- Research
- Open Access
- Published:
Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator
Advances in Difference Equations volume 2018, Article number: 4 (2018)
Abstract
In this paper, we investigate the existence and uniqueness of solutions for a fractional boundary value problem involving the p-Laplacian operator. Our analysis relies on some properties of the Green function and the Guo-Krasnoselskii fixed point theorem and the Banach contraction mapping principle. Two examples are given to illustrate our theoretical results.
1 Introduction
Fractional differential equations have excited, in the past decades, a considerable interest both in mathematics and in applications. They were used in the mathematical modeling of systems and processes occurring in many engineering and scientific disciplines; for instance, see [1–7]. On the other hand, for studying the turbulent flow in a porous medium, Leibenson [8] introduced the model of a differential equation with the p-Laplacian operator. Since then, differential equations with a p-Laplacian operator are widely applied in different fields of physics and natural phenomena; for examples, see [9–12] and the references therein.
The topic of fractional-order boundary value problems with the p-Laplacian operator has been intensively studied by several researchers in the recent years. We refer the reader to [13–17] and the references therein.
Chen et al. [18] studied the existence of solutions for the boundary value problem of the fractional p-Laplacian equation
where \(0 < \alpha, \beta\le1\), \(1 < \alpha+ \beta\le2\), \({}^{c} D_{0^{+}}^{\alpha}\) is the Caputo fractional derivative of order α, \(\varphi_{p}(s) = \vert s \vert ^{p-2}s\), \(p > 1\), and \(f : [0, 1] \times\mathbb{R}^{2} \to \mathbb{R}\) is a continuous function. Obviously, \(\varphi_{p}\) is invertible, and its inverse operator is \(\varphi_{q}\), where \(q > 1\) is a constant such that \(\frac{1}{p} + \frac{1}{q} = 1\).
Arifi et al. [19] investigated the following nonlinear fractional boundary value problem with p-Laplacian operator:
where \(2 < \alpha\le3\), \(1 < \beta\le2\), \(p > 1\), \(D_{a^{+}}^{\alpha }\) is the Riemann-Liouville fractional derivative of order α, and \(\chi: [a, b] \to \mathbb{R}\) is a continuous function. Necessary conditions for the existence of nontrivial solutions to (1.2) were given.
In our recent paper [20], we consider the following fractional boundary value problem with mixed fractional derivative and p-Laplacian operator
where \(1 < \alpha, \beta\leq2\), \(p > 1\), and \(k:[a , b]\rightarrow\mathbb{R}\) is a continuous function. Under some assumptions on the nonlinear term f, the existence of positive solutions to (1.3) was obtained, and two Lyapunov-type inequalities were established.
Motivated by the works mentioned, in this paper, we investigate the existence of positive solutions and the uniqueness of a solution for the following boundary value problem of fractional differential equation with p-Laplacian operator:
where \(0 < \beta\le1\), \(2 < \alpha< 2 + \beta\), \(D_{0^{+}}^{\alpha}\) and \({}^{c} D_{0^{+}}^{\beta}\) are the Riemann-Liouville fractional derivative and Caputo fractional derivative of orders \(\alpha, \beta\), respectively, \(p > 1\), and \(f:[a , b] \times\mathbb{R} \rightarrow\mathbb{R}\) is a continuous function.
The paper is organized as follows. In Section 2, we briefly introduce some necessary basic knowledge and definitions about fractional calculus theory. In Section 3, we write (1.4) as an equivalent integral equation, and then, under some assumptions on the nonlinear term f, we establish three theorems on the existence of nontrivial positive solutions and uniqueness of a solution for FBVP (1.4) by means of the Guo-Krasnoselskii fixed point theorem and the Banach contraction mapping principle, respectively. Finally, in Section 4, we give two examples to show the effectiveness of the results obtained.
2 Preliminaries
In this section, we introduce some concepts and results of fractional calculus. For more details, we refer to [2, 3].
