- Research
- Open access
- Published:
Monotonicity results for h-discrete fractional operators and application
Advances in Difference Equations volume 2018, Article number: 207 (2018)
Abstract
In this article, we formulate nabla fractional sums and differences of order \(0 < \alpha \leq 1\) on the time scale \(h\mathbb{Z}\), where \(0 < h \leq 1\). Then, we prove that if the nabla h-Riemann–Liouville (RL) fractional difference operator \(({}_{a}\nabla_{h}^{\alpha }y)(t) > 0 \), then \(y(t)\) is α-increasing. Conversely, if \(y(t)\) is α-increasing and \(y(a)>0\), then \(({}_{a}\nabla_{h}^{\alpha }y)(t)>0\). The monotonicity results for the nabla h-Caputo fractional difference operator are also concluded by using the relation between h-nabla RL and Caputo fractional difference operators. It is observed that the reported monotonicity coefficient is not affected by the step h. We formulate a nabla h-fractional difference initial value problem as well. Finally, we furniture our results by proving a fractional difference version of the Mean Value Theorem (MVT) on \(h\mathbb{Z}\).
1 Introduction
Due to their successful applications in many branches of science and engineering, techniques of fractional calculus have been under focus by many researchers in the past and in the present decades [1–10]. The theory of fractional sums with delta operator and the fractional differences with nabla operators were firstly introduced in [11]. Extensive development of the theory can be found in [12–31]. The monotonicity properties of delta and nabla fractional operators were studied in [32–36]. It is worth mentioning that Atıcı et al. in [34] studied the monotonicity properties of delta fractional differences and obtained a delta-fractional difference version of the mean-value theorem. In [37], interesting monotonicity results were provided using the dual identities related to delta and nabla fractional operators. In [38], the authors studied the relationship between the discrete sequential fractional operators and monotonicity. Recently, in [39–45], fractional operators with Mittag–Leffler and exponential “non-singular” kernels have been studied together with their discrete versions, and the monotonicity has been investigated. Motivated by all the above-mentioned works, we prove interesting monotonicity results with mean value theorem as an application in this paper for nabla fractional differences in the time scale \(h \mathbb{Z} \), \(0< h \leq 1 \) (called h-nabla fractional differences), which is considered as a generalized form of the monotonicity results when \(h=1\). Also, working on \(h\mathbb{Z} \), \(0< h<1\) guarantees more accurate approximations for the solutions of fractional dynamical systems.
The article is organized as follows. In Sect. 2, we present the main definitions and important information needed in this study, and in the third section we present the monotonicity analysis of the fractional difference operator. In Sect. 4 we formulate an initial value h-fractional difference problem in the sense of Riemann. Finally, we have the application on the mean value theorem and then the conclusions are presented.
2 Definitions and preliminary results
Definition 2.1
The backward difference operator on \(h\mathbb{Z}\) is defined by
and the forward difference operator on \(h\mathbb{Z}\) is defined by
Definition 2.2
The backward jump operator on the time scale \(h\mathbb{Z}\) is defined by \(\rho_{h}(t)=t-h\) and the forward jump operator is defined by \(\sigma_{h}(t)= t+h\).
For \(a,b \in \mathbb{R}\) with \(a< b\), \(\frac{b-a}{h}\in \mathbb{N}\) and \(0 < h\leq 1\), we use the notations \(\mathbb{N}_{a,h} = \lbrace a,a+h, a+2h,\ldots \rbrace \) and \({}_{b,h}\mathbb{N} = \lbrace b,b-h,b-2h,\ldots \rbrace \).
Definition 2.3
Let \(\alpha \in \mathbb{R}\) and \(0 < h\leq 1\), the nabla h-factorial of t is defined by
such that \(t \in \mathbf{R}- \lbrace \ldots,-2h,-h,0\rbrace \), \(0^{\overline{\alpha }}_{h} = 0\) and dividing by poles leads to zero.
