Skip to main content

Theory and Modern Applications

Monotonicity, concavity, and inequalities related to the generalized digamma function

Abstract

In this paper, we establish a concave theorem and some inequalities for the generalized digamma function. Hence, we give complete monotonicity property of a determinant function involving all kinds of derivatives of the generalized digamma function.

1 Introduction

It is well known that the Euler gamma function is defined by

$$\Gamma(x)= \int_{0}^{\infty}t^{x-1}e^{-t}\,dt, \quad x>0. $$

The logarithmic derivative of \(\Gamma(x)\) is called the psi or digamma function. That is,

$$\begin{aligned} \psi(x)&=\frac{d}{dx}\ln\Gamma(x)=\frac{\Gamma'(x)}{\Gamma(x)} \\ &=-\gamma-\frac{1}{x}+\sum_{n=1}^{\infty} \frac{x}{n(n+x)}, \end{aligned}$$

where \(\gamma=0.5772\ldots\) is the Euler–Mascheroni constant. The gamma, digamma, and polygamma functions play an important role in the theory of special function, and have many applications in many other branches such as statistics, fractional differential equations, mathematical physics, and theory of infinite series. The reader may see related references [5, 7, 9, 13, 16, 23–28].

In [6], the k-analogue of the gamma function is defined for \(k>0\) and \(x>0\) as follows:

$$\begin{aligned} \Gamma_{k}(x)&= \int_{0}^{\infty}t^{x-1}e^{-\frac{t^{k}}{k}}\,dt \\ &=\lim_{n\rightarrow\infty}\frac{n!k^{n}(nk)^{\frac{x}{k}-1}}{(x)_{n,k}}, \end{aligned}$$

where \(\lim_{k\rightarrow1}\Gamma_{k}(x)=\Gamma(x)\). It is natural that the k-analogue of the digamma function is defined for \(x>0\) by

$$\psi_{k}(x)=\frac{d}{dx}\log\Gamma_{k}(x)= \frac{\Gamma_{k}'(x)}{\Gamma_{k}(x)}. $$

It is worth noting that Nantomah et al. gave \((p,k)\)-analogue of the gamma and the digamma functions in [15]. Further, they established some inequalities involving these new functions. The reader may see references [14, 15].

Very recently, Alzer and Jameson [2] presented a harmonic mean inequality for the digamma function, and also showed some interesting inequalities. It is natural to ask if one can generalize these results to the generalized digamma function with single parameters. This is the first object in this paper.

The second object of this paper came from the article of Ismail and Laforgia. In [11], they proved complete monotonicity of a determinant function involving the derivatives of the digamma function. Using their idea, we prove that their conclusion is also true for the generalized digamma function. In particular, some of the work about the complete monotonicity of these special functions may be found in [3, 4, 8, 10, 12, 17–22].

2 Lemmas

Lemma 2.1

For \(k>0\) and \(x>0\), the following identities hold true:

$$\begin{aligned}& \Gamma_{k}(x)=k^{\frac{x}{k}-1}\Gamma\biggl( \frac{x}{k}\biggr), \end{aligned}$$
(2.1)
$$\begin{aligned}& \psi_{k}(x)=\frac{\ln k}{k}+\frac{1}{k}\psi \biggl(\frac{x}{k}\biggr). \end{aligned}$$
(2.2)

Proof

Using the substitution \(\frac{t}{\sqrt[k]{k}}=u\) and \(u^{k}=p\), we easily obtain

$$\begin{aligned} \Gamma_{k}(x) =&\bigl(\sqrt[k]{k}\bigr)^{x} \int_{0}^{\infty}\biggl(\frac{t}{\sqrt[k]{k}} \biggr)^{x-1}e^{- (\frac{t}{\sqrt[k]{k}} )^{k}}\, d \biggl(\frac {t}{\sqrt[k]{k}} \biggr) \\ =&k^{\frac{x}{k}} \int_{0}^{\infty}u^{x-1}e^{-u^{k}}\,du \\ =&k^{\frac{x}{k}-1} \int_{0}^{\infty}p^{\frac{x}{k}-1}e^{-p}\,dp \\ =&k^{\frac{x}{k}-1}\Gamma \biggl(\frac{x}{k} \biggr). \end{aligned}$$

So, we prove formula (2.1). To (2.2), direct computation yields

$$\begin{aligned} \psi_{k}(x)&=\frac{\Gamma_{k}'(x)}{\Gamma_{k}(x)}=\frac{ [k^{\frac {x}{k}-1}\Gamma (\frac{x}{k} ) ]'}{ [k^{\frac {x}{k}-1}\Gamma (\frac{x}{k} ) ]} \\ &=\frac{\ln k}{k}+\frac{1}{k}\psi\biggl(\frac{x}{k}\biggr). \end{aligned}$$