Definition 2.1
The Riemann-Liouville fractional integral operator of order \(\alpha> 0\) of a function \(f : (0, +\infty) \to\mathbb{R}\) is given by
where Γ denotes the gamma function.
Definition 2.2
The Riemann-Liouville fractional derivative of order \(\alpha> 0\) of a continuous function \(f : (0, +\infty) \to \mathbb{R}\) is given by
where \(n = [\alpha]+1\).
Definition 2.3
The Caputo fractional derivative of order \(\alpha> 0\) of a function \(f : (0, +\infty) \to\mathbb{R}\) is given by
where \(n = [\alpha]+1\).
We now state some properties of fractional operators.
Lemma 2.4
([3])
Let \(\alpha, \beta\in\mathbb {R}^{+}\) and \(u \in L_{1}[0, 1]\). Then \(I_{0^{+}}^{\alpha} I_{0^{+}}^{\beta} u(x) = I_{0^{+}}^{\alpha+\beta} \) almost everywhere on \([0, 1]\).
Lemma 2.5
([3])
Let \(\alpha\in\mathbb{R}^{+}\) and \(u \in C[0, 1]\). Then \({}^{c} D_{a^{+}}^{\alpha} I_{a^{+}}^{\alpha} u(x) = u(x)\).
Lemma 2.6
([3])
If \(\alpha> 0\), \(n = [\alpha]+1\), and \(u \in AC^{n}[0, 1]\), then \(I_{0^{+}}^{\alpha} {}^{c} D_{0^{+}}^{\alpha} u(x) = u(x) - \sum_{k=0}^{n-1} \frac{x^{k}}{k!} u^{(k)} (0)\).
Lemma 2.7
([21])
Let X be a Banach space, and let \(P \subset X\) be a cone. Let \(\Omega_{1}\) and \(\Omega_{2}\) be bounded open subsets of X with \(0 \in\Omega_{1} \subset\bar{\Omega}_{1} \subset\Omega_{2}\), and let \(T : P \cap(\bar{\Omega}_{2} \setminus\Omega _{1}) \to P\) be a completely continuous operator such that
-
(i)
\(\Vert Tu \Vert \ge \Vert u \Vert \) for any \(u \in P \cap\partial\Omega_{1}\) and \(\Vert Tu \Vert \le \Vert u \Vert \) for any \(u \in P \cap\partial\Omega_{2}\); or
-
(ii)
\(\Vert Tu \Vert \le \Vert u \Vert \) for any \(u \in P \cap\partial\Omega_{1}\) and \(\Vert Tu \Vert \ge \Vert u \Vert \) for any \(u \in P \cap\partial\Omega_{2}\).
Then, T has a fixed point in \(P \cap(\bar{\Omega}_{2} \setminus\Omega _{1}) \).
3 Main results
Let \(E = C[0, 1]\) be endowed with the norm \(\Vert x \Vert = \max _{t \in[0, 1]} \vert x(t) \vert \).
We now consider the following boundary value problem:
Lemma 3.1
Let \(h \in C[0, 1] \cap L[0, 1]\), \(0 < \beta\le1\), and \(2 < \alpha< 2 + \beta\). Then \(u \in C[0, 1]\) is a solution of (3.1) if and only if
where \(G(t, s)\) is Green’s function given by
Proof
Integrating the first equation of (3.1) on \([0, t]\), by the boundary condition \(D^{\alpha}_{0^{+}}u(0) = 0\) we have that
which implies that
By Lemma 2.6 we have that
By the boundary value condition \(u(0) = 0\) we have \(c_{3} = 0\). Moreover, from Lemmas 2.4 and 2.5 we can easily obtain
By (3.5) and \({}^{c} D_{0^{+}}^{\beta} u(0) = 0\) we have \(c_{2} = 0\). On the other hand,
which yields that
Substituting \(c_{2} = c_{3} = 0\) and (3.6) into (3.4), we can obtain that the solution of (3.1) is
where Green’s function \(G(t, s)\) is as in (3.3). The proof is completed. □
Lemma 3.2
The function G(t, s) has the following properties:
-
(1)
\(G(t, s) > 0\) for \(t, s \in(0, 1)\),
-
(2)
\(\beta t^{\alpha-1} s (1-s)^{\alpha-\beta-1} \le\Gamma (\alpha) G(t, s) \le(\alpha-1)t^{\alpha-2} s (1-s)^{\alpha-\beta-1}\) for \(t, s \in[0, 1]\).
