Theory and Modern Applications

# Monotonicity, concavity, and inequalities related to the generalized digamma function

## Abstract

In this paper, we establish a concave theorem and some inequalities for the generalized digamma function. Hence, we give complete monotonicity property of a determinant function involving all kinds of derivatives of the generalized digamma function.

## 1 Introduction

It is well known that the Euler gamma function is defined by

$$\Gamma(x)= \int_{0}^{\infty}t^{x-1}e^{-t}\,dt, \quad x>0.$$

The logarithmic derivative of $$\Gamma(x)$$ is called the psi or digamma function. That is,

\begin{aligned} \psi(x)&=\frac{d}{dx}\ln\Gamma(x)=\frac{\Gamma'(x)}{\Gamma(x)} \\ &=-\gamma-\frac{1}{x}+\sum_{n=1}^{\infty} \frac{x}{n(n+x)}, \end{aligned}

where $$\gamma=0.5772\ldots$$ is the Eulerâ€“Mascheroni constant. The gamma, digamma, and polygamma functions play an important role in the theory of special function, and have many applications in many other branches such as statistics, fractional differential equations, mathematical physics, and theory of infinite series. The reader may see related references [5, 7, 9, 13, 16, 23â€“28].

In [6], the k-analogue of the gamma function is defined for $$k>0$$ and $$x>0$$ as follows:

\begin{aligned} \Gamma_{k}(x)&= \int_{0}^{\infty}t^{x-1}e^{-\frac{t^{k}}{k}}\,dt \\ &=\lim_{n\rightarrow\infty}\frac{n!k^{n}(nk)^{\frac{x}{k}-1}}{(x)_{n,k}}, \end{aligned}

where $$\lim_{k\rightarrow1}\Gamma_{k}(x)=\Gamma(x)$$. It is natural that the k-analogue of the digamma function is defined for $$x>0$$ by

$$\psi_{k}(x)=\frac{d}{dx}\log\Gamma_{k}(x)= \frac{\Gamma_{k}'(x)}{\Gamma_{k}(x)}.$$

It is worth noting that Nantomah et al. gave $$(p,k)$$-analogue of the gamma and the digamma functions in [15]. Further, they established some inequalities involving these new functions. The reader may see references [14, 15].

Very recently, Alzer and Jameson [2] presented a harmonic mean inequality for the digamma function, and also showed some interesting inequalities. It is natural to ask if one can generalize these results to the generalized digamma function with single parameters. This is the first object in this paper.

The second object of this paper came from the article of Ismail and Laforgia. In [11], they proved complete monotonicity of a determinant function involving the derivatives of the digamma function. Using their idea, we prove that their conclusion is also true for the generalized digamma function. In particular, some of the work about the complete monotonicity of these special functions may be found in [3, 4, 8, 10, 12, 17â€“22].

## 2 Lemmas

### Lemma 2.1

For $$k>0$$ and $$x>0$$, the following identities hold true:

\begin{aligned}& \Gamma_{k}(x)=k^{\frac{x}{k}-1}\Gamma\biggl( \frac{x}{k}\biggr), \end{aligned}
(2.1)
\begin{aligned}& \psi_{k}(x)=\frac{\ln k}{k}+\frac{1}{k}\psi \biggl(\frac{x}{k}\biggr). \end{aligned}
(2.2)

### Proof

Using the substitution $$\frac{t}{\sqrt[k]{k}}=u$$ and $$u^{k}=p$$, we easily obtain

\begin{aligned} \Gamma_{k}(x) =&\bigl(\sqrt[k]{k}\bigr)^{x} \int_{0}^{\infty}\biggl(\frac{t}{\sqrt[k]{k}} \biggr)^{x-1}e^{- (\frac{t}{\sqrt[k]{k}} )^{k}}\, d \biggl(\frac {t}{\sqrt[k]{k}} \biggr) \\ =&k^{\frac{x}{k}} \int_{0}^{\infty}u^{x-1}e^{-u^{k}}\,du \\ =&k^{\frac{x}{k}-1} \int_{0}^{\infty}p^{\frac{x}{k}-1}e^{-p}\,dp \\ =&k^{\frac{x}{k}-1}\Gamma \biggl(\frac{x}{k} \biggr). \end{aligned}