 □

Lemma 2.2

([1, 2])

For \(x>0\), we have

$$ \psi'(x)< \frac{1}{x}+\frac{1}{2x^{2}}+ \frac{1}{6x^{3}} $$
(2.3)

and

$$ \psi''(x)< -\frac{1}{x^{2}}- \frac{1}{x^{3}}. $$
(2.4)

Lemma 2.3

For \(k,x>0, m\in\mathbb{N}\), we have

$$ \psi_{k}^{(m)}(x)=(-1)^{m+1}m!\sum _{n=0}^{\infty}\frac{1}{(nk+x)^{m+1}} $$
(2.5)

and

$$ \psi_{k}^{(m)}(x)=(-1)^{m+1} \int_{0}^{\infty}\frac{t^{m}}{1-e^{-kt}}e^{-xt}\,dt. $$
(2.6)

Proof

Formula (2.5) may be found in reference [15]. By using formula (9) in reference [15], we have

$$\begin{aligned} \psi_{k}^{(m)}(x) =&\lim_{p\rightarrow\infty} \psi_{p,k}^{(m)}(x) \\ =&\lim_{p\rightarrow\infty} (-1)^{m+1} \int_{0}^{\infty}\biggl(\frac {1-e^{-k(p+1)t}}{1-e^{-kt}} \biggr)t^{m}e^{-xt}\,dt \\ =&(-1)^{m+1} \int_{0}^{\infty}\frac{1}{1-e^{-kt}}t^{m}e^{-xt} \,dt. \end{aligned}$$

So, we prove formula (2.6). □

3 Main results

Theorem 3.1

For \(k>0\), the function \(x^{2}\psi_{k}'(x)\) is strictly increasing on \((0,\infty)\).

Proof

Using Lemma 2.1, we have

$$\psi_{k}'(x)=\frac{1}{k^{2}}\psi' \biggl(\frac{x}{k}\biggr) \quad \mbox{and}\quad \psi _{k}''(x)= \frac{1}{k^{3}}\psi''\biggl(\frac{x}{k} \biggr). $$

Combining with the identity \(\psi^{(m)}(x)=(-1)^{m+1}m!\sum_{n=0}^{\infty}\frac {1}{(n+x)^{m+1}}\), we get

$$\begin{aligned} \frac{d}{dx} \bigl(x^{2}\psi_{k}'(x) \bigr) =&\frac{2x}{k^{2}} \psi' \biggl(\frac{x}{k} \biggr)+ \frac{x^{2}}{k^{3}} \psi '' \biggl(\frac{x}{k} \biggr) \\ =&2x\sum_{n=0}^{\infty}\frac{nk}{(nk+x)^{3}}>0. \end{aligned}$$

 □

Theorem 3.2

For \(k>0\), the function \(\psi_{k} (\frac{1}{x} )\) is strictly concave on \((0,\infty)\).

Proof

Easy computation results in

$$\frac{d}{dx} \biggl(\psi_{k} \biggl(\frac{1}{x} \biggr) \biggr)=-\frac {1}{x^{2}}\psi_{k}' \biggl( \frac{1}{x} \biggr). $$

Considering Theorem 3.1, we complete the proof. □

Theorem 3.3

For \(k\geqslant\frac{1}{\sqrt[3]{3}}=0.693361\ldots\) , the function

$$\lambda_{k}(x)=\psi_{k}(x)+\psi_{k} \biggl( \frac{1}{x} \biggr) $$

is strictly concave on \((0,\infty)\).

Proof

By differentiation and applying Lemma 2.1, we easily obtain

$$\begin{aligned}& \lambda_{k}'(x)=\psi_{k}'(x)- \frac{1}{x^{2}}\psi_{k}' \biggl(\frac{1}{x} \biggr), \\& \lambda_{k}''(x)=\psi_{k}''(x)+ \frac{2}{x^{3}}\psi_{k}' \biggl(\frac {1}{x} \biggr)+\frac{1}{x^{4}}\psi_{k}'' \biggl( \frac{1}{x} \biggr), \end{aligned}$$

and

$$k^{3}x^{4}\lambda_{k}''(x)=x^{4} \psi'' \biggl(\frac{x}{k} \biggr)+2kx \psi' \biggl(\frac{1}{kx} \biggr)+\psi'' \biggl(\frac{1}{kx} \biggr). $$

