Skip to main content

Theory and Modern Applications

Multi-parameter second-order impulsive indefinite boundary value problems

Abstract

We consider the solvable intervals of three positive parameters \(\lambda _{i}\) (\(i=1,2,3\)) in which the second-order impulsive boundary value problem

$$\textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0 \end{cases} $$

admits at least two positive solutions. The main interest is that the weight functions \(a(t)\), \(b(t)\), and \(g(t)\) change sign on \([0,1]\), \(\lambda_{i}\) \((i=1,2,3)\not\equiv1\), and \(I_{k}\neq0\) (\(k=1,2,\ldots,n\)). We will obtain several interesting results: there exist positive constants \(\lambda^{*}\), \(\lambda_{*}\), \(\lambda_{i}^{*}\) (\(i=1,3\)), \(\lambda_{i}^{**}\) (\(i=1,2,3\)) and α with \(\alpha\neq1\) such that: (i) if \(\alpha>1\), then for \(\lambda_{i}\in[\lambda _{i}^{*},+\infty)\) (\(i=1,3\)) and \(\lambda_{2}\in[\lambda_{*}, \lambda^{*} ]\), the above boundary value problem admits at least two positive solutions; (ii) if \(0<\alpha<1\), then for \(\lambda_{i}\in(0,\lambda_{i}^{**}]\) (\(i=1,2,3\)), the above boundary value problem admits at least two positive solutions.

1 Introduction

It is well established that impulsive differential equations can provide a natural description of observed evolution processes. Therefore it is regarded as an important mathematical tool to better understand many real world problems in applied sciences. On details and explanations, we refer the readers to the texts [1–4]. Specially, Nieto and O’Regan [5] pointed out that in a second order differential equation \(u''=f(t,u,u')\), one usually considers impulses in the position u and the velocity \(u'\). However, in the motion of spacecraft one has to consider instantaneous impulses depending on the position that result in jump discontinuities in velocity, but with no change in position [6]. The impulses only on velocity occur also in impulsive mechanics [7]. Recently, a great interest has been shown by many authors in the subject of impulsive boundary value problems (IBVPs) by applying different approaches, for example, see [8–28] and the references cited therein.

At the same time, we notice that a class of indefinite weight problems have attracted the attention of Ma and Han [29], López-Gómez and Tellini [30], Boscaggin and Zanolin [31, 32], Sovrano and Zanolin [33], Bravo and Torres [34], Wang and An [35], and Yao [36]. In [29], Ma and Han considered the following boundary value problem:

$$\textstyle\begin{cases} u''+\lambda a(t)f(u)=0,& 0< t< 1,\\ u(0)=u(1)=0, \end{cases} $$

where \(a\in C[0,1]\) may change sign, λ is a parameter. They proved the existence, multiplicity, and stability of positive solutions for the above problem by applying bifurcation techniques.

In [33], applying the shooting method, Sovrano and Zanolin presented a multiplicity result of positive solutions for the Neumann problem

$$\textstyle\begin{cases} u''+ a(t)f(u)=0,& 0< t< 1,\\ u(t)>0,& t\in[0,T],\\ u'(0)=u'(T)=0, \end{cases} $$

where the weight function \(a\in C[0,1]\) has indefinite sign.

Recently, Wang and An in [35] dealt with the existence and multiplicity of positive solutions for the second-order differential system

$$\textstyle\begin{cases} -u^{\prime\prime}=a(t)\varphi u+h(t)f(u),& 0< t< 1,\\ -\varphi^{\prime\prime}=b(t)u,& 0< t< 1,\\ u(0)=u(1)=0,\\ \varphi(0)=\varphi(1)=0, \end{cases} $$

where \(a(t)\), \(b(t)\), \(g(t)\) are allowed to change sign on \([0,1]\).

Very recently, López-Gómez, Omari, and Rivetti [37, 38] studied a class of quasilinear indefinite problems

$$\textstyle\begin{cases} - (\frac{u'}{\sqrt{1+u^{\prime2}}} )'=\lambda a(x)f(u),\\ u'(0)=u'(1)=0, \end{cases} $$

where \(\lambda\in\mathcal{R}\) is a parameter, \(a\in L^{1}[0,1]\) changes sign. They derived many results on the existence and the multiplicity of positive (regular) solutions by applying topological degree and variational approach, respectively.

For all we know, in literature there are no articles on multiple positive solutions for the analogous of indefinite impulsive problems with multiple parameters. More precisely, the study of \(\lambda_{i}\) \((i=1,2,3)\not\equiv1\), and \(a(t)\), \(b(t)\), and \(g(t)\) changing sign on \([0,1]\) is still open for the second order impulsive boundary value problem

$$ \textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0, \end{cases} $$
(1.1)

where \(\lambda_{1}>0\), \(\lambda_{2}>0\), and \(\lambda_{3}>0\) are three parameters, \(a(t)\), \(b(t)\), \(g(t)\) change sign on \([0,1]\), \(t_{k}\) (\(k=1,2,\dots,n\)) (where n is a fixed positive integer) are fixed points with \(0=t_{0}< t_{1}< t_{2}<\cdots <t_{k}<\cdots <t_{n}<t_{n+1}=1\), \(\Delta x |_{t=t_{k}}\) denotes the jump of \(x(t)\) at \(t=t_{k}\), i.e., \(\Delta x |_{t=t_{k}}=x(t_{k}^{+})-x(t_{k}^{-})\), where \(x(t_{k}^{+})\) and \(x(t_{k}^{-})\) represent the right-hand limit and left-hand limits of \(x(t)\) at \({t=t_{k}}\), respectively. Moreover, throughout this paper, we assume that a, g, b, f and \(I_{k}\) (\(k=1,2,\ldots,n\)) satisfy

\((H_{1})\) :

a, g, \(b: [0,1]\rightarrow(-\infty,+\infty)\) and continuous, and there exists a constant \(\xi\in(0, 1)\) such that

$$\textstyle\begin{cases} a(t),\qquad g(t),\qquad b(t)\geq0, & \forall t\in[0,\xi],\\ a(t)),\qquad g(t),\qquad b(t)\leq0, & \forall t\in[\xi,1]. \end{cases} $$

Moreover, \(a(t)\), \(g(t)\), \(b(t)\) do not vanish identically on any subinterval of \([0,1]\).

\((H_{2})\) :

\(f\in C(\mathcal{R}^{+}, \mathcal{R}^{+})\), and \(f(s)>0\) for \(s>0\), where \(\mathcal {R}^{+}=[0,+\infty)\).

\((H_{3})\) :

\(I_{k}\in C(\mathcal{R}^{+}, \mathcal{R}^{+})\), and \(I_{k}(s)>0\) for \(s>0\), \(k=1,2,\ldots,n\).

We denote

\(a^{+}(t)=\max\{a(t),0\}\), \(a^{-}(t)=-\min\{a(t),0\}\) such that \(a(t)=a^{+}(t)-a^{-}(t)\), \(\forall t\in[0,1]\),

\(g^{+}(t)=\max\{g(t),0\}\), \(g^{-}(t)=-\min\{g(t),0\}\) such that \(g(t)=g^{+}(t)-g^{-}(t)\), \(\forall t\in[0,1]\),

\(b^{+}(t)=\max\{b(t),0\}\), \(b^{-}(t)=-\min\{b(t),0\}\) such that \(b(t)=b^{+}(t)-b^{-}(t)\), \(\forall t\in[0,1]\).

Some special cases of problem (1.1) have been investigated. For example, Sovrano and Zanolin [33] considered problem (1.1) when \(\lambda_{1}\equiv1\), \(\lambda_{2}=0\), and \(I_{k}=0\) (\(k=1,2,\ldots,n\)). By applying the shooting method, they presented a multiplicity result of positive solutions for problem (1.1). In [35], Wang and An studied problem (1.1) with \(\lambda _{1}\equiv1\), \(\lambda_{2}\equiv1\), and \(I_{k}=0\) (\(k=1,2,\ldots,n\)). Using a fixed point technique, they showed the existence of positive solutions for problem (1.1).

Remark 1.1

Comparing with other related indefinite problems [29–32], the main features of this paper are as follows.

  1. (i)

    \(I_{k}\neq0\) (\(k=1,2,\ldots,n\)) is considered.

  2. (ii)

    \(\lambda_{i}>0\) is available, not only \(\lambda_{i}\equiv1\), \(i=1,2,3\).

  3. (iii)

    The method used in the present paper is completely different from those in [29–32].

Remark 1.2

It is very difficult to obtain the solvable intervals of three positive parameters \(\lambda_{i}\) (\(i=1,2,3\)), especially for parameter \(\lambda_{2}\). For details, see the proof of part I of Theorem 3.1.

It is well accepted that fixed point theorems in cones have been instrumental in showing the existence, multiplicity of positive solutions of various boundary value problems for differential equations. See, for instance, [39–46] and the references therein. In this paper, we will use Krasnoselskii’s fixed point theorem in a cone to investigate the existence and multiplicity of positive solutions of problem (1.1). We remark that this is probably the first time that multiple positive solutions of impulsive differential system with indefinite weight and multiple parameters have been studied.

The rest of the present article is organized as follows. In Sect. 2 we give some preliminary results to be used in the subsequent sections. Section 3 is devoted to stating and proving the main results. Several related remarks are given in Sect. 4, and we give an example to illustrate the main results in the final section.

2 Preliminaries

In this section, we give some preliminary results for the convenience of later use and reference.