So, we prove formula (2.1). To (2.2), direct computation yields

\begin{aligned} \psi_{k}(x)&=\frac{\Gamma_{k}'(x)}{\Gamma_{k}(x)}=\frac{ [k^{\frac {x}{k}-1}\Gamma (\frac{x}{k} ) ]'}{ [k^{\frac {x}{k}-1}\Gamma (\frac{x}{k} ) ]} \\ &=\frac{\ln k}{k}+\frac{1}{k}\psi\biggl(\frac{x}{k}\biggr). \end{aligned}

â€ƒâ–¡

### Lemma 2.2

([1, 2])

For $$x>0$$, we have

$$\psi'(x)< \frac{1}{x}+\frac{1}{2x^{2}}+ \frac{1}{6x^{3}}$$
(2.3)

and

$$\psi''(x)< -\frac{1}{x^{2}}- \frac{1}{x^{3}}.$$
(2.4)

### Lemma 2.3

For $$k,x>0, m\in\mathbb{N}$$, we have

$$\psi_{k}^{(m)}(x)=(-1)^{m+1}m!\sum _{n=0}^{\infty}\frac{1}{(nk+x)^{m+1}}$$
(2.5)

and

$$\psi_{k}^{(m)}(x)=(-1)^{m+1} \int_{0}^{\infty}\frac{t^{m}}{1-e^{-kt}}e^{-xt}\,dt.$$
(2.6)

### Proof

Formula (2.5) may be found in reference [15]. By using formula (9) in reference [15], we have

\begin{aligned} \psi_{k}^{(m)}(x) =&\lim_{p\rightarrow\infty} \psi_{p,k}^{(m)}(x) \\ =&\lim_{p\rightarrow\infty} (-1)^{m+1} \int_{0}^{\infty}\biggl(\frac {1-e^{-k(p+1)t}}{1-e^{-kt}} \biggr)t^{m}e^{-xt}\,dt \\ =&(-1)^{m+1} \int_{0}^{\infty}\frac{1}{1-e^{-kt}}t^{m}e^{-xt} \,dt. \end{aligned}

So, we prove formula (2.6).â€ƒâ–¡

## 3 Main results

### Theorem 3.1

For $$k>0$$, the function $$x^{2}\psi_{k}'(x)$$ is strictly increasing on $$(0,\infty)$$.

### Proof

Using LemmaÂ 2.1, we have

$$\psi_{k}'(x)=\frac{1}{k^{2}}\psi' \biggl(\frac{x}{k}\biggr) \quad \mbox{and}\quad \psi _{k}''(x)= \frac{1}{k^{3}}\psi''\biggl(\frac{x}{k} \biggr).$$

Combining with the identity $$\psi^{(m)}(x)=(-1)^{m+1}m!\sum_{n=0}^{\infty}\frac {1}{(n+x)^{m+1}}$$, we get

\begin{aligned} \frac{d}{dx} \bigl(x^{2}\psi_{k}'(x) \bigr) =&\frac{2x}{k^{2}} \psi' \biggl(\frac{x}{k} \biggr)+ \frac{x^{2}}{k^{3}} \psi '' \biggl(\frac{x}{k} \biggr) \\ =&2x\sum_{n=0}^{\infty}\frac{nk}{(nk+x)^{3}}>0. \end{aligned}

â€ƒâ–¡

### Theorem 3.2

For $$k>0$$, the function $$\psi_{k} (\frac{1}{x} )$$ is strictly concave on $$(0,\infty)$$.