Proof
First, we prove that (1) holds. Since
we have that
Thus, we easily obtain that \(G(t, s) > 0\) for \(s, t \in(0, 1)\).
We now will prove that (2) holds. If \(0 \le s \le t \le1\), then
On the other hand, we have
The proof of (3.8) is the same as that of (2.6) of Lemma 2.7 in [22], and here we omit it.
When \(0 \le t \le s \le1\), we get
On the other hand, we have
The proof is completed. □
Define the cone \(P \subset E = C[0, 1]\) by
Theorem 3.3
Let \(0 < \beta\le1\), \(2 < \alpha< 2 + \beta\), and \(f : [0, 1] \times\mathbb{R}_{+} \to\mathbb{R}_{+} = [0, + \infty)\) be a continuous function. Suppose that there exist two positive constants \(r_{2} > r_{1} > 0\) such that the following assumptions are satisfied:
- (H1):
-
\(f(t, x) \ge\rho\varphi_{p}(r_{1})\) for \((t, x) \in[0, 1] \times [0, r_{1}]\),
- (H2):
-
\(f(t, x) \le\omega\varphi_{p}(r_{2})\) for \(x \in[0, 1] \times[0, r_{2}]\),
where
and
Then FBVP (1.4) has at least one nontrivial positive solution u belonging to E such that \(r_{1} \le \Vert u \Vert \le r_{2}\).
Proof
From Lemma 3.1 we know that \(u \in C[0, 1]\) is a solution of (1.4) if and only if u is a solution of the integral equation
Let \(T : P \to E\) be the operator defined by
For any \(u \in P\), we have by Lemma 3.2 that
which implies that \(T : P \to P\). Using the Arzelà -Ascoli theorem, we can prove that \(T : P \to P\) is completely continuous. Let \(\Omega_{i} = \{u \in P : \Vert u \Vert \le r_{i}\}\), \(i = 1, 2\). From (H1) and Lemmas 3.1 and 3.2 we obtain for \(t \in [\frac{1}{2}, 1 ]\) and \(u \in P \cap\partial\Omega_{1}\) that
Hence, \(\Vert Tu \Vert \ge \Vert u \Vert \) for \(u \in P \cap\partial\Omega_{1}\). On the other hand, from (H2) and Lemmas 3.1 and 3.2 we have
for \(u \in P \cap\partial\Omega_{2}\). Thus, by Lemma 2.7 we have that the operator T has a fixed point in \(u \in P \cap(\bar{\Omega}_{2} \setminus\Omega_{1})\) with \(r_{1} \le \Vert u \Vert \le r_{2}\), and clearly u is a positive solution for FBVP (1.4). The proof is completed. □
Lemma 3.4
([12])
The p-Laplacian operator has the following properties:
-
(i)
If \(1 < p < 2\), \(x y > 0\) and \(\vert x \vert , \vert y \vert \ge m > 0\), then
$$ \bigl\vert \varphi_{p}(x) - \varphi_{p}(y) \bigr\vert \le(p-1) m^{p-2} \vert x - y \vert . $$ -
(ii)
If \(p > 2\) and \(\vert x \vert , \vert y \vert \le M\), then
$$ \bigl\vert \varphi_{p}(x) - \varphi_{p}(y) \bigr\vert \le(p-1) M^{p-2} \vert x - y \vert . $$
Now we are in position to prove the uniqueness of a solution for FBVP (1.4).