Let \(J=[0,1]\), \(J'=J\backslash\{t_{1},t_{2},\ldots,t_{n}\}\), \(J_{0}=[t_{0},t_{1}]\), \(J_{k}=(t_{k},t_{k+1}]\), \(k=1,2,\ldots,n\), and

$$PC[0,1]= \bigl\{ x:x\mbox{ is continuous at }t\neq t_{k}, x \bigl(t_{k}^{-}\bigr)=x(t_{k})\mbox{ and } x \bigl(t_{k}^{+}\bigr)\mbox{ exists}, k=1,2,\dots,n \bigr\} . $$

Then \(PC[0,1]\) is a real Banach space with the norm

$$\Vert x \Vert _{PC}=\max_{t\in J} \bigl\vert x(t) \bigr\vert . $$

By a positive solution of problem (1.1), we understand a pair of functions \((x,y)\) with \(x\in C^{2}(J')\cap PC[0,1]\), \(y\in C^{2}(J)\cap C[0,1]\), if \((x,y)\) satisfies problem (1.1), and \(x\geq0\), \(t\in J'\), \(y\geq0\), \(t\in J\), \(x,y\not\equiv0\).

It is clear that problem (1.1) is equivalent to the following two boundary value problems:

$$ \textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0, \end{cases} $$
(2.1)

and

$$ \textstyle\begin{cases} -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ y(0)=y(1)=0. \end{cases} $$
(2.2)

Lemma 2.1

Assume that \((H_{1})\)–\((H_{3})\) hold. Then problem (2.1) has a solution x, and x can be expressed in the form:

$$\begin{aligned} x(t) =& \int_{0}^{1}G(t,s)a(s)x(s)y(s)\,ds+ \lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds \\ &{}+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr), \end{aligned}$$
(2.3)

where

$$ G(t,s)= \textstyle\begin{cases} t,& 0\leq t\leq s\leq1,\\ s,& 0\leq s\leq t\leq1. \end{cases} $$
(2.4)

It is obvious that

$$ G'_{s}(t,s)= \textstyle\begin{cases} 0, & 0\leq t \leq s\leq1,\\ 1, & 0\leq s \leq t \leq1, \end{cases} $$
(2.5)

and

$$\max_{t,s\in J,t\neq s} \bigl\vert G^{\prime}_{s}(t,s) \bigr\vert =1. $$

Proof

The proof of Lemma 2.1 is similar to that of Lemma 2.6 in [47]. □

It follows from the definition of \(G(t,s)\) that Proposition 2.1 holds.

Proposition 2.1

Let \(G(t,s)\) be given as in (2.4). Then we have the following results:

$$\begin{aligned} &G(t,s)>0,\quad \forall t, s\in(0,1), \\ &tG(s,s)\leq G(t,s)\leq G(s,s)=s\leq1,\quad \forall t, s\in J, \\ &G(t,s)\geq\xi G(s,s),\quad \forall t\in[\xi,1], s\in J. \end{aligned}$$
(2.6)

Proof

By the definition of \(G(t,s)\), it is not difficult to see that \(G(t,s)>0\), \(\forall t, s\in(0,1)\).

Next, turning to (2.6), if \(t\leq s\), then \(G(t,s)=t\leq s\); if \(t\geq s\), then \(G(t,s)=s\). So we get that \(G(t,s)\leq s=G(s,s)\), \(\forall t, s \in J\).

On the other hand, noticing that \(t, s \in J\), if \(t\leq s\), then \(G(t,s)=t\geq ts\); if \(t\geq s\), then \(G(t,s)=s\geq st\). Therefore, we obtain that \(G(t,s)\geq ts=t G(s,s)\), \(\forall t, s \in J\). This gives the proof of (2.6).

If \(t\in[\xi,1]\), it is easy to see that by (2.6), \(G(t,s)\geq\xi G(s,s)\), \(\forall s\in J\). □

Remark 2.1

Noticing that \(t_{k}\in(0,1)\), we get \(G(t_{k},t_{k})>0\).

Lemma 2.2

Assume that \((H_{1})\)–\((H_{3})\) hold. Then problem (2.2) has a solution y given by

$$ y(t) =\lambda_{2} \int_{0}^{1}G_{1}(t,s)b(s)x(s)\,ds, $$
(2.7)

where

$$ G_{1}(t,s)= \textstyle\begin{cases} t(1-s), & 0\leq t \leq s\leq1,\\ s(1-t), & 0\leq s \leq t \leq1. \end{cases} $$
(2.8)

Proof

The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [48]. □

Similar to the proof of Proposition 2.1, we can get Proposition 2.2.

Proposition 2.2

Let \(G_{1}(t,s)\) be given as in (2.8). Then we have the following results:

$$\begin{aligned} &G_{1}(t,s)>0,\quad \forall t, s\in(0,1), \\ &G_{1}(t,t)G_{1}(s,s)\leq G_{1}(t,s)\leq G_{1}(s,s)=s(1-s)\leq\frac{1}{4},\quad \forall t, s\in J, \\ &G_{1}(t,s)\geq\xi^{2} G_{1}(s,s),\quad \forall t \in[\xi,1-\xi], s\in J. \end{aligned}$$
(2.9)

Remark 2.2

Letting \((x,y)\) be a solution of problem (1.1), from Lemma 2.1 and Lemma 2.2, we have

$$\begin{aligned} x(t) =&\lambda_{2} \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds + \lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr), \end{aligned}$$
(2.10)

and y is defined in (2.7).

To obtain the existence of positive solution of problem (1.1), we make the following hypotheses:

\((H_{4})\) :

There exists \(0<\sigma_{1}<\xi\) such that

$$\sigma_{1} \int_{\sigma_{1}}^{\xi}G_{1}(t,s)b^{+}(s) \,ds\geq\xi \int_{\xi }^{1}G_{1}(t,s)b^{-}(s) \,ds; $$
\((H_{5})\) :

There exists \(0<\sigma_{2}<\xi\) such that

$$\sigma_{2} \int_{\sigma_{2}}^{\xi}G(t,s)G_{1}(s,s)a^{+}(s) \,ds\geq\xi \int_{\xi }^{1}G(t,s)a^{-}(s)\,ds; $$
\((H_{6})\) :

There exists \(0<\mu\leq1\) such that

$$f(\omega)\geq\mu\varphi(\omega),\quad \omega\in[0,+\infty), $$

where \(\varphi(\omega)=\max\{f(\rho):0\leq\rho\leq\omega\}\);

\((H_{7})\) :

There exist \(0<\alpha<+\infty\) with \(\alpha\neq1\) and \(k_{1},k_{2},l_{1},l_{2}>0\) such that

$$k_{1}x^{\alpha}\leq f(x)\leq k_{2}x^{\alpha}, \qquad l_{1}x^{\alpha}\leq I_{k}(x)\leq l_{2}x^{\alpha}, \quad x\in[0,+\infty); $$
\((H_{8})\) :

There exists \(0<\sigma_{3}<\xi\) satisfying \(\frac{\sigma _{3}}{2}< t_{1}<\sigma_{3}\) such that

$$\sigma^{\alpha}_{3}\mu^{2}k_{1} \int_{\sigma_{3}}^{\xi }G(t,s)g^{+}(s)\,ds\geq k_{2}\xi^{\alpha} \int_{\xi}^{1}G(t,s)g^{-}(s)\,ds. $$

We denote

$$\begin{aligned} &C_{0}^{+}[0,1]= \Bigl\{ x\in PC[0,1]:\min _{t\in J}x(t)\geq0, x(0)=0, x'(1)=0 \Bigr\} , \\ &K= \bigl\{ x\in C_{0}^{+}[0,1]: x\mbox{ is concave on }[0, \xi ],\mbox{ and convex on }[\xi,1] \bigr\} . \end{aligned}$$

If \(x\in K\), it is not difficult to see that \(\Vert x \Vert _{PC}=\max_{0\leq t \leq\xi}x(t)\). Also, for a positive number r, we define \(\Omega_{r}\) by \(\Omega_{r}= \{x\in K: \Vert x \Vert _{PC}< r \}\), and then we get \(\partial\Omega_{r}= \{x\in K: \Vert x \Vert _{PC}=r \}\).

Define \(T:K\rightarrow PC[0,1]\) by

$$\begin{aligned} (Tx) (t) =&\lambda_{2} \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &{}+\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr). \end{aligned}$$
(2.11)

Remark 2.3

It follows from Lemmas 2.1–2.2 and Remark 2.2 that \((x, y)\) is a solution of problem (1.1) if and only if x is a fixed point of operator T and y satisfies (2.7).

Lemma 2.3

Assume that \((H_{1})\)–\((H_{8})\) hold. Then \(T(K)\subset K\) and \(T:K\rightarrow K\) is completely continuous.

Proof

Define a function \(e: [0,1]\rightarrow[0,1]\) as follows:

$$\begin{aligned} &\mbox{if } x(1)=0,\mbox{ then } e(t)=\min \biggl\{ \frac{t}{\xi}, \frac{1-t}{1-\xi} \biggr\} ,\quad \forall t\in J; \\ &\mbox{if } x(1)>0,\mbox{ then } e(t)=\min \biggl\{ \frac{t}{\xi},1 \biggr\} ,\quad \forall t\in J. \end{aligned}$$

So, we get \(\min_{\sigma\leq t\leq\xi}e(t)=\frac{\sigma}{\xi}\), \(\max_{\xi\leq t\leq1}e(t)=1\).

Letting \(x\in K\), then x is concave on \([0,\xi]\) and convex on \([\xi ,1]\). Noticing that \(x(0)=0\), \(x'(1)=0\), we get \(x(t)\geq x(\xi)e(t)\), \(t\in[0,\xi]\), \(x(t)\leq x(\xi)e(t)\), \(t\in[\xi,1]\).