### Proof

Easy computation results in

$$\frac{d}{dx} \biggl(\psi_{k} \biggl(\frac{1}{x} \biggr) \biggr)=-\frac {1}{x^{2}}\psi_{k}' \biggl( \frac{1}{x} \biggr).$$

Considering TheoremÂ 3.1, we complete the proof.â€ƒâ–¡

### Theorem 3.3

For $$k\geqslant\frac{1}{\sqrt[3]{3}}=0.693361\ldots$$â€‰, the function

$$\lambda_{k}(x)=\psi_{k}(x)+\psi_{k} \biggl( \frac{1}{x} \biggr)$$

is strictly concave on $$(0,\infty)$$.

### Proof

By differentiation and applying LemmaÂ 2.1, we easily obtain

\begin{aligned}& \lambda_{k}'(x)=\psi_{k}'(x)- \frac{1}{x^{2}}\psi_{k}' \biggl(\frac{1}{x} \biggr), \\& \lambda_{k}''(x)=\psi_{k}''(x)+ \frac{2}{x^{3}}\psi_{k}' \biggl(\frac {1}{x} \biggr)+\frac{1}{x^{4}}\psi_{k}'' \biggl( \frac{1}{x} \biggr), \end{aligned}

and

$$k^{3}x^{4}\lambda_{k}''(x)=x^{4} \psi'' \biggl(\frac{x}{k} \biggr)+2kx \psi' \biggl(\frac{1}{kx} \biggr)+\psi'' \biggl(\frac{1}{kx} \biggr).$$

Applying LemmaÂ 2.2, $$k\geqslant\frac{1}{\sqrt[3]{3}}$$, and the recurrence relations

\begin{aligned}& \psi' \biggl(\frac{1}{kx}+1 \biggr)=\psi' \biggl(\frac{1}{kx} \biggr)-k^{2}x^{2}, \\& \psi'' \biggl(\frac{1}{kx}+1 \biggr)= \psi'' \biggl(\frac{1}{kx} \biggr)+2k^{3}x^{3}, \end{aligned}

we have

\begin{aligned} k^{3}x^{4}\lambda_{k}''(x) =&x^{4} \psi'' \biggl(\frac{x}{k} \biggr)+2kx\psi ' \biggl(\frac{1}{kx} \biggr)+\psi'' \biggl(\frac{1}{kx} \biggr) \\ < & x^{4} \biggl(-\frac{k^{2}}{x^{2}}-\frac{k^{3}}{x^{3}} \biggr)+2kx \biggl[\frac {kx}{1+kx}+\frac{k^{2}x^{2}}{2(1+kx)^{2}} +\frac{k^{3}x^{3}}{6(1+kx)^{3}} \biggr] \\ &{}-\frac{k^{2}x^{2}}{(1+kx)^{2}} -\frac{k^{3}x^{3}}{(1+kx)^{3}} \\ =&-\frac{kx}{3(1+kx)^{3}} \bigl[3k^{2}+9k^{3}x+9k^{2}x^{2}+k^{2} \bigl(3k^{3}-1\bigr)x^{3}+3k^{4}x^{4} \bigr] \\ < &0. \end{aligned}

This implies that $$\lambda_{k}(x)$$ is strictly concave on $$(0,\infty)$$.â€ƒâ–¡

### Theorem 3.4

For $$x \in(0,\infty)$$ and $$k\geqslant\frac{1}{\sqrt[3]{3}}$$, we have

$$\psi_{k}(x)+\psi_{k} \biggl(\frac{1}{x} \biggr)\leqslant\frac{2\ln k+2\psi (\frac{1}{k} )}{k}.$$
(3.1)

### Proof

Since the function $$\lambda_{k}(x)=\psi_{k}(x)+\psi_{k} (\frac{1}{x} )$$ is strictly concave on $$(0,\infty)$$, we get

$$\lambda_{k}'(x)\geqslant\lambda_{k}'(1)=0, \quad x\in(0,1],$$

and

$$\lambda_{k}'(x)\leqslant\lambda_{k}'(1)=0, \quad x\in[1,\infty).$$

It follows that $$\lambda_{k}$$ is increasing on $$(0,1]$$ and decreasing on $$[1,\infty)$$. Hence, $$\lambda_{k}(x)\leqslant\lambda_{k}(1)$$ for $$x>0$$. The proof is complete.â€ƒâ–¡

### Remark 3.1

Let $$\gamma_{k}=-\psi_{k}(1)=-\frac{\ln k}{k}-\frac{1}{k}\psi (\frac{1}{k} )$$ be the k-analogue of the Eulerâ€“Mascheroni constant. It is obvious that $$\lim_{k\rightarrow1}\gamma_{k}=\gamma$$.