Theorem 3.5
Assume that \(0 < \beta\le1\), \(2 < \alpha< 2 + \beta\), \(1 < p < 2\), and the following conditions are satisfied:
- (H3):
-
For all \(r > 0\), there exists a nonnegative function \(h_{r} \in L[0, 1]\) with \(0 < \int_{0}^{1} h_{r}(t) \,dt \le M\) (a positive constant) such that
$$ \bigl\vert f(t, u) \bigr\vert \le h_{r}(t), \quad\forall (t, u) \in(0, 1] \times[- r, r]; $$ - (H4):
-
There exists a constant \(k > 0\) such that
$$ \bigl\vert f(t, u) - f(t, v) \bigr\vert \le k \vert u - v \vert , \quad \forall t \in[0, 1], u, v \in\mathbb{R}. $$
If
then FBVP (1.4) has a unique solution in \(C[0, 1]\).
Proof
By (H3) we have that
By Lemmas 3.1 and 3.4(i) and by (3.10) we obtain
where \(L_{1} = (\alpha- 1) (q-1)k M^{q-2} B(3, \alpha-\beta)\). From condition (3.9) we know that \(0 < L_{1} < 1\). Hence, by means of the Banach contraction mapping principle we obtain that T has a unique fixed point in E, that is, that FBVP (1.4) has a unique solution. The proof is completed. □
Theorem 3.6
Assume that \(0 < \beta\le1\), \(2 < \alpha< 2 + \beta\), and \(p > 2\) and that (H4) and the following condition holds:
- (H5):
-
There exist constants \(\lambda> 0\) and \(0 < \delta< \frac {\alpha-2}{2-q}\) such that
$$ f(t, u) \ge\lambda\delta t^{\delta-1}, \quad\forall(t, u) \in(0, 1] \times\mathbb{R}. $$
If
then FBVP (1.4) has a unique solution in \(C[0, 1]\).
Proof
By (H5) we have
Obviously, for any \(u, v \in E\), we have \(\vert (Tu)(0) - (Tv)(0) \vert = 0\). For any \(t \in(0, 1]\), by Lemmas 3.2 and 3.4(ii) and by (3.12) we get
which implies that
where \(L_{2} = (\alpha- 1) (q-1)k \lambda^{q-2} B(3, \alpha-\beta)\). By condition (3.11) we obtain that \(0 < L_{2} < 1\). Thus, \(T : E \to E\) is a contraction mapping. Using the Banach contraction mapping principle, we obtain that T has a unique fixed point in E. Hence, FBVP (1.4) has a unique solution. The proof is completed. □
Similarly, we have the following:
Theorem 3.7
Assume that \(0 < \beta\le1\), \(2 < \alpha< 2 + \beta\), and \(p > 2\) and that (H4) and the following condition holds:
- (H6):
-
There exist constants \(\lambda> 0\) and \(0 < \delta< \frac {\alpha-2}{2-q}\) such that
$$ f(t, u) \le- \lambda\delta t^{\delta-1}, \quad\forall(t, u) \in(0, 1] \times\mathbb{R}. $$
If k satisfies (3.11), then FBVP (1.4) has a unique solution in \(C[0, 1]\).
4 Examples
In this section, we present some examples to illustrate our main results obtained in the previous section.
Example 4.1
We consider the fractional boundary value problem
Obviously, FBVP (4.1) can be regarded as FBVP (1.4) with \(p = \frac{5}{2}\), \(\alpha= \frac{7}{3}\), \(\beta= 0.7\), and
By a simple computation we obtain \(q = \frac{5}{3}\),
We choose \(r_{1} = \frac{1}{20}\) and \(r_{2} = \frac{2}{3}\). Then we can obtain
Hence, by Theorem 3.3, FBVP (4.1) has at least one nontrivial positive solution u in E such that \(\frac{1}{20} \le \Vert u \Vert \le\frac{2}{3}\).