Firstly, for any \(x\in K\), we show that

$$ \int_{0}^{1}G_{1}(t,s)b(s)x(s)\,ds\geq \int_{0}^{\sigma _{1}}G_{1}(t,s)b^{+}(s)x(s) \,ds,\quad t\in J. $$
(2.12)

In fact, for \(x\in K\), noticing \((H_{4})\), we get

$$\begin{aligned} & \int_{0}^{1}G_{1}(t,s)b(s)x(s)\,ds- \int_{0}^{\sigma _{1}}G_{1}(t,s)b^{+}(s)x(s) \,ds \\ &\quad = \int_{\sigma_{1}}^{\xi }G_{1}(t,s)b^{+}(s)x(s) \,ds- \int_{\xi}^{1}G_{1}(t,s)b^{-}(s)x(s) \,ds \\ &\quad \geq \int_{\sigma_{1}}^{\xi }G_{1}(t,s)b^{+}(s)e(s)x( \xi)\,ds- \int_{\xi}^{1}G_{1}(t,s)b^{-}(s)e(s)x( \xi )\,ds \\ &\quad \geq x(\xi)\biggl[\min_{s\in[\sigma_{1},\xi]}e(s) \int_{\sigma_{1}}^{\xi}G_{1}(t,s)b^{+}(s) \,ds-\max_{s\in[\xi,1]}e(s) \int_{\xi}^{1}G_{1}(t,s)b^{-}(s) \,ds\biggr] \\ &\quad =x(\xi)\biggl[\frac{\sigma _{1}}{\xi} \int_{\sigma_{1}}^{\xi}G_{1}(t,s)b^{+}(s) \,ds- \int_{\xi}^{1}G_{1}(t,s)b^{-}(s) \,ds\biggr] \\ &\quad \geq0, \end{aligned}$$

which shows that (2.12) holds.

Next, for any \(x\in K\), we prove

$$\begin{aligned} & \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &\quad \geq \int_{0}^{\sigma_{2}} \int_{0}^{1}G(t,s) G_{1}(s, \tau)a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds,\quad t\in J. \end{aligned}$$
(2.13)

Noticing \(\int_{0}^{1}G_{1}(t,s)b(s)x(s)\,ds\geq0\), \(\forall t\in J\), (2.9) and \((H_{5})\), we obtain

$$\begin{aligned} & \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b( \tau)x(s)x(\tau)\,d\tau \,ds \\ &\qquad {} - \int_{0}^{\sigma_{2}} \int_{0}^{1}G(t,s) G_{1}(s,\tau )a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &\quad = \int_{\sigma_{2}}^{\xi} \int_{0}^{1}G(t,s)G_{1}(s, \tau)a^{+}(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &\qquad {} - \int_{\xi}^{1} \int_{0}^{1}G(t,s) G_{1}(s, \tau)a^{-}(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &\quad \geq \int_{\sigma_{2}}^{\xi}G(t,s)a^{+}(s)e(s)x(\xi) \int _{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau) \,d\tau \,ds \\ &\qquad {} - \int_{\xi}^{1}G(t,s)a^{-}(s)e(s)x(\xi) \int_{0}^{1} G_{1}(s,\tau)b(\tau)x(\tau) \,d\tau \,ds \\ &\quad \geq \int_{\sigma_{2}}^{\xi}G(t,s)a^{+}(s)\min _{s\in[\sigma_{2},\xi ]}e(s)x(\xi) \int_{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau)\,d \tau \,ds \\ &\qquad {} - \int_{\xi}^{1}G(t,s)a^{-}(s)\max _{s\in[\xi ,1]}e(s)x(\xi) \int_{0}^{1} G_{1}(s,\tau)b(\tau)x(\tau) \,d\tau \,ds \\ &\quad \geq x(\xi)\frac{\sigma_{2}}{\xi} \int_{\sigma_{2}}^{\xi}G(t,s)a^{+}(s) \int _{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau) \,d\tau \,ds \\ &\qquad {} -x(\xi) \int_{\xi}^{1}G(t,s)a^{-}(s) \int_{0}^{1} G_{1}(s,\tau )b(\tau)x(\tau) \,d\tau \,ds \\ &\quad \geq x(\xi)\frac{\sigma_{2}}{\xi} \int_{\sigma_{2}}^{\xi}G(t,s)a^{+}(s) \int _{0}^{1}G_{1}(s,s)G_{1}( \tau,\tau)b(\tau)x(\tau)\,d\tau \,ds \\ &\qquad {} -x(\xi) \int_{\xi}^{1}G(t,s)a^{-}(s) \int_{0}^{1} G_{1}(\tau ,\tau)b(\tau)x( \tau)\,d\tau \,ds \\ &\quad =x(\xi) \int_{0}^{1}G_{1}(\tau,\tau)b(\tau)x(\tau) \,d\tau\biggl[\frac{\sigma _{2}}{\xi} \int_{\sigma_{2}}^{\xi}G(t,s)G_{1}(s,s)a^{+}(s) \,ds- \int_{\xi }^{1}G(t,s)a^{-}(s)\,ds\biggr], \end{aligned}$$

which proves that (2.13) holds.

Thirdly, for any \(x\in K\), we prove

$$ \int_{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds\geq \int_{0}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds,\quad t\in J. $$
(2.14)

In fact, for any \(t\in J\) and \(x\in K\), noticing (2.6), it is obvious that by (\(H_{6}\))–(\(H_{8}\))

$$\begin{aligned} & \int_{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds- \int_{0}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds \\ &\quad = \int_{\sigma_{3}}^{\xi}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds- \int_{\xi }^{1}G(t,s)g^{-}(s)f\bigl(x(s) \bigr)\,ds \\ &\quad \geq\mu \int_{\sigma_{3}}^{\xi}G(t,s)g^{+}(s)\varphi \bigl(u(s)\bigr)\,ds- \int_{\xi }^{1}G(t,s)g^{-}(s)\varphi \bigl(u(s)\bigr)\,ds \\ &\quad \geq\mu \int_{\sigma_{3}}^{\xi}G(t,s)g^{+}(s)\varphi \bigl(e(s)u(\xi)\bigr)\,ds- \int _{\xi}^{1}G(t,s)g^{-}(s)\varphi \bigl(e(s)u(\xi)\bigr)\,ds \\ &\quad \geq\mu \int_{\sigma_{3}}^{\xi}G(t,s)g^{+}(s)f\bigl(e(s)u( \xi)\bigr)\,ds-\frac {1}{\mu} \int_{\xi}^{1}G(t,s)g^{-}(s)f\bigl(e(s)u( \xi)\bigr)\,ds \\ &\quad \geq\mu \int_{\sigma_{3}}^{\xi} G(t,s) g^{+}(s)k_{1}e^{\alpha }(s)u^{\alpha}( \xi)\,ds-\frac{1}{\mu} \int_{\xi}^{1} G(t,s) g^{-}(s)k_{2}e^{\alpha}(s)u^{\alpha}( \xi)\,ds \\ &\quad \geq\mu \Bigl[\min_{s\in[\sigma_{3},\xi]} e(s) \Bigr]^{\alpha} \int _{\sigma_{3}}^{\xi} G(t,s) g^{+}(s)k_{1}u^{\alpha}( \xi)\,ds \\ &\qquad {}-\frac{1}{\mu } \Bigl[\min_{s\in[\xi,1]} e(s) \Bigr]^{\alpha} \int_{\xi}^{1} G(t,s) g^{-}(s)k_{2}u^{\alpha}( \xi)\,ds \\ &\quad \geq u^{\alpha}(\xi) \biggl[\mu k_{1}\frac{\sigma_{3}^{\alpha}}{\xi^{\alpha }} \int_{\sigma_{3}}^{\xi}G(t,s)g^{+}(s)\,ds \\ &\qquad {}-\frac{1}{\mu}k_{2} \int_{\xi }^{1}G(t,s)g^{-}(s)\,ds \biggr] \\ &\quad \geq0. \end{aligned}$$

This proves that (2.14) holds. Thus, for \(x\in K\), we get

$$\begin{aligned} (Tx) (t) =&\lambda_{2} \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,d s \\ &{}+\lambda_{1} \int_{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds + \lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \geq & \lambda_{2} \int_{0}^{\sigma _{2}}G(t,s)a^{+}(s)x(s) \int_{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau)\,d \tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\sigma_{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \geq & 0. \end{aligned}$$

Moreover, by direct calculation, we obtain

$$\begin{aligned} &(Tx) (0)=0,\qquad (Tx)'(1)=0, \\ &(Tx)^{\prime\prime}(t)=-\lambda_{2}a^{+}(t)x(t) \int _{0}^{1}G_{1}(t,s)b(s)x(s)\,ds- \lambda_{1}g^{+}(t)f(x)\leq0, \quad t\in[0,\xi], \\ &(Tx)^{\prime\prime}(t)=\lambda_{2}a^{-}(t)x(t) \int_{0}^{1}G_{1}(t,s)b(s)x(s)\,ds+\lambda _{1}g^{-}(t)f(x)\geq0, \quad t\in[\xi,1], \end{aligned}$$

which shows that Tx is concave on \([0,\xi]\) and convex on \([\xi,1]\). It follows that \(T: K\rightarrow K\).

Finally, by standard methods and Arzelà–Ascoli theorem, one can prove T is completely continuous. So it is omitted. □

Remark 2.4

The idea of the proof of Lemma 2.3 comes from Theorem 3.1 of [36].

Lemma 2.4

(Theorem 2.3.4 of [49], Fixed point theorem of cone expansion and compression of norm type)

Let \(\Omega_{1}\) and \(\Omega_{2}\) be two bounded open sets in a real Banach space E such that \(0 \in\Omega_{1}\) and \(\bar{\Omega}_{1}\subset\Omega_{2}\). Let the operator \(T: P\cap(\bar{\Omega}_{2}\backslash\Omega _{1})\rightarrow P\) be completely continuous, where P is a cone in E. Suppose that one of the two conditions

  1. (i)

    \(\Vert Tx \Vert \leq \Vert x \Vert ,\forall x\in P\cap\partial\Omega _{1}\) and \(\Vert Tx \Vert \geq \Vert x \Vert ,\forall x\in P\cap\partial\Omega_{2}\),

and

  1. (ii)

    \(\Vert Tx \Vert \geq \Vert x \Vert ,\forall x\in P\cap\partial\Omega _{1}\), and \(\Vert Tx \Vert \leq \Vert x \Vert ,\forall x\in P\cap\partial\Omega_{2}\),

is satisfied. Then T has at least one fixed point in \(P\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\).