### Definition 3.1

It is known that the generalized digamma function $$\psi_{k}(x)$$ is strictly increasing on $$(0,\infty)$$ with $$\psi_{k}(0^{+})\psi_{k}(\infty)<0$$. So, the function has a sole positive root in $$(0,\infty)$$. We define this positive root for $$x_{k}$$. That is,

$$\ln k +\psi \biggl(\frac{x_{k}}{k} \biggr)=0.$$

### Theorem 3.5

For $$x\in(0,1)$$ and $$\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1$$, we have

$$\psi_{k}(1+x)\psi_{k}(1-x)\leqslant \frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k^{2}}.$$
(3.2)

### Proof

Considering $$\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1$$ and the definition of $$x_{k}$$, we have

$$\frac{1}{\sqrt[3]{3}}x_{0}\leqslant x_{k} \leqslant x_{0},$$

where $$x_{0}$$ satisfies $$\psi(x_{0})=0$$ with $$x_{0}=1.46163\ldots$$â€‰.

Case 1. If $$x\in[x_{k}-1,1)$$, then we have $$\psi_{k}(1-x)\leqslant0 \leqslant\psi_{k}(1+x)$$. This implies that formula (3.2) holds.

Case 2. If $$x\in(0,x_{k}-1]$$, using the power series expansion

$$\psi(1+z)=-\gamma+\sum_{k=2}^{\infty}(-1)^{k} \zeta(k)z^{k-1},\quad |z|< 1,$$
(3.3)

we obtain

\begin{aligned} \psi_{k}(1+x) \geqslant&\psi_{k}(k+x)=\frac{\ln k}{k}+ \frac{1}{k}\psi \biggl(1+\frac{x}{k} \biggr) \\ =& \frac{\ln k}{k}+\frac{1}{k} \Biggl[-\gamma+\sum _{k=2}^{\infty }(-1)^{k}\zeta(k)x^{k-1} \Biggr], \end{aligned}

where $$\zeta(k)=\sum_{n=1}^{\infty}\frac{1}{n^{k}}$$ is the Riemann zeta function.

Furthermore, we have

$$0< -\psi_{k}(1+x)\leqslant-\frac{\ln k}{k}+ \frac{1}{k}\bigl[\gamma-\zeta (2)x+\zeta(3)x^{2}\bigr].$$
(3.4)

Completely similar to (3.4), we have

\begin{aligned} 0 < &-\psi_{k}(1-x)\leqslant -\frac{\ln k}{k}+\frac{1}{k} \Biggl[\gamma +\zeta(2)y+\zeta(3)\sum_{k=2}^{\infty}x^{k} \Biggr] \\ \leqslant& -\frac{\ln k}{k}+\frac{1}{k}\bigl[\gamma+\zeta(2)x+ \zeta(3)x^{2}\bigr]. \end{aligned}
(3.5)

Combining (3.4) with (3.5), we obtain

$$\psi_{k}(1+x)\psi_{k}(1-x)\leqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k^{2}}$$

by using $$\zeta(3)x^{2}<1$$.â€ƒâ–¡

### Theorem 3.6

For $$x\in(0,\infty)$$ and $$\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1$$, we have

$$\psi_{k}(x)\cdot\psi_{k} \biggl( \frac{1}{x} \biggr)\leqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}.$$
(3.6)

### Proof

We only need to prove (3.6) for $$x\geqslant1$$. If $$x\geqslant x_{k}$$, then we get $$\psi_{k} (\frac{1}{x} )\leqslant 0 \leqslant\psi_{k}(x)$$. It follows that inequality (3.6) holds true.