Applying Lemma 2.2, \(k\geqslant\frac{1}{\sqrt[3]{3}}\), and the recurrence relations

$$\begin{aligned}& \psi' \biggl(\frac{1}{kx}+1 \biggr)=\psi' \biggl(\frac{1}{kx} \biggr)-k^{2}x^{2}, \\& \psi'' \biggl(\frac{1}{kx}+1 \biggr)= \psi'' \biggl(\frac{1}{kx} \biggr)+2k^{3}x^{3}, \end{aligned}$$

we have

$$\begin{aligned} k^{3}x^{4}\lambda_{k}''(x) =&x^{4} \psi'' \biggl(\frac{x}{k} \biggr)+2kx\psi ' \biggl(\frac{1}{kx} \biggr)+\psi'' \biggl(\frac{1}{kx} \biggr) \\ < & x^{4} \biggl(-\frac{k^{2}}{x^{2}}-\frac{k^{3}}{x^{3}} \biggr)+2kx \biggl[\frac {kx}{1+kx}+\frac{k^{2}x^{2}}{2(1+kx)^{2}} +\frac{k^{3}x^{3}}{6(1+kx)^{3}} \biggr] \\ &{}-\frac{k^{2}x^{2}}{(1+kx)^{2}} -\frac{k^{3}x^{3}}{(1+kx)^{3}} \\ =&-\frac{kx}{3(1+kx)^{3}} \bigl[3k^{2}+9k^{3}x+9k^{2}x^{2}+k^{2} \bigl(3k^{3}-1\bigr)x^{3}+3k^{4}x^{4} \bigr] \\ < &0. \end{aligned}$$

This implies that \(\lambda_{k}(x)\) is strictly concave on \((0,\infty)\). □

Theorem 3.4

For \(x \in(0,\infty)\) and \(k\geqslant\frac{1}{\sqrt[3]{3}}\), we have

$$ \psi_{k}(x)+\psi_{k} \biggl(\frac{1}{x} \biggr)\leqslant\frac{2\ln k+2\psi (\frac{1}{k} )}{k}. $$
(3.1)

Proof

Since the function \(\lambda_{k}(x)=\psi_{k}(x)+\psi_{k} (\frac{1}{x} )\) is strictly concave on \((0,\infty)\), we get

$$\lambda_{k}'(x)\geqslant\lambda_{k}'(1)=0, \quad x\in(0,1], $$

and

$$\lambda_{k}'(x)\leqslant\lambda_{k}'(1)=0, \quad x\in[1,\infty). $$

It follows that \(\lambda_{k}\) is increasing on \((0,1]\) and decreasing on \([1,\infty)\). Hence, \(\lambda_{k}(x)\leqslant\lambda_{k}(1)\) for \(x>0\). The proof is complete. □

Remark 3.1

Let \(\gamma_{k}=-\psi_{k}(1)=-\frac{\ln k}{k}-\frac{1}{k}\psi (\frac{1}{k} )\) be the k-analogue of the Euler–Mascheroni constant. It is obvious that \(\lim_{k\rightarrow1}\gamma_{k}=\gamma\).

Definition 3.1

It is known that the generalized digamma function \(\psi_{k}(x)\) is strictly increasing on \((0,\infty)\) with \(\psi_{k}(0^{+})\psi_{k}(\infty)<0\). So, the function has a sole positive root in \((0,\infty)\). We define this positive root for \(x_{k}\). That is,

$$\ln k +\psi \biggl(\frac{x_{k}}{k} \biggr)=0. $$

Theorem 3.5

For \(x\in(0,1)\) and \(\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1\), we have

$$ \psi_{k}(1+x)\psi_{k}(1-x)\leqslant \frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k^{2}}. $$
(3.2)

Proof

Considering \(\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1\) and the definition of \(x_{k}\), we have

$$\frac{1}{\sqrt[3]{3}}x_{0}\leqslant x_{k} \leqslant x_{0}, $$

where \(x_{0}\) satisfies \(\psi(x_{0})=0\) with \(x_{0}=1.46163\ldots\) .

Case 1. If \(x\in[x_{k}-1,1)\), then we have \(\psi_{k}(1-x)\leqslant0 \leqslant\psi_{k}(1+x)\). This implies that formula (3.2) holds.