3 Main results

In this part, applying Lemma 2.4, we get the optimal intervals of positive parameters \(\lambda_{i}\) (\(i=1,2,3\)) in which problem (1.1) admits at least two positive solutions.

Theorem 3.1

Assume that \((H_{1})\)–\((H_{8})\) hold. Then we have:

  1. (I)

    If \(\alpha>1\), then there exist \(\lambda_{1}^{*},\lambda_{3}^{*}, \lambda^{*}, \lambda_{*}>0\) such that, for \(\lambda_{i}\in[\lambda_{i}^{*},\infty)\) (\(i=1,3\)) and \(\lambda_{2}\in[\lambda_{*}, \lambda^{*}]\), problem (1.1) admits at least two positive solutions.

  2. (II)

    If \(0<\alpha<1\), then there exist \(\lambda_{1}^{**},\lambda _{2}^{**},\lambda_{3}^{**}>0\) such that, for \(\lambda_{i}\in(0,\lambda_{i}^{*}]\), problem (1.1) admits at least two positive solutions.

Proof

Part (I). Considering the case \(\alpha>1\), it follows from \((H_{7})\) that

$$\lim_{x\rightarrow0}\frac{f(x)}{x}\leq\lim_{x\rightarrow0} \frac {k_{2}x^{\alpha}}{x}=0,\qquad \lim_{x\rightarrow0}\frac{I_{k}(x)}{x}\leq\lim _{x\rightarrow0}\frac{l_{2}x^{\alpha}}{x}=0, $$

which shows that there exists \(r^{\prime}>0\) such that

$$f(x)\leq\varepsilon_{1} x,\qquad I_{k}(x)\leq \varepsilon_{2} x,\quad k=1,2,\ldots ,n,\ x\in\bigl[0,r^{\prime} \bigr], $$

where \(\varepsilon_{1}\), \(\varepsilon_{2}\) satisfy

$$ 3\lambda_{1}\varepsilon_{1} \int_{0}^{\xi}g^{+}(s)\,ds< 1,\qquad 3n \lambda_{3}\varepsilon_{2}< 1. $$
(3.1)

Let

$$\begin{aligned} &A=\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi}G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)\,d\tau \,ds, \end{aligned}$$
(3.2)
$$\begin{aligned} &A^{*}= \int_{0}^{\xi} \int_{0}^{\xi}G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)\,d\tau\,ds, \end{aligned}$$
(3.3)

and choose \(r=\min \{(3A)^{-1}, \frac{r^{\prime}}{2} \}\). This implies \(\lambda_{2}\leq\frac{1}{3A^{*}r}\).

Then, for any \(x\in K\cap\partial\Omega_{r}\), noticing (2.6), we get

$$\begin{aligned} (Tx) (t) =&\lambda_{2} \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ =&\lambda_{2} \int_{0}^{\xi} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} -\lambda_{2} \int_{\xi}^{1} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{-}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds-\lambda_{1} \int_{\xi }^{1}G(t,s)g^{-}(s)f\bigl(x(s) \bigr)\,ds \\ &{} +\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ =&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(t,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} -\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(t,s)G_{1}(s, \tau)a^{+}(s)b^{-}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(s,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(s,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2}\xi \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds+\lambda_{1}\xi \int _{0}^{\xi}g^{+}(s)f\bigl(x(s)\bigr) \,ds \\ &{} +\lambda_{3}\sum_{k=1}^{n}I_{k} \bigl(x(t_{k})\bigr) \\ < & \lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds+\lambda_{1} \int _{0}^{\xi}g^{+}(s) \varepsilon_{1} x(s)\,ds \\ &{} +\lambda_{3}\sum_{k=1}^{n} \varepsilon_{2}x(t_{k}) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)\,d\tau \,ds \Vert x \Vert _{PC}^{2} +\lambda _{1}\varepsilon_{1} \int_{0}^{\xi}g^{+}(s)\,ds \Vert x \Vert _{PC} \\ &{} +\lambda_{3}n\varepsilon_{2} \Vert x \Vert _{PC} \\ < &\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}, \end{aligned}$$
(3.4)

which shows that

$$ \Vert Tx \Vert _{PC}< \Vert x \Vert _{PC},\quad \forall x\in K\cap\partial\Omega_{r}. $$
(3.5)

On the other hand, noticing that \(\alpha>1\), then it follows from \((H_{7})\) that

$$\lim_{x\rightarrow\infty}\frac{f(x)}{x}\geq\lim_{x\rightarrow\infty } \frac{k_{1}x^{\alpha}}{x}=\infty,\qquad \lim_{x\rightarrow\infty}\frac{I_{k}(x)}{x} \geq\lim_{x\rightarrow\infty }\frac{l_{1}x^{\alpha}}{x}=\infty, $$

which shows that there exists \(R^{\prime}>0\) such that

$$f(x)\geq\varepsilon_{3} x,\qquad I_{k}(x)\geq \varepsilon_{4} x,\quad x\geq R^{\prime}, $$

where \(\varepsilon_{3}\), \(\varepsilon_{4}\) satisfy

$$ \begin{aligned} &\frac{3\sigma_{2}}{2}\lambda_{1} \varepsilon_{3}\Gamma \int_{\frac{\sigma _{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s)\,ds>1,\quad 3 \lambda_{3}\varepsilon_{4}\Gamma>1, \\ &\Gamma=\min_{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}\delta(t)>0,\qquad \delta(t)=\min \biggl\{ \frac{t}{\xi},\frac{\xi-t}{\xi} \biggr\} ,\quad t\in[0,\xi]. \end{aligned} $$
(3.6)

If \(x\in K\), then from the concavity on \([0,\xi]\), it follows that

$$ x(t)\geq\delta(t) \Vert x \Vert _{PC},\quad t\in[0, \xi]. $$
(3.7)

Let B and \(B^{*}\) denote the following constants:

$$\begin{aligned} &B=\lambda_{2}\frac{\sigma_{2}}{2}\min _{\frac{\sigma_{2}}{2}\leq t\leq \sigma_{2}}\delta(t)\min_{\frac{\sigma_{1}}{2}\leq t\leq\sigma _{1}}\delta(t) \int_{\frac{\sigma_{2}}{2}}^{\sigma_{2}} \int_{\frac{\sigma _{1}}{2}}^{\sigma_{1}}G(s,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)\,d\tau \,ds>0, \end{aligned}$$
(3.8)
$$\begin{aligned} & B^{*}=\frac{\sigma_{2}}{2}\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma _{2}} \delta(t)\min_{\frac{\sigma_{1}}{2}\leq t\leq\sigma_{1}}\delta (t) \int_{\frac{\sigma_{2}}{2}}^{\sigma_{2}} \int_{\frac{\sigma_{1}}{2}}^{\sigma _{1}}G(s,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)\,d\tau \,ds>0. \end{aligned}$$
(3.9)

Noticing that, for all \(d\in(0,\xi)\), \(\min_{\frac{d}{2}\leq t\leq d}\delta(t)=\min \{\frac{d}{2\xi}, \frac{\xi-d}{\xi} \}>0\), B and \(B^{*}\) are defined well.

Setting \(R=\max \{(3B)^{-1},\ \frac{R^{\prime}}{\Gamma}, r' \}+1\), it follows that \(\lambda_{2}>\lambda'_{2}=\frac{1}{3B^{*}R}\), and then for any \(x\in K\cap\partial\Omega_{R}\), we get

$$\min_{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}x(t)\geq\min_{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}\delta(t) \Vert x \Vert _{PC}\geq\Gamma R>R^{\prime}. $$

Then it follows from (2.6), (2.9), (3.8), and (3.9) that

$$\begin{aligned} \Vert Tx \Vert _{PC} =&\max_{t\in J} \Biggl\{ \lambda_{2} \int_{0}^{1} \int _{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b( \tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\max_{t\in J} \Biggl\{ \lambda_{2} \int _{0}^{\sigma_{2}}G(t,s)a^{+}(s)x(s) \int_{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau ) \,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\lambda_{2}\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}} \int_{\frac{\sigma_{2}}{2}}^{\sigma _{2}}G(t,s)a^{+}(s)x(s) \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)x(\tau)\,d\tau \,ds \\ &{} +\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}}\lambda_{1} \int_{\frac{\sigma_{3}}{2}}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds +\lambda_{3}\min_{\sigma_{3}\leq t\leq\xi }\sum _{\frac{t}{2}< t_{k}< t}I_{k}\bigl(x(t_{k})\bigr) \\ \geq&\lambda_{2}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{2}}{2}}^{\sigma_{2}}G(s,s)a^{+}(s)\delta(s) \Vert x \Vert _{PC} \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)\delta(\tau) \Vert x \Vert _{PC} \,d\tau \,ds \\ &{} +\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \varepsilon_{3} x(s)\,ds +\lambda _{3}\sum _{\frac{\sigma_{3}}{2}< t_{k}< \sigma_{3}}\varepsilon_{4} x(t_{k}) \\ \geq&\lambda_{2}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{2}}{2}}^{\sigma_{2}}G(s,s)a^{+}(s)\delta(s) \Vert x \Vert _{PC} \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)\delta(\tau) \Vert x \Vert _{PC} \,d\tau \,ds \\ &{} +\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \varepsilon_{3} x(s)\,ds +\lambda _{3}\varepsilon_{4} \sum_{\frac{\sigma_{3}}{2}< t_{1}< \sigma_{3}} x(t_{1}) \\ \geq& B \Vert x \Vert _{PC}^{2}+\lambda_{1} \frac{\sigma _{2}}{2}\varepsilon_{3}\min_{\frac{\sigma_{3}}{2}\leq t\leq\sigma _{3}}\delta(t) \int_{\frac{\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s)\,ds \Vert x \Vert _{PC} \\ &{} +\lambda_{3}\varepsilon_{4}\min_{\frac {\sigma_{3}}{2}\leq t\leq\sigma_{3}} \delta(t) \Vert x \Vert _{PC} \\ >&\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tx \Vert _{PC}> \Vert x \Vert _{PC},\quad x\in K\cap\partial\Omega_{R}. $$
(3.10)

Let

$$\lambda_{1}^{*}=\frac{(6DA^{*}-2B^{*})\eta}{3DA^{*}\sigma_{2}\sigma_{\eta }\int_{\frac{\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s)\,ds},\qquad \lambda ^{*}_{2}=\frac{\frac{1}{2}}{3DA^{*}\eta},\qquad \lambda_{3}^{*}= \frac{\frac {B^{*}}{2}\eta}{3DA^{*}\sigma_{\eta}^{*}}, $$

where \(0<\eta<r\), \(D=\frac{r^{2}}{\eta^{2}}\), \(A^{*}\) is defined in (3.3), and \(B^{*}\) is defined in (3.9).