If $$x\in(1,x_{k}]$$ and setting $$x=1+z$$, we get

$$\psi_{k}(1-z)\leqslant\psi_{k} \biggl(\frac{1}{x} \biggr).$$

Therefore, we have

\begin{aligned} \psi_{k}(x)\cdot\psi_{k} \biggl(\frac{1}{x} \biggr) =& \psi_{k}(1+z)\psi _{k} \biggl(\frac{1}{x} \biggr) \\ \leqslant& \psi_{k}(1+z)\psi_{k}(1-z) \\ \leqslant& \frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}} \end{aligned}

by using TheoremÂ 3.5.â€ƒâ–¡

### Corollary 3.1

For $$x\in(0,\infty)$$ and $$\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1$$, we have

$$\frac{2\psi_{k}(x)\psi_{k} (\frac{1}{x} )}{\psi_{k}(x)+\psi _{k} (\frac{1}{x} )}\geqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k[\ln k +\psi (\frac{1}{k} )]}.$$
(3.7)

### Proof

Applying Theorems 3.4 and 3.6, we obtain

\begin{aligned} \frac{2\psi_{k}(x)\psi_{k} (\frac{1}{x} )}{\psi_{k}(x)+\psi _{k} (\frac{1}{x} )} \geqslant& 2\cdot\frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}\frac{1}{\psi _{k}(x)+\psi_{k} (\frac{1}{x} )} \\ \geqslant& \frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}\frac {k}{\ln k+\psi (\frac{1}{k} )}. \end{aligned}

The proof is complete.â€ƒâ–¡

Next, for $$m,n,j\in\mathbb{N}$$, we define the function $$\mu_{n}$$ by

$$\mu_{n}(x)= \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} \psi_{k}^{(m)}(x) &\psi_{k}^{(m+j)}(x)&\cdots&\psi_{k}^{(m+nj)}(x)\\ \psi_{k}^{(m+j)}(x)&\psi_{k}^{(m+2j)}(x)&\cdots&\psi_{k}^{[m+(n+1)j]}(x) \\ \vdots&\vdots& & \vdots\\ \psi_{k}^{(m+nj)}(x)&\psi_{k}^{(m+(n+1)j)}(x)& \cdots&\psi_{k}^{(m+2nj)}(x) \end{array}\displaystyle \right \vert .$$

Completely similar to the method in [11], the following TheoremÂ 3.7 can be proved.

### Theorem 3.7

For $$m,n,j\in\mathbb{N}$$, then $$(-1)^{(n+1)(m+1)}\mu_{n}(x)$$ is completely monotonic on $$(0,\infty)$$.

### Proof

Using LemmaÂ 2.3, we have

\begin{aligned} \mu_{n}(x) =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int _{-\infty}^{0}}_{n+1\text{ times}} \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{0}^{m} &u_{0}^{m+j}&\cdots&u_{0}^{m+nj}\\ u_{1}^{m+j}&u_{1}^{m+2j}&\cdots&u_{1}^{m+(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{n}^{m+nj}&u_{n}^{m+(n+1)j}& \cdots&u_{n}^{m+2nj} \end{array}\displaystyle \right \vert \\ &{}\cdot\frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}\,du_{0}\,du_{1}\cdots \,du_{n} \\ =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int_{-\infty }^{0}}_{n+1 \text{ times}} \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{\delta(0)}^{m} &u_{\delta(0)}^{m+j}&\cdots&u_{\delta(0)}^{m+nj}\\ u_{\delta(1)}^{m+j}&u_{\delta(1)}^{m+2j}&\cdots&u_{\delta (1)}^{m+(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{\delta(n)}^{m+nj}&u_{\delta(n)}^{m+(n+1)j}& \cdots&u_{\delta(n)}^{m+2nj} \end{array}\displaystyle \right \vert \\ &{}\cdot\frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}\,du_{0}\,du_{1}\cdots \,du_{n}, \end{aligned}

where Î´ is a permutation on $$0,1,2,\ldots,n$$.