Lemma 2.1
For \(\alpha>0\) and \(h>0\), \(t^{\overline{\alpha }}_{h}\) is increasing on \(\mathbb{N}_{0,h}\).
Proof
Notice that since \(\alpha ,h>0\), then \(\nabla_{h} t^{\overline{ \alpha }}_{h} =\frac{t^{\overline{\alpha }}_{h} - (t-h)^{\overline{ \alpha }}_{h} }{h} = \alpha t^{\overline{\alpha - 1} }_{h} \geq 0 \), and hence the proof is completed. □
Definition 2.4
(Nabla h-fractional sums)
For a function \(f : \mathbb{N}_{a,h} ={\lbrace a, a+h, a+2h,\ldots \rbrace } \rightarrow \mathbb{R} \), the nabla left h-fractional sum of order \(\alpha >0\) is defined by
For a function \(f : {}_{b,h }\mathbb{N} = {\lbrace b, b-h, b-2h,\ldots\rbrace } \rightarrow \mathbb{R} \), the nabla right h-fractional sum of order \(\alpha >0\) is defined by
Definition 2.5
(Nabla h-RL fractional differences)
-
The nabla left h-fractional difference of order \(0<\alpha \leq 1\) (starting from a) is defined by
$$\begin{aligned}& \bigl( {}_{a}\nabla_{h} ^{ \alpha } f \bigr) (t)= \bigl( \nabla_{h}\, {}_{a}\nabla^{- ( 1 - \alpha )}_{h} f \bigr) (t), \quad \text{which is} \\& \bigl( {}_{a}\nabla_{h} ^{ \alpha } f \bigr) (t) = \frac{1}{ \Gamma (1 - \alpha ) } \nabla_{h} \sum_{k = a/h + 1} ^{t/h} \bigl(t - \rho_{h} (kh)\bigr)^{\overline{- \alpha }}_{h} f(kh) h, \quad t\in \mathbb{N}_{a+h , h}. \end{aligned}$$ -
The nabla right h-fractional difference of order \(0<\alpha \leq 1\) (ending at b) is defined by
$$\begin{aligned}& \bigl( {}_{h} \nabla_{b} ^{ \alpha } f \bigr) (t)= \bigl( - \Delta_{h} \,{}_{h} \nabla^{- ( 1 - \alpha )}_{b} f \bigr) (t), \quad \text{which is} \\& \bigl( {}_{h} \nabla_{b} ^{ \alpha } f \bigr) (t) = \frac{-1}{ \Gamma (1 - \alpha ) } \Delta_{h} \sum_{k = t/h} ^{b/h - 1} \bigl(kh - \rho_{h} (t)\bigr)^{\overline{- \alpha }}_{h} f(kh) h,\quad t\in{}_{b-h ,h} \mathbb{N}. \end{aligned}$$
Definition 2.6
(Nabla h-Caputo fractional differences)
Assume that \(0<\alpha \leq 1\), \(0< h\leq 1 \), \(a,b \in \mathbb{R} \), and \(a< b\), f is defined on \(\mathbb{N}_{a,h} = \lbrace a, a+h, a+2h,\ldots \rbrace \) and on \({}_{b,h} \mathbb{N} =\lbrace b, b-h, b-2h,\ldots \rbrace \). Then:
-
the left h-Caputo fractional difference of order α starting at a is defined by
$$ \bigl( {}_{a} ^{C} \nabla_{h} ^{\alpha } f \bigr) (t)= \bigl( {}_{a}\nabla _{h} ^{ -( 1 - \alpha )} \nabla_{h} f \bigr) (t), \quad t \in \mathbb{N}_{a+h , h}; $$ -
the right h-Caputo fractional difference of order α ending at b is defined by
$$ \bigl({}_{h} ^{C} \nabla_{b} ^{\alpha } f \bigr) (t)= \bigl({}_{h} \nabla _{b} ^{ -( 1 - \alpha )} ( - \Delta_{h} f )\bigr) (t) ,\quad t \in {}_{b-h , h} \mathbb{N}. $$
Proposition 2.2
(The relation between nabla h-RL fractional difference and h-Caputo fractional difference)
Proof
(ii) The proof is similar to that in (i), and hence we omit it. □
The following lemma is a generalization of Lemma 3.3 in [20].