We define \(\sigma_{\eta}\) and \(\sigma_{\eta}^{*}\) by

$$\begin{aligned} &\sigma_{\eta}=\min_{\Gamma\eta\leq x\leq\eta}\bigl\{ f(x)\bigr\} >0,\qquad \sigma_{\eta}^{*}=\min\{m_{k}, k=1,2,\dots,n\}>0, \\ &m_{k}=\min_{\Gamma\eta\leq x\leq\eta}\bigl\{ I_{k}(x)\bigr\} , \quad k=1,2,\dots,n, \end{aligned}$$

where Γ is defined in (3.6). Noticing (\(H_{2}\)) and (\(H_{3}\)), then \(\sigma_{\eta}\) and \(\sigma_{\eta}^{*}\) are defined well and \(\sigma_{\eta}>0\), \(\sigma_{\eta}^{*}>0\). So, for any \(x\in K\cap\partial\Omega_{\eta}\), we get

$$\Gamma\eta\leq\Gamma \Vert x \Vert _{PC}\leq\min _{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}x(t)\leq x(t)\leq\eta, \quad \frac{\sigma_{3}}{2}\leq t\leq \sigma_{3}, $$

and hence, it follows from (2.6), (2.7), (3.7), and (3.9) that

$$\begin{aligned} \Vert Tx \Vert _{PC} =&\max_{t\in J} \Biggl\{ \lambda_{2} \int_{0}^{1} \int _{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b( \tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\max_{t\in J} \Biggl\{ \lambda_{2} \int _{0}^{\sigma_{2}}G(t,s)a^{+}(s)x(s) \int_{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau ) \,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\lambda_{2}\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}} \int_{\frac{\sigma_{2}}{2}}^{\sigma _{2}}G(t,s)a^{+}(s)x(s) \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)x(\tau)\,d\tau \,ds \\ &{} +\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}}\lambda_{1} \int_{\frac{\sigma_{3}}{2}}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds +\lambda_{3}\min_{\sigma_{3}\leq t\leq\xi }\sum _{\frac{t}{2}< t_{k}< t}I_{k}\bigl(x(t_{k})\bigr) \\ \geq&\lambda_{2}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{2}}{2}}^{\sigma_{2}}G(s,s)a^{+}(s)\delta(s) \Vert x \Vert _{PC} \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)\delta(\tau) \Vert x \Vert _{PC} \,d\tau \,ds \\ &{} +\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \sigma_{\eta}\,ds +\lambda_{3}\sum _{\frac{\sigma_{3}}{2}< t_{k}< \sigma_{3}}\sigma_{\eta}^{*} \\ \geq&\lambda_{2}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{2}}{2}}^{\sigma_{2}}G(s,s)a^{+}(s)\delta(s) \Vert x \Vert _{PC} \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)\delta(\tau) \Vert x \Vert _{PC} \,d\tau \,ds \\ &{} +\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \sigma_{\eta}\,ds +\lambda_{3}\sigma _{\eta}^{*} \\ \geq&\lambda^{*}_{2}B^{*} \Vert x \Vert _{PC}^{2} +\lambda_{1}^{*}\frac {\sigma_{2}}{2}\sigma_{\eta} \int_{\frac{\sigma_{3}}{2}}^{\sigma _{3}}G(s,s)g^{+}(s)\,ds + \lambda_{3}^{*}\sigma_{\eta}^{*} \\ =&\frac{\frac{B^{*}}{2}}{3DA^{*}} \Vert x \Vert _{PC}+\frac {3DA^{*}-B^{*}}{3DA^{*}} \Vert x \Vert _{PC}+\frac{\frac{B^{*}}{2}}{3DA^{*}} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}. \end{aligned}$$

This shows

$$ \Vert Tx \Vert _{PC}> \Vert x \Vert _{PC},\quad x\in K\cap\partial\Omega_{\eta}. $$
(3.11)

Let \(\lambda_{*}=\max\{\lambda_{2}', \lambda_{2}^{*}\}\), \(\lambda^{*}=\frac {1}{3A^{*} r}\), then, for \(\lambda_{i}\in[\lambda_{i}^{*},+\infty)\), \(i=1,3\), and \(\lambda _{2}\in[\lambda_{*}, \lambda^{*}]\), applying Lemma 2.4 to (3.5), (3.10), and (3.11) yields that T has two fixed points \(x_{1}\) and \(x_{2}\) satisfying \(x_{1}\in K\cap(\bar{\Omega}_{R}\setminus\bar{\Omega}_{r})\), \(x_{2}\in K\cap(\Omega_{r}\setminus\Omega_{\eta})\). Thus it follows from Remark 2.3 that problem (1.1) admits at least two positive solutions \((x_{i}, y_{i})\) (\(i=1,2\)) with \(x_{1}\in K\cap(\bar{\Omega}_{R}\setminus\bar{\Omega}_{r})\), \(x_{2}\in K\cap(\Omega_{r}\setminus\Omega_{\eta})\), and

$$\begin{aligned} &y_{1}(t)=\lambda_{2} \int_{0}^{1}G_{1}(t,s)b(s)x_{1}(s) \,ds, \\ &y_{2}(t)=\lambda_{2} \int_{0}^{1}G_{1}(t,s)b(s)x_{2}(s) \,ds. \end{aligned}$$

Part (II). Next turning to \(0<\alpha<1\), it follows from \((H_{7})\) that

$$\begin{aligned} &\lim_{x\rightarrow0}\frac{f(x)}{x}\geq\lim_{x\rightarrow0} \frac{k_{1}x^{\alpha}}{x}=+\infty,\\ &\lim_{x\rightarrow0}\frac{I_{k}(x)}{x} \geq\lim_{x\rightarrow0}\frac{l_{1}x^{\alpha}}{x}=+\infty, \end{aligned}$$

which shows that there exists a positive constant \(r>0\) such that

$$f(x)\geq\varepsilon_{5} x,\qquad I_{k}(x)\geq \varepsilon_{6} x,\quad k=1,2,\ldots ,n, 0\leq x\leq r, $$

where \(\varepsilon_{5}\), \(\varepsilon_{6}\) satisfy

$$\lambda_{1}\sigma_{2}\varepsilon_{5}\min _{\frac{\sigma_{3}}{2}\leq t\leq \sigma_{3}}\delta(t) \int_{\frac{\sigma_{3}}{2}}^{\sigma _{3}}G(s,s)g^{+}(s)\,ds>1,\qquad 2 \lambda_{3}\varepsilon_{6}\min_{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}} \delta(t)>1, $$

where \(\delta(t)\) is defined in (3.6), and A is defined in (3.2).

Therefore, for any \(x\in K\cap\partial\Omega_{r}\), noticing (3.7), we get

$$\begin{aligned} \Vert Tx \Vert _{PC} =&\max_{t\in J} \Biggl\{ \lambda_{2} \int_{0}^{1} \int _{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b( \tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\max_{t\in J} \Biggl\{ \lambda_{2} \int _{0}^{\sigma_{2}}G(t,s)a^{+}(s)x(s) \int_{0}^{1}G_{1}(s,\tau)b(\tau)x(\tau ) \,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G'_{s}(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \Biggr\} \\ \geq&\lambda_{2}\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}} \int_{\frac{\sigma_{2}}{2}}^{\sigma _{2}}G(t,s)a^{+}(s)x(s) \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)x(\tau)\,d\tau \,ds \\ &{} +\min_{\frac{\sigma_{2}}{2}\leq t\leq\sigma_{2}}\lambda_{1} \int_{\frac{\sigma_{3}}{2}}^{\sigma _{3}}G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds +\lambda_{3}\min_{\sigma_{3}\leq t\leq\xi }\sum _{\frac{t}{2}< t_{k}< t}I_{k}\bigl(x(t_{k})\bigr) \\ \geq&\lambda_{2}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{2}}{2}}^{\sigma_{2}}G(s,s)a^{+}(s)\delta(s) \Vert x \Vert _{PC} \int_{\frac{\sigma_{1}}{2}}^{\sigma_{1}}G_{1}(s,\tau)b^{+}( \tau)\delta(\tau) \Vert x \Vert _{PC} \,d\tau \,ds \\ &{} +\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \varepsilon_{5} x(s)\,ds +\lambda _{3}\sum _{\frac{\sigma_{3}}{2}< t_{k}< \sigma_{3}}\varepsilon_{6} x(t_{k}) \\ \geq&\lambda_{1}\frac{\sigma_{2}}{2} \int_{\frac{\sigma _{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s) \varepsilon_{5} x(s)\,ds +\lambda _{3}\varepsilon_{6} \sum_{\frac{\sigma_{3}}{2}< t_{1}< \sigma_{3}} x(t_{1}) \\ \geq&\lambda_{1}\frac{\sigma_{2}}{2}\varepsilon_{5}\min _{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}\delta(t) \int_{\frac {\sigma_{3}}{2}}^{\sigma_{3}}G(s,s)g^{+}(s)\,ds \Vert x \Vert _{PC}+\lambda_{3}\varepsilon _{6}\min _{\frac{\sigma_{3}}{2}\leq t\leq\sigma_{3}}\delta(t) \Vert x \Vert _{PC} \\ >&\frac{1}{2} \Vert x \Vert _{PC}+\frac{1}{2} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}. \end{aligned}$$