Let $$\operatorname{sgn}(\delta)$$ be the sign of Î´, we can obtain

\begin{aligned} u_{n}(x) =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int_{-\infty }^{0}}_{n+1 \text{ times}} \frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})} \operatorname{sgn}(\delta)\prod_{i=0}^{n}u_{i}^{m} \\ &{}\cdot \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{0}^{0} &u_{0}^{j}&\cdots&u_{0}^{nj}\\ u_{1}^{j}&u_{1}^{2j}&\cdots&u_{1}^{(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{n}^{nj}&u_{n}^{(n+1)j}& \cdots&u_{n}^{2nj} \end{array}\displaystyle \right \vert \,du_{0} \,du_{1}\cdots \,du_{n} \\ =&\frac{(-1)^{n+1}}{(n+1)!}\underbrace{ \int_{-\infty}^{0}\cdots \int _{-\infty}^{0}}_{n+1 \text{ times}} \frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}(u_{0}u_{1} \cdots u_{n})^{m} \\ &{}\cdot\prod_{0\leqslant i< l\leqslant n}\bigl(u_{i}^{j}-u_{l}^{j} \bigr)\,du_{0}\,du_{1}\cdots \,du_{n}. \end{aligned}

Replacing $$u_{0},u_{1},\ldots, u_{n}$$ by $$-u_{0},-u_{1},\ldots, -u_{n}$$, we get

\begin{aligned} \mu_{n}(x) =&{(-1)^{(n+1)(m+1)}}\underbrace{ \int_{0}^{\infty}\cdots \int_{0}^{\infty}}_{n+1 \text{ times}} e^{-\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})} \\ &{}\cdot\prod_{0\leqslant i< l\leqslant n}\bigl(u_{i}^{j}-u_{l}^{j} \bigr){\prod_{i=0}^{n}\frac {u_{i}^{n}}{1-e^{-u_{i}}}} \,du_{0}\,du_{1}\cdots \,du_{n}. \end{aligned}

This implies that $$(-1)^{(n+1)(m+1)}\mu_{n}(x)$$ is completely monotonic.â€ƒâ–¡

By taking $$n=1$$, the following CorollaryÂ 3.2 can be easily obtained.

### Corollary 3.2

For $$m,j\in\mathbb{N}$$, and $$x>0$$, we have

$$\left \vert \textstyle\begin{array}{@{}c@{\quad}c@{}} \psi_{k}^{(m)}(x) &\psi_{k}^{(m+j)}(x)\\ \psi_{k}^{(m+j)}(x)&\psi_{k}^{(m+2j)}(x) \end{array}\displaystyle \right \vert >0.$$

## 4 Conclusions

We established a concave theorem and some monotonic properties for the generalized digamma function, and some interesting inequalities were obtained. These conclusions generalize Alzerâ€™s results. On the other hand, we prove a completely monotonic property for the generalized digamma function by using Ismail and Laforgiaâ€™s idea.

Not applicable.

## References

1. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373â€“389 (1997)

2. Alzer, H., Jameson, G.: A harmonic mean inequality for the digamma function and related results. Rend. Semin. Mat. Univ. Padova 137, 203â€“209 (2017)

3. Berg, C., Pedersen, H.L.: A completely monotone function related to the gamma function. J. Comput. Appl. Math. 133, 219â€“230 (2001)

4. Chiu, S.N., Yin, C.-C.: On the complete monotonicity of the compound geometric convolution with applications to risk theory. Scand. Actuar. J. 2014(2), 116â€“124 (2014)

5. Coffey, M.C.: On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J.Â Comput. Appl. Math. 183, 84â€“100 (2005)

6. Diaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 15(2), 179â€“192 (2007)

7. Doelder, P.J.: On some series containing $$\psi(x)-\psi(y)$$ and $$(\psi (x)-\psi(y))^{2}$$ for certain values of x and y. J. Comput. Appl. Math. 37, 125â€“141 (1991)