Lemma 2.3
Let \(\alpha >0\), \(\mu >-1\), \(h>0\), and \(t\in \mathbb{N}_{a,h} \). Then
Proof
Using Lemma 3.3 in [20], we have
□
3 The monotonicity results
The following two definitions are the \(h\mathbb{Z}\) versions of monotonicity definitions given in [34].
Definition 3.1
Let \(y: \mathbb{N}_{a,h} \rightarrow \mathbb{R}\) be a function satisfying \(y(a)\geq 0 \), and let \(0 \leq h < 1 \). Then \(y(t) \) is called an α-increasing function on \(\mathbb{N}_{a,h} \) if \(y(t+h)\geq \alpha y(t)\) \(\forall t\in \mathbb{N}_{a,h} \).
Note that if \(y(t)\) is increasing on \(\mathbb{N}_{a,h}\) (\(y(t+h) \geq y(t)\) \(\forall t\in \mathbb{N}_{a,h} \)), then \(y(t) \) is an α-increasing function on \(\mathbb{N}_{a,h} \), and if \(\alpha = 1 \), then the increasing and α-increasing concepts coincide.
Definition 3.2
Let \(y: \mathbb{N}_{a,h} \rightarrow \mathbb{R}\) be a function satisfying \(y(a) \leq 0 \), and \(0 \leq h < 1 \). Then \(y(t) \) is called an α-decreasing function on \(\mathbb{N}_{a,h} \) if \(y(t+h) \leq \alpha y(t)\) \(\forall t\in \mathbb{N}_{a,h} \).
Note that if \(y(t)\) is decreasing on \(\mathbb{N}_{a,h}\) (\(y(t+h) \leq y(t)\) \(\forall t\in \mathbb{N}_{a,h}\)), then \(y(t) \) is an α-decreasing function on \(\mathbb{N}_{a,h} \), and if \(\alpha = 1 \), then the decreasing and α-decreasing concepts coincide.
Theorem 3.1
Let \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\), and suppose that (\({}_{a-h} \nabla^{\alpha }_{h} y \)) \((t) \geq 0\) for \(0 < \alpha \leq 1 \), and \(0 < h \leq 1 \), \(t \in \mathbb{N}_{a-h,h} \). Then \(y(t) \) is α-increasing.
Proof
First we recall that
Let
Then, from the assumption, we have \(\nabla_{h} S(t)\geq 0\). That is,
Therefore
When \(t=a\), we have
When \(t=a+h\), we get
hence, \(y(a+h) \geq \alpha y(a) \).
Now we follow inductively to show that
Assume \(y(k+h) \geq \alpha y(k) \geq 0 \), \(\forall k < t \) such that \(k,t \in \mathbb{N}_{a,h}\). We need to show that \(y(t+h) \geq \alpha y(t)\). We know that
In (3) replace t by \(t+h \). Then we have
or
Then from Definition 2.3 it follows that
Hence, \(y(t+h) \geq \alpha y(t) \), and the proof is completed. □
Using Proposition 2.2 and Theorem 3.1, we can state the following h-Caputo fractional difference monotonicity result.
Corollary 3.2
Let \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\), and suppose that
for \(0 < \alpha \leq 1 \), and \(0 < h \leq 1 \) then \(y(t) \) is α-increasing.