Consequently,

$$ \Vert Tx \Vert _{PC}> \Vert x \Vert _{PC},\quad x\in K\cap\partial\Omega_{r}. $$
(3.12)

On the other hand, notice that \(0<\alpha<1\), then it follows from \((H_{7})\) that

$$\lim_{x\rightarrow\infty}\frac{f(x)}{x}\leq\lim_{x\rightarrow\infty } \frac{k_{2}x^{\alpha}}{x}=0,\qquad \lim_{x\rightarrow\infty}\frac{I_{k}(x)}{x}\leq\lim _{x\rightarrow\infty }\frac{l_{2}x^{\alpha}}{x}=0, $$

which shows that there exists \(R^{\prime}>r\) such that

$$f(x)\leq\varepsilon_{7} x,\qquad I_{k}(x)\leq \varepsilon_{8} x,\quad x\geq R^{\prime}, $$

where \(\varepsilon_{7}\), \(\varepsilon_{8}\) satisfy

$$5\lambda_{1}\varepsilon_{7} \int_{D(x)}g^{+}(s)\,ds< 1,\quad 5\lambda _{3}n\varepsilon_{8}< 1. $$

Let

$$M=\lambda_{1}\max_{ \Vert x \Vert _{PC}=R'}f(x) \int_{0}^{\xi}g^{+}(s)\,ds,\qquad M'= \lambda_{1}n\max_{ \Vert x \Vert _{PC}=R'}I_{k}(x). $$

Then it is not difficult to see that \(M<+\infty\) and \(M'<+\infty\).

Choosing \(\max\{R', 5M, 5M'\}< R<(5A)^{-1}\), then \(M<\frac{R}{5}\), \(M'<\frac{R}{5}\).

Now, choosing \(x\in K\cap\partial\Omega_{R}\) arbitrarily and letting \(\bar{x}(t)=\min\{x(t), R'\}\), then \(\bar{x}(t)\leq R'\). Moreover, write \(D(x)=\{t\in[0,\xi]: x(t)>R'\}\). Therefore, for \(t\in D(x)\), we get \(R'< x(t)\leq \Vert x \Vert _{PC}=R\), \(\forall t\in D(x)\). By the choice of \(R'\), for \(t\in D(x)\), we have \(f(x)\leq\varepsilon_{1} R\).

Similarly, one can define \(D'(x)=\{t_{k}\in J: x(t_{k})>R'\}\). Then, for \(t_{k}\in D'(x)\), we get \(R'< x(t_{k})\leq \Vert x \Vert _{PC}=R\), \(\forall t\in D'(x)\). By the choice of \(R'\), for \(t_{k}\in D'(x)\), we get \(I_{k}(x(t_{k}))\leq\varepsilon_{2} R\), \(k=1,2,\ldots, n\).

Therefore, for any \(x\in K\cap\partial\Omega_{R}\), we get

$$\begin{aligned} (Tx) (t) =&\lambda_{2} \int_{0}^{1} \int_{0}^{1}G(t,s)G_{1}(s,\tau)a(s)b(\tau )x(s)x(\tau)\,d\tau \,ds \\ &{}+\lambda_{1} \int _{0}^{1}G(t,s)g(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ =&\lambda_{2} \int_{0}^{\xi} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} -\lambda_{2} \int_{\xi}^{1} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{-}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds-\lambda_{1} \int_{\xi }^{1}G(t,s)g^{-}(s)f\bigl(x(s) \bigr)\,ds \\ &{} +\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int _{0}^{1}G(t,s)G_{1}(s, \tau)a^{+}(s)b(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ =&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(t,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} -\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(t,s)G_{1}(s, \tau)a^{+}(s)b^{-}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(t,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}G_{s}'(t,t_{k})I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G(s,s)G_{1}(s, \tau)a^{+}(s)b^{+}(\tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }G(s,s)g^{+}(s)f\bigl(x(s) \bigr)\,ds+\lambda_{3}\sum_{k=1}^{n}I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2}\xi \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds+\lambda_{1}\xi \int _{0}^{\xi}g^{+}(s)f\bigl(x(s)\bigr) \,ds \\ &{} +\lambda_{3}\sum_{k=1}^{n}I_{k} \bigl(x(t_{k})\bigr) \\ < & \lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds+\lambda_{1} \int _{D(x)}g^{+}(s)f\bigl(x(s)\bigr)\,ds \\ &{} +\lambda_{1} \int_{[0,\xi]\setminus D(x)}g^{+}(s)f\bigl(x(s)\bigr)\,ds+ \lambda_{3}\sum_{t_{k}\in D'(x)}I_{k} \bigl(x(t_{k})\bigr) \\ &{} +\lambda_{3}\sum_{t_{k}\in J\setminus D'(x)}I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds+\lambda_{1} \int _{D(x)}g^{+}(s)f\bigl(x(s)\bigr)\,ds \\ &{} +\lambda_{1} \int_{0}^{\xi}g^{+}(s)f\bigl(\bar{x}(s) \bigr)\,ds+\lambda_{3}\sum_{t_{k}\in D'(x)}I_{k} \bigl(x(t_{k})\bigr)+\lambda_{3}\sum _{k=1}^{n}I_{k}\bigl(\bar{x}(t_{k})\bigr) \\ \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi }G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)\,d\tau \,ds \Vert x \Vert _{PC}^{2} +\lambda _{1}\varepsilon_{7} \int_{D(x)}g^{+}(s)\,ds \Vert x \Vert _{PC} \\ &{} +M+\lambda_{3}n\varepsilon_{8} \Vert x \Vert _{PC}+M' \\ < &\frac{1}{5} \Vert x \Vert _{PC}+\frac{1}{5} \Vert x \Vert _{PC}+\frac{1}{5} \Vert x \Vert _{PC}+\frac{1}{5} \Vert x \Vert _{PC}+ \frac{1}{5} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}, \end{aligned}$$
(3.13)

which shows that

$$ \Vert Tx \Vert _{PC}< \Vert x \Vert _{PC},\quad \forall x\in K\cap\partial\Omega_{R}. $$
(3.14)

Let

$$\lambda_{1}^{**}=\frac{\eta}{3M_{\eta}\int_{0}^{\xi}g^{+}(s)\,ds},\qquad \lambda_{2}^{**}=\frac{1}{3A^{*}R}< \frac{1}{3A^{*}\eta},\qquad \lambda_{3}^{**}=\frac{\eta}{3 nM_{\eta}^{*} }, $$

where \(0<\eta<r\), and \(A^{*}\) is defined in (3.3).

We define \(M_{\eta}\) and \(M_{\eta}^{*}\) by

$$\begin{aligned} &M_{\eta}=\max_{0\leq x\leq\eta}\bigl\{ f(x)\bigr\} >0,\qquad M_{\eta}^{*}=\max\{m_{k},\ k=1,2,\dots,n\}>0, \\ &m_{k}=\min_{0\leq x\leq\eta}\bigl\{ I_{k}(x)\bigr\} ,\quad k=1,2,\dots,n. \end{aligned}$$

Noticing (\(H_{2}\)) and (\(H_{3}\)), then \(M_{\eta}\) and \(M_{\eta}^{*}\) are defined well and \(M_{\eta}>0\), \(M_{\eta}^{*}>0\). So, for any \(x\in K\cap\partial\Omega_{\eta}\), similar to the proof of (3.4), we get

$$\begin{aligned} \Vert Tx \Vert _{PC} \leq&\lambda_{2} \int_{0}^{\xi} \int_{0}^{\xi}G(s,\tau )a^{+}(s)b^{+}( \tau)x(s)x(\tau)\,d\tau \,ds \\ &{} +\lambda_{1} \int_{0}^{\xi }g^{+}(s)f\bigl(x(s)\bigr) \,ds+\lambda_{3}\sum_{k=1}^{n}I_{k} \bigl(x(t_{k})\bigr) \\ \leq&\lambda_{2} \Vert x \Vert _{PC}^{2}A^{*} +\lambda_{1} \int _{0}^{\xi}g^{+}(s)\,ds M_{\eta}+n\lambda_{3}M_{\eta}^{*} \\ \leq&\lambda_{2}^{**} \Vert x \Vert _{PC}^{2}A^{*} +\lambda _{1}^{**} \int_{0}^{\xi}g^{+}(s)\,ds M_{\eta}+n\lambda_{3}^{**}M_{\eta}^{*} \\ \leq&\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC}+\frac{1}{3} \Vert x \Vert _{PC} \\ =& \Vert x \Vert _{PC}, \end{aligned}$$

which shows

$$ \Vert Tx \Vert _{PC}\leq \Vert x \Vert _{PC},\quad x\in K\cap\partial\Omega_{\eta}. $$
(3.15)

Therefore, applying Lemma 2.4 to (3.12), (3.14), and (3.15) yields T has two fixed points \(x_{1}\) and \(x_{2}\) satisfying \(x_{1}\in K\cap(\bar{\Omega}_{R}\setminus\bar{\Omega}_{r})\), \(x_{2}\in K\cap(\Omega_{r}\setminus\Omega_{\eta})\). Thus it follows from Remark 2.3 that problem (1.1) admits at least two positive solutions \((x_{i}, y_{i})\) (\(i=1,2\)) with \(x_{1}\in K\cap(\bar{\Omega}_{R}\setminus\bar{\Omega}_{r})\), \(x_{2}\in K\cap(\Omega_{r}\setminus\Omega_{\eta})\), and

$$\begin{aligned} &y_{1}(t) =\lambda_{2} \int_{0}^{1}G_{1}(t,s)b(s)x_{1}(s) \,ds, \\ &y_{2}(t) =\lambda_{2} \int_{0}^{1}G_{1}(t,s)b(s)x_{2}(s) \,ds. \end{aligned}$$

The proof of Theorem 3.1 is complete. □

4 Remarks and comments

In this section, we offer some remarks and comments on the associated problem (1.1).