Case 2. If \(x\in(0,x_{k}-1]\), using the power series expansion

$$ \psi(1+z)=-\gamma+\sum_{k=2}^{\infty}(-1)^{k} \zeta(k)z^{k-1},\quad |z|< 1, $$
(3.3)

we obtain

$$\begin{aligned} \psi_{k}(1+x) \geqslant&\psi_{k}(k+x)=\frac{\ln k}{k}+ \frac{1}{k}\psi \biggl(1+\frac{x}{k} \biggr) \\ =& \frac{\ln k}{k}+\frac{1}{k} \Biggl[-\gamma+\sum _{k=2}^{\infty }(-1)^{k}\zeta(k)x^{k-1} \Biggr], \end{aligned}$$

where \(\zeta(k)=\sum_{n=1}^{\infty}\frac{1}{n^{k}}\) is the Riemann zeta function.

Furthermore, we have

$$ 0< -\psi_{k}(1+x)\leqslant-\frac{\ln k}{k}+ \frac{1}{k}\bigl[\gamma-\zeta (2)x+\zeta(3)x^{2}\bigr]. $$
(3.4)

Completely similar to (3.4), we have

$$\begin{aligned} 0 < &-\psi_{k}(1-x)\leqslant -\frac{\ln k}{k}+\frac{1}{k} \Biggl[\gamma +\zeta(2)y+\zeta(3)\sum_{k=2}^{\infty}x^{k} \Biggr] \\ \leqslant& -\frac{\ln k}{k}+\frac{1}{k}\bigl[\gamma+\zeta(2)x+ \zeta(3)x^{2}\bigr]. \end{aligned}$$
(3.5)

Combining (3.4) with (3.5), we obtain

$$ \psi_{k}(1+x)\psi_{k}(1-x)\leqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k^{2}} $$

by using \(\zeta(3)x^{2}<1\). □

Theorem 3.6

For \(x\in(0,\infty)\) and \(\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1\), we have

$$ \psi_{k}(x)\cdot\psi_{k} \biggl( \frac{1}{x} \biggr)\leqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}. $$
(3.6)

Proof

We only need to prove (3.6) for \(x\geqslant1\). If \(x\geqslant x_{k}\), then we get \(\psi_{k} (\frac{1}{x} )\leqslant 0 \leqslant\psi_{k}(x)\). It follows that inequality (3.6) holds true.

If \(x\in(1,x_{k}]\) and setting \(x=1+z\), we get

$$\psi_{k}(1-z)\leqslant\psi_{k} \biggl(\frac{1}{x} \biggr). $$

Therefore, we have

$$\begin{aligned} \psi_{k}(x)\cdot\psi_{k} \biggl(\frac{1}{x} \biggr) =& \psi_{k}(1+z)\psi _{k} \biggl(\frac{1}{x} \biggr) \\ \leqslant& \psi_{k}(1+z)\psi_{k}(1-z) \\ \leqslant& \frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}} \end{aligned}$$

by using Theorem 3.5. □

Corollary 3.1

For \(x\in(0,\infty)\) and \(\frac{1}{\sqrt[3]{3}}\leqslant k \leqslant1\), we have

$$ \frac{2\psi_{k}(x)\psi_{k} (\frac{1}{x} )}{\psi_{k}(x)+\psi _{k} (\frac{1}{x} )}\geqslant\frac{\ln^{2} k+\gamma^{2}-2(\gamma +1)\ln k}{k[\ln k +\psi (\frac{1}{k} )]}. $$
(3.7)

Proof

Applying Theorems 3.4 and 3.6, we obtain

$$\begin{aligned} \frac{2\psi_{k}(x)\psi_{k} (\frac{1}{x} )}{\psi_{k}(x)+\psi _{k} (\frac{1}{x} )} \geqslant& 2\cdot\frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}\frac{1}{\psi _{k}(x)+\psi_{k} (\frac{1}{x} )} \\ \geqslant& \frac{\ln^{2} k+\gamma^{2}-2(\gamma+1)\ln k}{k^{2}}\frac {k}{\ln k+\psi (\frac{1}{k} )}. \end{aligned}$$

The proof is complete. □

Next, for \(m,n,j\in\mathbb{N}\), we define the function \(\mu_{n}\) by

$$ \mu_{n}(x)= \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} \psi_{k}^{(m)}(x) &\psi_{k}^{(m+j)}(x)&\cdots&\psi_{k}^{(m+nj)}(x)\\ \psi_{k}^{(m+j)}(x)&\psi_{k}^{(m+2j)}(x)&\cdots&\psi_{k}^{[m+(n+1)j]}(x) \\ \vdots&\vdots& & \vdots\\ \psi_{k}^{(m+nj)}(x)&\psi_{k}^{(m+(n+1)j)}(x)& \cdots&\psi_{k}^{(m+2nj)}(x) \end{array}\displaystyle \right \vert . $$

Completely similar to the method in [11], the following Theorem 3.7 can be proved.