Theorem 3.3
Assume that the function \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\) satisfies \(y(a)\geq 0 \) and assume \(0 < \alpha \leq 1 \) and \(0 < h \leq 1 \). If y is increasing on \(\mathbb{N}_{a,h} \), then we have
Proof
Since we have
it is enough to show that
is increasing on \(\mathbb{N}_{a,h}\). In reference to the proof of Theorem 3.1, when \(t=a\) we have
and since \(y(a)\geq 0 \), \(h ^{- \alpha } >0 \), and \(\Gamma (1- \alpha )>0 \), then
Assume that \(\nabla_{h} S(i)\geq 0 \), \(\forall i < t \). We shall show that \(\nabla_{h} S(t) \geq 0 \).
From the assumption that \(y(t) \) is increasing, it follows that \(y(t) \geq y(t-h) \geq y(a)\geq 0 \), \(\forall t \in \mathbb{N}_{a,h} \).
From (2), we recall that
Then we have
Note that since \(y(t) \) is increasing, then \(y(t-h) - y(kh) \geq 0\), \(\forall k=\frac{a}{h},\frac{a}{h} +1,\ldots,\frac{t}{h}-2 \), from which it follows that
If we continue in the same manner, we conclude that
□
The proof of the following theorem is similar to that in Theorem 3.3.
Theorem 3.4
Let a function \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\) satisfy \(y(a)> 0 \) and be strictly increasing on \(\mathbb{N}_{a,h} \), where \(0 < \alpha \leq 1 \) and \(0 < h \leq 1 \). Then
Theorem 3.5
Let \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\), and suppose that (\({}_{a-h} \nabla^{\alpha }_{h} y \)) \((t) \leq 0\) for \(0 < \alpha \leq 1 \), and \(0 < h \leq 1 \), \(t \in \mathbb{N}_{a-h,h} \). Then \(y(t) \) is α-decreasing.
Proof
Let \(g: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\) be a function such that \(g(t)= - y(t)\), hence
Then the proof follows by applying Theorem 3.1 to \(g(t)\). □
Theorem 3.6
Let a function \(y: \mathbb{N}_{a-h,h} \rightarrow \mathbb{R}\) satisfy \(y(a) \leq 0 \) and be decreasing on \(\mathbb{N}_{a,h} \). Then, for \(0 < \alpha \leq 1 \) and \(0 < h \leq 1 \), we have
Proof
The proof follows by applying Theorem 3.3 to \(g(t)=-y(t)\). □
4 Riemann-type fractional difference initial value problem
The following results are essential to proceed for the mean value theorem.
Lemma 4.1
For any \(0 < \alpha \leq 1\), \(0 < h \leq 1 \), and \(f: \mathbb{N}_{a+h,h} \rightarrow \mathbb{R} \), the following equality holds:
Proof
Recalling that
we have
On the other hand, we have
□
Lemma 4.2
For any \(0 < \alpha \leq 1\), \(0 < h \leq 1 \), and \(y: \mathbb{N}_{a+h,h} \rightarrow \mathbb{R} \), the following equality holds:
Proof
From the definition and the proof of Lemma 2.1, we have
□
Theorem 4.3
For any \(0 < \alpha \leq 1\), \(0 < h \leq 1 \), and \(y: \mathbb{N}_{a+h,h} \rightarrow \mathbb{R} \), the following equality holds:
Proof
By the help of Lemma 4.2, we have
Moreover, by the help of Lemma 4.1 and that \(h_{h}^{\overline{- \alpha }}=h^{-\alpha }\Gamma (1-\alpha )\), we have
Applying the identity
to the function \(g(t)=\frac{(t-a+h)_{h} ^{\overline{- \alpha }}}{ \Gamma (1 - \alpha )} y(a) h\), we obtain
Hence, by substituting (8) in (7) and by making use of Lemma 2.3 with \(\mu =-\alpha \), we obtain
We have used that
Hence,
□
Consider the following initial fractional difference equation:
where \(0 < \alpha ,h < 1\) and a is any real number.
By means of Theorem 4.3, we can state the following theorem.
