)} \frac{ {{t^{n}}}}{{n!}} - \sum_{n = 0}^{\infty }{{B_{n}}(x)} \frac{ {{t^{n}}}}{{n!}} \Biggr) \\& \hphantom{{e^{xt}} }= \sum_{n = 0}^{\infty }{\frac{{{B_{n + 1}}(x + 1) - {B_{n + 1}}(x)}}{{n + 1}} \frac{{{t^{n}}}}{{n!}}}, \\& {e^{xt}} = \frac{2}{{{e^{t}} + 1}}{e^{xt}} \biggl( \frac{{{e^{t}} + 1}}{2} \biggr) = \frac{1}{2} \biggl(\frac{2}{{{e^{t}} + 1}}{e^{(x + 1)t}} + \frac{2}{{{e^{t}} + 1}}{e^{xt}} \biggr) \\& \hphantom{{e^{xt}} }= \frac{1}{2} \Biggl(\sum_{n = 0}^{\infty }{{E_{n}}(x + 1)} \frac{ {{t^{n}}}}{{n!}} + \sum_{n = 0}^{\infty }{{E_{n}}(x)} \frac{ {{t^{n}}}}{{n!}} \Biggr). \end{aligned}$$
So, we get
$$ {x^{n}} = \frac{{{B_{n + 1}}(x + 1) - {B_{n + 1}}(x)}}{{n + 1}} = \frac{1}{2} \bigl({E_{n}}(x + 1) + {E_{n}}(x) \bigr). $$
We can complete the proof of Theorem 5. □
Theorem 6
For
\(n\in \mathbf{Z}_{+}\), we have
$$\begin{aligned} \frac{{{H_{n}}(x)}}{n!} &= \Gamma (\lambda )\sum_{k = 0}^{n} {\frac{{(k + \lambda )}}{{(n - k)!}}\left ( {\sum_{0 \le l \le n - k,l \equiv 0(\bmod 2)} { \frac{\sqrt{\alpha }^{2\lambda +2k+l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}}\frac{{ \binom{n - k}{l} l!{H_{n - k - l}}}}{{(\frac{l}{2})!\Gamma (\frac{{2k + 2 \lambda + l + 2}}{2})}}} } \right ) } \\ &\quad {}\times C_{\alpha ,p,q,k}^{\lambda }(x). \end{aligned}$$
Proof
From (10), (11) and (14), we get
$$\begin{aligned} {d_{k}} &= \frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda )\Gamma (\lambda )}}{{{{( - 2)}^{k}}\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{ {\sqrt{\alpha q} }}{p}} { \biggl( {\frac{{{d^{k}}}}{{d{x^{k}}}}{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}}} \biggr) {H_{n}}(x)\,dx} \\ &= \frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )}}{{\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}}\frac{ {n!}}{{(n - k)!}} \int_{ - \frac{{\sqrt{\alpha q} }}{p}}^{\frac{ {\sqrt{\alpha q }}}{p}} {{{ \bigl(\alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}} {H_{n - k}}(x)\,dx} \\ &=\frac{{{p^{1 - k}}}}{{{q^{k + \lambda }}}}\frac{{(k + \lambda ) \Gamma (\lambda )}}{{\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}}\frac{ {n!}}{{(n - k)!}} \\ &\quad {}\times \sum_{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) } {H_{n - k - l}} {2^{l}} \int_{ - \frac{{\sqrt{\alpha q }}}{p}}^{\frac{{\sqrt{\alpha q} }}{p}} {{{ \bigl( \alpha q - {p^{2}} {x^{2}} \bigr)}^{k + \lambda - \frac{1}{2}}} {x^{l}}\,dx}. \end{aligned}$$
Let us assume that \(l\equiv 0(\bmod 2)\), first let \(x=\frac{ \sqrt{q}}{p}y\), then \(y=\sqrt{x}\), we have
$$\begin{aligned} {d_{k}} & = \frac{{(k + \lambda )\Gamma (\lambda )}}{{\sqrt{\pi } \Gamma (k + \lambda + \frac{1}{2})}}\frac{{n!}}{{(n - k)!}} \\ &\quad {}\times \sum_{l = 0}^{n - k} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) } {H_{n - k - l}} {2^{l}} \frac{\sqrt{\alpha }^{2\lambda +2k+l} {{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}} \int_{0}^{1} {{{(1 - x)}^{k + \lambda - \frac{1}{2}}} {x^{\frac{{l - 1}}{2}}}\,dx} \\ &= \frac{{(k + \lambda )\Gamma (\lambda )}}{{\sqrt{\pi }\Gamma (k + \lambda + \frac{1}{2})}}\frac{{n!}}{{(n - k)!}} \\ &\quad {}\times \sum_{0 \le l \le n - k,l \equiv 0(\bmod 2)} {\left ( { \textstyle\begin{array}{@{}c@{}} {n - k} \\ l \end{array}\displaystyle } \right ) } {H_{n - k - l}} {2^{l}}\frac{\sqrt{\alpha }^{2\lambda +2k+l} {{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}} \frac{{\Gamma (k + \lambda + \frac{1}{2})\Gamma (\frac{{l + 1}}{2})}}{{\Gamma (\frac{{2k + 2\lambda + l + 2}}{2})}} \\ &= \frac{{(k + \lambda )\Gamma (\lambda )n!}}{{(n - k)!}}\sum_{0 \le l \le n - k,l \equiv 0(\bmod 2)} { \frac{{ \binom{n - k}{l} {H_{n - k - l}}l!}}{{(\frac{l}{2})!\Gamma (\frac{{2k + 2 \lambda + l + 2}}{2})}}} \frac{\sqrt{\alpha }^{2\lambda +2k+l}{{{\sqrt{q} }^{l}}}}{{{p^{l + k}}}}. \end{aligned}$$
□