Remark 4.1

It is not difficult to see that the details of the proof of (3.4), (3.10) are very different from those of (3.12) and (3.13), respectively. And the idea to prove (3.13) comes from Theorem 3.2 of [50].

Remark 4.2

Some ideas of dealing with parameters in Theorem 3.1 come from Theorems 2.1–2.4 in [51], but there are very few papers in the literature considering the multiplicity of positive solutions for second-order impulsive differential system, especially under the case the weight functions \(a(t)\), \(b(t)\), and \(g(t)\) change sign on \([0,1]\).

Remark 4.3

It is not difficult to see that conditions (\(H_{2}\)), (\(H_{3}\)), and (\(H_{7}\)) play an important role in the proof of Theorem 3.1, and there are many functions satisfying (\(H_{2}\)), (\(H_{3}\)), and (\(H_{7}\)), for example,

$$f(x)=x^{\alpha},\qquad I_{k}(x)=x^{\alpha},\quad k=1,2, \ldots,n, 0< \alpha < +\infty. $$

Remark 4.4

If we respectively replace conditions (\(H_{2}\)) and (\(H_{3}\)) by

\((H'_{2})\) :

\(f\in C(\mathcal{R}^{+}, \mathcal{R}^{+})\),

\((H'_{3})\) :

\(I_{k}\in C(\mathcal{R}^{+}, \mathcal{R}^{+})\),

then we cannot guarantee \(\sigma_{\eta}>0\), \(\sigma_{\eta}^{*}>0\), \(M_{\eta}>\) and \(M_{\eta}^{*}>0\), which are respectively defined in Theorem 3.1. Further, we cannot obtain the results of Theorem 3.1.

Remark 4.5

Similarly, one can consider the multiplicity of positive solutions for the following nonlocal impulsive systems:

$$ \textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),\\ \Delta x^{\prime}|_{t=t_{k}}=0,& k=1,2,\dots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=0,\qquad y'(1)=0, \end{cases} $$
(4.1)

where \(\lambda_{1}>0\), \(\lambda_{2}>0\), and \(\lambda_{3}>0\) are three parameters, \(a(t)\), \(b(t)\), \(g(t)\) change sign on \([0,1]\).

On the other hand, we conjecture that the conclusion in Theorem 3.1 holds for the following systems:

$$ \textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ -\Delta x^{\prime}|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\ldots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=y(1)=0, \end{cases} $$
(4.2)

and

$$ \textstyle\begin{cases} -x''=a(t)xy+\lambda_{1}g(t)f(x),& 0< t< 1, t\neq t_{k},\\ -y''=\lambda_{2}b(t)x,& 0< t< 1,\\ -\Delta x^{\prime}|_{t=t_{k}}=\lambda_{3}I_{k}(x(t_{k})),& k=1,2,\ldots,n,\\ x(0)=0,\qquad x'(1)=0,\\ y(0)=0,\qquad y'(1)=0, \end{cases} $$
(4.3)

where \(\lambda_{1}>0\), \(\lambda_{2}>0\), and \(\lambda_{3}>0\) are three parameters, \(a(t)\), \(b(t)\), \(g(t)\) change sign on \([0,1]\).

5 An example

Example 5.1

Let \(n=1\), \(t_{1}=\frac{1}{5}\). Consider the following system:

$$ \textstyle\begin{cases} -x^{\prime\prime}=a(t)xy+\lambda_{1}g(t)\sqrt{x},& 0< t< 1, t\neq\frac{1}{5},\\ -y^{\prime\prime}=\lambda_{2}b(t)x,& 0< t< 1,\\ \Delta x|_{t=\frac{1}{5}}=\lambda_{3}I_{1}(x(\frac{1}{5})),\\ \Delta x'|_{t=\frac{1}{5}}=0,\\ x(0)=0, \qquad x'(1)=0,\\ y(0)=y(1)=0, \end{cases} $$
(5.1)

where \(I_{1}(x)=\sqrt{x}\) and

$$\begin{aligned} &b(t)= \textstyle\begin{cases} \frac{128}{3}(\frac{1}{3}-t),& t\in[0,\frac{1}{3}],\\ -\frac{1}{16}(t-\frac{1}{3}),& t\in[\frac{1}{3},1], \end{cases}\displaystyle \\ &a(t)= \textstyle\begin{cases} \frac{2048}{3}(\frac{1}{3}-t),& t\in[0,\frac{1}{3}],\\ -\frac{1}{16}(t-\frac{1}{3}),& t\in[\frac{1}{3},1], \end{cases}\displaystyle \\ &g(t)= \textstyle\begin{cases} \frac{64}{\sqrt{3}}(\frac{1}{3}-t),& t\in[0,\frac{1}{3}],\\ -\frac{1}{16}(t-\frac{1}{3}),& t\in[\frac{1}{3},1]. \end{cases}\displaystyle \end{aligned}$$

Firstly, we give a result which is similar to that of Proposition 2.3 in [36]. Consider the following boundary value problems:

$$\begin{aligned} &\textstyle\begin{cases} -x''=k(t)x^{\alpha},& 0< t< 1,\\ x(0)=0,\qquad x'(1)=0, \end{cases}\displaystyle \end{aligned}$$
(5.2)
$$\begin{aligned} &\textstyle\begin{cases} -x''=k(t)x^{\alpha},& 0< t< 1,\\ x(0)=x(1)=0, \end{cases}\displaystyle \end{aligned}$$
(5.3)

where \(\alpha>0\) with \(\alpha\neq1\), \(k(t)\) satisfies the changing sign condition

$$\textstyle\begin{cases} k(t)\geq0, & t\in[0,\xi],\\ k(t)\leq0, & t\in[\xi,1], \end{cases} $$

and

$$c_{1}x^{\alpha}\leq f(x)=x^{\alpha}\leq c_{2}x^{\alpha},\quad c_{1},c_{2}>0. $$

If there exists \(0<\sigma<\xi\) such that

$$ c_{1}\frac{\xi-\sigma}{1-\xi}\sigma^{\alpha+1} \mu^{2}k^{+}\biggl(\xi-\frac{\xi -\sigma}{1-\xi}\tau\biggr)\geq c_{2}\xi^{\alpha}k^{-}(\xi+\tau),\quad \tau\in [0,1- \xi], $$
(5.4)

then the following inequalities hold:

$$\begin{aligned} &\sigma^{\alpha}\mu^{2} \int_{\sigma}^{\xi}G(t,s)k^{+}(s)\,ds\geq \frac {c_{2}}{c_{1}}\xi^{\alpha} \int_{\xi}^{1}G(t,s)k^{-}(s)\,ds, \end{aligned}$$
(5.5)
$$\begin{aligned} &\sigma^{\alpha}\mu^{2} \int_{\sigma}^{\xi}G_{1}(t,s)k^{+}(s) \,ds\geq\frac {c_{2}}{c_{1}}\xi^{\alpha} \int_{\xi}^{1}G_{1}(t,s)k^{-}(s) \,ds. \end{aligned}$$
(5.6)

Next, we study the multiplicity of positive solutions of problem (5.1). From definitions of \(a(t)\), \(b(t)\), and \(g(t)\), we know that \(\xi=\frac{1}{3}\).

Step 1. We show that \((H_{4})\) holds. For fixed \(c_{1}=c_{2}=1\), \(\sigma_{1}=\frac{1}{4}\), \(\mu=1\), and \(\alpha=1\), (5.4) is equivalent to the following inequality:

$$\frac{3}{128}b^{+}\biggl(\frac{1}{3}-\frac{1}{8} \tau\biggr)\geq b^{-}\biggl(\frac {1}{3}+\tau\biggr),\quad \tau\in \biggl[0,\frac{2}{3}\biggr]. $$

Letting \(\frac{1}{3}-\frac{1}{8}\tau=\zeta\), then the above inequality is equivalent to

$$\frac{3}{128}b^{+}(\zeta)\geq b^{-}(3-8\zeta),\quad \zeta\in\biggl[\frac {1}{4},\frac{1}{3}\biggr]. $$

By the definition of \(b(t)\), the above inequality holds obviously. It is clear that by (5.6), \((H_{4})\) is reasonable.

Step 2. We show that \((H_{5})\) holds. Similar to the arguments in Step 1, letting \(c_{1}=1\), \(c_{2}=16\), \(\sigma_{2}=\frac{1}{4}\), \(\mu=1\), and \(\alpha=1\), then by (5.5) we get

$$\frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{3}}G(t,s)a^{+}(s)\,ds\geq \frac {16}{3} \int_{\frac{1}{3}}^{1}G(t,s)a^{-}(s)\,ds. $$

Further, from the above inequality, it follows that

$$\begin{aligned} &\frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{3}}G(t,s)\frac {3}{16}a^{+}(s) \,ds \geq \int_{\frac{1}{3}}^{1}G(t,s)a^{-}(s)\,ds \\ &\quad \Leftrightarrow\quad \frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{3}}G(t,s) \Bigl(\min_{s\in[\frac{1}{4},\frac{1}{3}]}G_{1}(s,s) \Bigr)a^{+}(s)\,ds \geq \int_{\frac{1}{3}}^{1}G(t,s)a^{-}(s)\,ds \\ &\quad \Rightarrow\quad \frac{1}{4} \int _{\frac{1}{4}}^{\frac{1}{3}}G(t,s)G_{1}(s,s)a^{+}(s) \,ds \geq \int_{\frac{1}{3}}^{1}G(t,s)a^{-}(s)\,ds \\ &\quad \Rightarrow\quad \frac{1}{4} \int_{\frac{1}{4}}^{\frac{1}{3}}G(t,s)G_{1}(s,s)a^{+}(s) \,ds >\frac{1}{3} \int_{\frac{1}{3}}^{1}G(t,s)a^{-}(s)\,ds. \end{aligned}$$

So, \((H_{5})\) holds.