Theorem 4.4
y is a solution of the initial value problem, (9), (10) if and only if it has the representation
5 Application: Mean Value Theorem (MVT)
First, for the sake of simplification, depending on Theorem 4.3, we shall write
where \(R_{h} (\alpha , t , a) = \frac{ h^{1- \alpha } }{ \Gamma (\alpha )} (t-a+h)_{h} ^{\overline{\alpha - 1}} \).
Theorem 5.1
(The h-fractional difference MVT)
Let f and g be functions defined on \(\mathbb{N}_{a,h} \cap {}_{b,h} \mathbb{N} = \lbrace a , a+h, a+2h,\ldots, b-2h, b-h, b \rbrace \), where \(b=a+kh \) for some \(k \in \mathbb{N} \). Assume that g is strictly increasing, \(g(a)>0 \), and \(0 < \alpha < 1 \), \(0 < h \leq 1\). Then there exist \(s_{1}, s_{2} \in \mathbb{N}_{a,h} \cap {}_{b,h} \mathbb{N} \) such that
Proof
First we need to show that \(g(b)-R_{h}(\alpha ,b,a)g(a)>0 \). Since g is strictly increasing, then by Theorem 3.4 we have
Applying the fractional sum operator on both sides of the inequality, by means of (12), we get
or by means of (12) we have
For \(t=b \), we get
To prove the theorem, we use contradiction. Assume that (13) is not true, then either
or
Again, since g is strictly increasing, then by Theorem 3.4 we conclude that
Hence (14) becomes
Applying the fractional sum operator on both sides of the inequality at \(t=b\) and by making use of (12), we see that
and hence \(f(b)< f(b)\), which is a contradiction. In a similar way, (15) will lead to contradiction. □
Remark 5.1
If we let \(h=1\) in Theorem 5.1, then we reobtain the results in [34] via using the dual identities presented in [30, 31], or else we refer to [37].
6 Conclusions
The contributions of this paper can be concluded as follows:
-
1.
Nabla fractional sums and differences of order \(0 < \alpha \leq 1\) on the time scale \(h\mathbb{Z}\) have been formulated.
-
2.
Riemann–Liouville and Caputo discrete fractional operators on the time scale \(h \mathbb{Z} \) have been defined.
-
3.
The relation between nabla h-RL and h-Caputo fractional differences has been detected.
-
4.
If \(( {}_{a}\nabla_{h}^{\alpha }y)(t) > 0 \), then \(y(t)\) is α-increasing.
-
5.
If \(y(t)\) is α-increasing and \(y(a)>0\), then \(({}_{a}\nabla _{h}^{\alpha }y)(t)>0\).
-
6.
The monotonicity factor, which is α, has not been affected by the discretization step h.
-
7.
A Riemann-type fractional difference initial value problem has been formulated and solved, and hence we generalize the representation obtained in [20].
-
8.
A monotonicity result for the nabla h-Caputo fractional difference operator has been proved as well.
-
9.
As an application, a fractional difference version of the Mean Value Theorem on \(h\mathbb{Z}\) has been proved.
-
10.
Working on \(h\mathbb{Z}\), \(h\in (0,1)\) rather than on \(\mathbb{Z}\) makes it possible to guarantee the convergence of solutions for a larger class of fractional difference initial value problems.