Example 4.2
Consider the following fractional boundary value problem:
FBVP (4.2) can be regarded as FBVP (1.4) with \(p = \frac{5}{3}\), \(\alpha= \frac{5}{2}\), \(\beta= 0.8\), and
It is easy to see that, for any \(r > 0\),
where \(h_{r}(t) = (1 + 2 t^{2}) \arctan (\frac{2}{3}(r+1) ) \). Obviously, \(h_{r} \in L[0, 1]\) and \(\int_{0}^{1} h_{r}(s) \,ds \le\int_{0}^{1} \frac{\pi}{2} (1+2s^{2})\,ds = \frac {5 \pi}{6} := M\). Moreover, we have
Let \(k = 2\). We have
where \(q = \frac{5}{2} > 2\). Thus, by Theorem 3.5, FBVP (4.2) has a unique nontrivial solution.
5 Conclusion
In this paper, we obtain an equivalent integral equation for a class of fractional boundary value problem with p-Laplacian operator. Using the properties of the corresponding Green function and Guo-Krasnosel’skii fixed point theorem on cones, we obtain the existence of positive solutions to problem (1.4). Moreover, applying the properties of the p-Laplacian operator and the Banach contraction mapping principle, we get some uniqueness results of solutions. Finally, we provide two examples to illustrate the main results.
References
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Podlubny, I: Fractional Differential Equations, Academic Press, San Diego (1999)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Lakshmikantham, V, Leela, S, Vasundhara, V: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
Debnath, L, Bhatta, D: Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics. Fract. Calc. Appl. Anal. 7, 21-36 (2004)
Chen, W, Sun, H, Zhang, X, Korosak, D: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754-1758 (2010)
Paola, M, Pinnola, F, Zingales, M: Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 66, 608-620 (2013)
Leibenson, LS: General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirg. SSR 9, 7-10 (1983) (in Russian)
Chen, T, Liu, W, Yang, C: Antiperiodic solutions for Liénard-type differential equation with p-Laplacian operator. Bound. Value Probl. 2010, Article ID 194824 (2010)
Jiang, D, Gao, W: Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 252, 631-648 (2000)
Zhang, X, Liu, L, Wu, Y: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26-33 (2014)
Liu, X, Jia, M, Xiang, X: On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 64, 3267-3275 (2012)
Lu, L, Han, L, Sun, R, Liu, J: Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2013, 30 (2013)
Han, Z, Lu, H, Zhang, C: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526-536 (2015)
Ding, Y, Wei, Z, Xu, J, O’Regan, D: Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian. J. Comput. Appl. Math. 288, 151-158 (2015)
Li, Y, Yang, H: Existence of positive solutions for nonlinear four-point Caputo fractional differential equation with p-Laplacian. Bound. Value Probl. 2017, 75 (2017)
Liu, X, Jia, M, Ge, W: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56-62 (2017)
Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
Arifi, NA, Altun, I, Jleli, M, Lashin, A, Samet, B: Lyapunov-type inequalities for a fractional p-Laplacian equation. J. Inequal. Appl. 2016, 189 (2016)
Liu, Y, Xie, D, Yang, D, Bai, C: Two generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions. J. Inequal. Appl. 2017, 98 (2017)
Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering, vol. 5. Academic Press, Boston (1988)
Wang, Y, Liu, L, Wu, Y: Positive solutions for a fractional boundary value problem with changing sign nonlinearity. Abstr. Appl. Anal. 2012, Article ID 214042 (2012)
Acknowledgements
The author thanks the editor and referees for their careful reading of the manuscript and a number of excellent suggestions.
Funding
This work is supported by Natural Science Foundation of China (11271364, 10771212).
Author information
Authors and Affiliations
Contributions
The author read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bai, C. Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator. Adv Differ Equ 2018, 4 (2018). https://doi.org/10.1186/s13662-017-1460-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1460-3
MSC
- 26A33
- 34A08
- 76F70
Keywords
- fractional boundary value problem
- p-Laplacian operator
- fixed point theorem