8. Dong, H., Yin, C.-C.: Complete monotonicity of the probability of ruin and DE Finettiâ€™s dividend problem. J. Syst. Sci. Complex. 25(1), 178â€“185 (2012)

9. Feng, Q., Meng, F.-W.: Some new Gronwall-type inequalities arising in the research of fractional differential equations. J. Inequal. Appl. 2013, 429 (2013)

10. Grinshpan, A.Z., Ismail, M.E.H.: Completely monotonic functions involving the gamma and q-functions. Proc. Am. Math. Soc. 134, 1153â€“1160 (2006)

11. Ismail, M.E.H., Laforgia, A.: Monotonicity properties of determinants of special functions. Constr. Approx. 26, 1â€“9 (2007)

12. Ismail, M.E.H., Muldoon, M.E., Lorch, L.: Completely monotonic functions associated with the gamma function and its q-analogues. J. Math. Anal. Appl. 116, 1â€“9 (1986)

13. Murty, M.R., Saradha, N.: Transcendental values of the digamma function. J. Number Theory 125, 298â€“318 (2007)

14. Nantomah, K.: Convexity properties and inequalities concerning the $$(p,k)$$-gamma function. Commun. Fac. Sci. Univ. Ank. SÃ©r. A1 66(2), 130â€“140 (2017)

15. Nantomah, K., Prempeh, E., Twum, S.B.: On a $$(p,k)-$$analogue of the gamma function and some associated inequalities. Moroccan J. Pure Appl. Anal. 2(2), 79â€“90 (2016)

16. Ogreid, O.M., Osland, P.: Some infinite series related to Feynman diagrams. J. Comput. Appl. Math. 140, 659â€“671 (2002)

17. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296, 603â€“607 (2004)

18. Qi, F., Guo, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Collect. 7(1), 63â€“72 (2004)

19. Qi, F., Guo, B.-N.: Some logarithmically completely monotonic functions related to the gamma function. J. Korean Math. Soc. 47(6), 1283â€“1297 (2010)

20. Qi, F., Guo, B.-N., Chen, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions. RGMIA Res. Rep. Collect. 7(1), 31â€“36 (2004)

21. Qi, F., Guo, B.-N., Chen, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions. J. Aust. Math. Soc. 80, 81â€“88 (2006)

22. Qi, F., Guo, S.-L., Guo, B.-N.: Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 233, 2149â€“2160 (2010)

23. Shao, J., Meng, F.-W.: Gronwallâ€“Bellman type inequalities and their applications to fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 217641 (2013)

24. Wang, Y., Liu, L.-S., Wu, Y.-H.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74(11), 3599â€“3605 (2011)

25. Wang, Y., Liu, L.-S., Wu, Y.-H.: Existence and uniqueness of a positive solution to singular fractional differential equations. Bound. Value Probl. 2012, 81 (2012)

26. Wang, Y., Liu, L.-S., Wu, Y.-H.: Positive solutions for a class of higher-order singular semipositone fractional differential system. Adv. Differ. Equ. 2014, 268 (2014)

27. Xu, R., Meng, F.-W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, 78 (2016)

28. Zheng, Z.-W., Zhang, X.-J., Shao, J.: Existence for certain systems of nonlinear fractional differential equations. J. Appl. Math. 2014, Article ID 376924 (2014)

## Acknowledgements

The authors would like to thank the editor and the anonymous referee for their valuable suggestions and comments, which helped us to improve this paper greatly.

## Funding

The authors were supported by the National Natural Science Foundation of China (Grant Nos. 11401041, 11705122), the Science and Technology Foundations of Shandong Province (Grant Nos. J16li52 and J14li54) and Science Foundations of Binzhou University (Grant Nos.Â BZXYL1104 and BZXYL1704).

## Author information

Authors

### Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

### Corresponding author

Correspondence to Li Yin.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

### Publisherâ€™s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and permissions

Yin, L., Huang, LG., Lin, XL. et al. Monotonicity, concavity, and inequalities related to the generalized digamma function. Adv Differ Equ 2018, 246 (2018). https://doi.org/10.1186/s13662-018-1695-7