References
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samko, S., Kilbas, A., Marichev, A.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
Kilbas, A., Srivastava, M., Trujillo, J.: Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204 (2006)
Abdeljawad, T., Baleanu, D., Jarad, F.: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. J. Math. Phys. 49, 083507 (2008)
Silva, M., Machado, J., Lopes, A.: Modeling and simulation of artificial locomotion systems. Robotica 23, 595–606 (2005)
Abdeljawad, T., Jarad, F., Baleanu, D.: On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Sci. China Ser. A, Math. 51(10), 1775–1786 (2008)
Bozkurt, F., Abdeljawad, T., Hajji, M.: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density. Appl. Comput. Math. 14(1), 50–62 (2015)
Jarad, F., Abdeljawad, T., Baleanu, D.: Higher order variational optimal control problems with delayed arguments. Appl. Math. Comput. 218(18), 9234–9240 (2012)
Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62(3), 609–614 (2010)
Sadati, S., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T.: Mittag-Leffler stability theorem for fractional-nonlinear systems with delay. Abstr. Appl. Anal. 2010, Article ID 108651 (2010)
Miller, K., Ross, B.: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, Japan, pp. 139–152 (1989)
Atıcı, F., Eloe, P.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 3 (2009)
Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602–1611 (2011)
Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574–582 (2011)
Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems. Abstr. Appl. Anal. 2012, Article ID 476581 (2012)
Jarad, F., Abdeljawad, T., Gündog̃du, E., Baleanu, D.: On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems. Proc. Rom. Acad. 12(4), 309–314 (2011)
Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011)
Atıcı, F., Eloe, P.: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2(2), 165–176 (2007)
Atıcı, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)
Abdeljawad, T., Atıcı, F.: On the definitions of nabla fractional differences. Abstr. Appl. Anal. 2012, Article ID 406757 (2012)
Atıcı, F., Eloe, P.: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41(2), 353–370 (2011)
Atıcı, F., Eloe, P.: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64(10), 3193–3200 (2012)
Ferreira, R., Torres, D.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5(1), 110–121 (2011)
Goodrich, C.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23(9), 1050–1055 (2010)
Bastos, N., Ferreira, R., Torres, D.: Discrete-time fractional variational problems. Signal Process. 91(3), 513–524 (2011)
Anastassiou, G.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51(5–6), 562–571 (2010)
Wu, G., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)
Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Berlin (2015)
Hein, J., McCarthy, Z., Gaswick, N., McKain, B., Speer, K.: Laplace transforms for the nabla-difference operator. Panam. Math. J. 21(3), 79–97 (2011)
Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, 36 (2013)
Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, Article ID 406910 (2013)
Dahal, R., Goodrich, C.: A monotonicity result for discrete fractional difference operators. Arch. Math. (Basel) 102, 293–299 (2014)
Jia, B., Erbe, L., Peterson, A.: Two monotonicity results for nabla and delta fractional differences. Arch. Math. (Basel) 104(6), 589–597 (2015)
Atıcı, F., Uyanık, M.: Analysis of discrete fractional operators. Appl. Anal. Discrete Math. 9, 139–149 (2015)
Erbe, L., Goodrich, C., Jia, B., Peterson, A.: Monotonicity results for delta and nabla fractional differences revisited. Math. Slovaca 67(4), 895–906 (2017)
Goodrich, C.: A convexity result for fractional differences. Appl. Math. 35, 58–62 (2014)
Abdeljawad, T., Abdalla, B.: Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities. Filomat 31(12), 3671–3683 (2017)
Dahal, R., Goodrich, C.: An almost sharp monotonicity result for discrete sequential fractional delta differences. J. Differ. Equ. Appl. 23(7), 1190–1203 (2017)
Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)
Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10(3), 1098–1107 (2017)
Abdeljawad, T., Baleanu, D.: Discrete fractional differences with non-singular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 232 (2016)
Abdeljawad, T., Al-Mdallal, Q.M.: Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality. J. Comput. Appl. Math. 339, 218–230 (2018)
Abdeljawad, T., Baleanu, D.: Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 78 (2017)
Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos Solitons Fractals 102, 106–110 (2017)
Funding
The third author would like to thank Prince Sultan University for funding this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
Author information
Authors and Affiliations
Contributions
All the authors participated in obtaining the main results of this manuscript and drafted the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Suwan, I., Owies, S. & Abdeljawad, T. Monotonicity results for h-discrete fractional operators and application. Adv Differ Equ 2018, 207 (2018). https://doi.org/10.1186/s13662-018-1660-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1660-5