Step 3. Similar to the arguments in Step 1, letting \(c_{1}=c_{2}=1\), \(\sigma_{3}=\frac{1}{4}\), \(\mu=1\), and \(\alpha=\frac{1}{2}\), then \((H_{8})\) holds.

Step 4. It is easy to see by direct calculation that

$$\begin{aligned} & \int_{0}^{\xi}g^{+}(s)\,ds= \int_{0}^{\frac{1}{3}}\frac{64}{\sqrt{3}}\biggl( \frac {1}{3}-s\biggr)\,ds =\frac{32}{9\sqrt{3}}, \\ & \begin{aligned} A^{*}={}& \int_{0}^{\xi} \int_{0}^{\xi}G_{1}(s,\tau)a^{+}(s)b^{+}( \tau)\,d\tau \,ds= \int_{0}^{\frac{1}{3}}a^{+}(s) \int_{0}^{\frac{1}{3}}G_{1}(s,\tau )b^{+}(\tau)\,d\tau \,ds \\ ={}& \int_{0}^{\frac{1}{3}}a^{+}(s) \biggl[ \int_{0}^{s}\tau(1-s)b^{+}(\tau )\,d\tau+ \int_{s}^{\frac{1}{3}}s(1-\tau)b^{+}(\tau)\,d\tau \biggr] \,ds=\frac {4\text{,}325\text{,}376}{885\text{,}735}. \end{aligned} \end{aligned}$$

Let \(\eta=1\), \(r=2\), and \(R=10\). Then we have

$$\begin{aligned} &M_{\eta}=\max_{0\leq x\leq1}\{\sqrt{x}\}=1, \qquad M_{\eta}^{*}=\max\bigl\{ m_{k}^{*},k=1,2, \ldots,n\bigr\} =1, \\ &m_{k}=\max_{0\leq x\leq1}\{\sqrt{x}\}=1,\quad k=1,2, \ldots,n. \end{aligned}$$

Therefore, we get

$$\begin{aligned} &\lambda_{1}^{**}=\frac{\eta}{3M_{\eta}\int_{0}^{\xi}g^{+}(s)\,ds}\approx 0.1623, \qquad \lambda_{2}^{**}=\frac{1}{3A^{*}R}\approx0.0068, \\ &\lambda_{3}^{**}=\frac{\eta}{3nM_{\eta}^{*}}\approx0.3333. \end{aligned}$$

Hence, all conditions of (II) of Theorem 3.1 hold. Thus by (II) of Theorem 3.1, problem (5.1) admits at least two positive solutions for \(0<\lambda_{1}\leq0.1623\), \(0<\lambda_{2}\leq0.0068\), and \(0<\lambda_{3}\leq0.3333\).

References

  1. Onose, H.: Oscillatory properties of the first order nonlinear advance and delayed differential inequalities. Nonlinear Anal. 8, 171–180 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Erbe, L.H., Freedman, H.I., Liu, X.Z., Wu, J.H.: Comparison principles for impulsive parabolic equations with applications to models of single species growth. J. Aust. Math. Soc. Ser. B 32, 382–400 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pasquero, S.: Ideality criterion for unilateral constraints in time-dependent impulsive mechanics. J. Math. Phys. 46, 112904 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, Y.: Globally robust stability analysis for stochastic Cohen-Grossberg neural networks with impulse control and time-varying delays. Ukr. Math. J. 69, 1049–1060 (2017)

    MathSciNet  Google Scholar 

  5. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10, 680–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, X., Willms, A.: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math. Probl. Eng. 2, 277–299 (1996)

    Article  MATH  Google Scholar 

  7. Pasquero, S.: Ideality criterion for unilateral constraints in time-dependent impulsive mechanics. J. Math. Phys. 46, 112904 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karaca, I.Y., Fen, F.T.: Positive solutions of nth-order m-point impulsive boundary value problems. Georgian Math. J. 22, 373–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, M., Du, B., Ge, W.: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian. Nonlinear Anal. 70, 3119–3126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Y., O’Regan, D.: Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 1769–1775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, X., Feng, M.: Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator. Bound. Value Probl. 2017, 172 (2017)

    Article  MATH  Google Scholar 

  12. Zhang, H., Liu, L., Wu, Y.: Positive solutions for nth-order nonlinear impulsive singular integro-differential equations on infinite intervals in Banach spaces. Nonlinear Anal. 70, 772–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hao, X., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 101–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, J., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with Stieltjes integral boundary conditions. Adv. Differ. Equ. 2012, 124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Feng, M., Ge, W.: Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces. J. Comput. Appl. Math. 233, 1915–1926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, M., Feng, M.: Infinitely many singularities and denumerably many positive solutions for a second-order impulsive Neumann boundary value problem. Bound. Value Probl. 2017, 50 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse. Qual. Theory Dyn. Syst. https://doi.org/10.1007/s12346-017-0223-6

  18. Liu, J., Zhao, Z.: Variational approach to second-order damped Hamiltonian systems with impulsive effects. J. Nonlinear Sci. Appl. 9, 3459–3472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, J., Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. 71, 2856–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hao, X., Liu, L., Wu, Y.: Iterative solution for nonlinear impulsive advection-reaction-diffusion equations. J. Nonlinear Sci. Appl. 9, 4070–4077 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hao, X., Liu, L.: Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci. 40, 4832–4841 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Bai, Z., Dong, X., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 2016(1), 63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X., Yang, X., Ge, W.: Positive solutions of nth-order impulsive boundary value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. 71, 5930–5945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tian, Y., Bai, Z.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 59, 2601–2609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, X., Feng, M.: Transformation techniques and fixed point theories to establish the positive solutions of second order impulsive differential equations. J. Comput. Appl. Math. 271, 117–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, 161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, J., Zhao, Z.: Multiple solutions for impulsive problems with non-autonomous perturbations. Appl. Math. Lett. 64, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, R., Han, X.: Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function. Appl. Math. Comput. 215, 1077–1083 (2009)

    MathSciNet  MATH  Google Scholar 

  30. López-Gómez, J., Tellini, A.: Generating an arbitrarily large number of isolas in a superlinear indefinite problem. Nonlinear Anal. 108, 223–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boscaggin, A., Zanolin, F.: Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem. Ann. Mat. Pura Appl. 194, 451–478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boscaggin, A., Zanolin, F.: Positive periodic solutions of second order nonlinear equations with indefinite weight: multiplicity results and complex dynamics. J. Differ. Equ. 252, 2922–2950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sovrano, E., Zanolin, F.: Indefinite weight nonlinear problems with Neumann boundary conditions. J. Math. Anal. Appl. 452, 126–147 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bravo, J.L., Torres, P.J.: Periodic solutions of a singular equation with indefinite weight. Adv. Nonlinear Stud. 10, 927–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, F., An, Y.: On positive solutions for a second order differential system with indefinite weight. Appl. Math. Comput. 259, 753–761 (2015)

    MathSciNet  Google Scholar 

  36. Yao, Q.: Existence and multiplicity of positive radial solutions for a semilinear elliptic equation with change of sign. Appl. Anal. 80, 65–77 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. López-Gómez, J., Omari, P., Rivetti, S.: Positive solutions of one-dimensional indefinite capillarity-type problems: a variational approach. J. Differ. Equ. 262, 2335–2392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. López-Gómez, J., Omari, P., Rivetti, S.: Bifurcation of positive solutions for a one-dimensional indefinite quasilinear Neumann problem. Nonlinear Anal. 155, 1–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tokmak, F., Karaca, I.Y.: Existence of symmetric positive solutions for a multipoint boundary value problem with sign-changing nonlinearity on time scales. Bound. Value Probl. 2013, 52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Karaca, I.Y., Tokmak, F.: Existence of positive solutions for third-order boundary value problems with integral boundary conditions on time scales. J. Inequal. Appl. 2013, 498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, Y., Zhao, Z.: Positive solutions for third-order boundary value problems with change of signs. Appl. Math. Comput. 218, 2744–2749 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Jiang, J., Liu, L., Wu, Y.: Second-order nonlinear singular Sturm-Liouville problems with integral boundary problems. Appl. Math. Comput. 215, 1573–1582 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Hao, X., Liu, L., Wu, Y.: On positive solutions of m-point nonhomogeneous singular boundary value problem. Nonlinear Anal. 73, 2532–2540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, W., Liu, L., Wu, Y.: Positive solutions of a singular boundary value problem for systems of second-order differential equations. Appl. Math. Comput. 208, 511–519 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Wang, M., Feng, M.: New Green’s function and two infinite families of positive solutions for a second order impulsive singular parametric equation. Adv. Differ. Equ. 2017 (2017) 14 pages

  46. Jiang, J., Liu, L., Wu, Y.: Symmetric positive solutions to singular system with multi-point coupled boundary conditions. Appl. Math. Comput. 220, 536–548 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Feng, M.: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions and one-dimensional p-Laplacian. Bound. Value Probl. 2011, 654871 (2011)

    Article  MATH  Google Scholar 

  48. Feng, M., Ji, D., Ge, W.: Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math. 222, 351–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)

    MATH  Google Scholar 

  50. Zhang, X., Feng, M., Ge, W.: Existence results for nonlinear boundary-value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. 69, 3310–3321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Feng, M.: Multi-parameter, impulsive effects and positive periodic solutions of first-order functional differential equations. Bound. Value Probl. 2015, 137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for their constructive comments and suggestions which have greatly improved this paper.

Availability of data and materials

Not applicable.

Funding

This work is sponsored by the National Natural Science Foundation of China (11301178) and the Beijing Natural Science Foundation (1163007).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this article. They have all read and approved the final manuscript.

Corresponding author

Correspondence to Xuemei Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Zhang, X. Multi-parameter second-order impulsive indefinite boundary value problems. Adv Differ Equ 2018, 158 (2018). https://doi.org/10.1186/s13662-018-1618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-018-1618-7

Keywords