Theorem 3.7

For \(m,n,j\in\mathbb{N}\), then \((-1)^{(n+1)(m+1)}\mu_{n}(x)\) is completely monotonic on \((0,\infty)\).

Proof

Using Lemma 2.3, we have

$$\begin{aligned} \mu_{n}(x) =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int _{-\infty}^{0}}_{n+1\text{ times}} \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{0}^{m} &u_{0}^{m+j}&\cdots&u_{0}^{m+nj}\\ u_{1}^{m+j}&u_{1}^{m+2j}&\cdots&u_{1}^{m+(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{n}^{m+nj}&u_{n}^{m+(n+1)j}& \cdots&u_{n}^{m+2nj} \end{array}\displaystyle \right \vert \\ &{}\cdot\frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}\,du_{0}\,du_{1}\cdots \,du_{n} \\ =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int_{-\infty }^{0}}_{n+1 \text{ times}} \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{\delta(0)}^{m} &u_{\delta(0)}^{m+j}&\cdots&u_{\delta(0)}^{m+nj}\\ u_{\delta(1)}^{m+j}&u_{\delta(1)}^{m+2j}&\cdots&u_{\delta (1)}^{m+(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{\delta(n)}^{m+nj}&u_{\delta(n)}^{m+(n+1)j}& \cdots&u_{\delta(n)}^{m+2nj} \end{array}\displaystyle \right \vert \\ &{}\cdot\frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}\,du_{0}\,du_{1}\cdots \,du_{n}, \end{aligned}$$

where δ is a permutation on \(0,1,2,\ldots,n\).

Let \(\operatorname{sgn}(\delta)\) be the sign of δ, we can obtain

$$\begin{aligned} u_{n}(x) =&(-1)^{n+1}\underbrace{ \int_{-\infty}^{0}\cdots \int_{-\infty }^{0}}_{n+1 \text{ times}} \frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})} \operatorname{sgn}(\delta)\prod_{i=0}^{n}u_{i}^{m} \\ &{}\cdot \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} u_{0}^{0} &u_{0}^{j}&\cdots&u_{0}^{nj}\\ u_{1}^{j}&u_{1}^{2j}&\cdots&u_{1}^{(n+1)j} \\ \vdots&\vdots& & \vdots\\ u_{n}^{nj}&u_{n}^{(n+1)j}& \cdots&u_{n}^{2nj} \end{array}\displaystyle \right \vert \,du_{0} \,du_{1}\cdots \,du_{n} \\ =&\frac{(-1)^{n+1}}{(n+1)!}\underbrace{ \int_{-\infty}^{0}\cdots \int _{-\infty}^{0}}_{n+1 \text{ times}} \frac{e^{\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})}}{\prod_{i=0}^{n}(1-e^{u_{i}})}(u_{0}u_{1} \cdots u_{n})^{m} \\ &{}\cdot\prod_{0\leqslant i< l\leqslant n}\bigl(u_{i}^{j}-u_{l}^{j} \bigr)\,du_{0}\,du_{1}\cdots \,du_{n}. \end{aligned}$$

Replacing \(u_{0},u_{1},\ldots, u_{n}\) by \(-u_{0},-u_{1},\ldots, -u_{n}\), we get

$$\begin{aligned} \mu_{n}(x) =&{(-1)^{(n+1)(m+1)}}\underbrace{ \int_{0}^{\infty}\cdots \int_{0}^{\infty}}_{n+1 \text{ times}} e^{-\frac{x}{k}(u_{0}+u_{1}+\cdots+u_{n})} \\ &{}\cdot\prod_{0\leqslant i< l\leqslant n}\bigl(u_{i}^{j}-u_{l}^{j} \bigr){\prod_{i=0}^{n}\frac {u_{i}^{n}}{1-e^{-u_{i}}}} \,du_{0}\,du_{1}\cdots \,du_{n}. \end{aligned}$$

This implies that \((-1)^{(n+1)(m+1)}\mu_{n}(x)\) is completely monotonic. □

By taking \(n=1\), the following Corollary 3.2 can be easily obtained.

Corollary 3.2

For \(m,j\in\mathbb{N}\), and \(x>0\), we have

$$ \left \vert \textstyle\begin{array}{@{}c@{\quad}c@{}} \psi_{k}^{(m)}(x) &\psi_{k}^{(m+j)}(x)\\ \psi_{k}^{(m+j)}(x)&\psi_{k}^{(m+2j)}(x) \end{array}\displaystyle \right \vert >0. $$

4 Conclusions

We established a concave theorem and some monotonic properties for the generalized digamma function, and some interesting inequalities were obtained. These conclusions generalize Alzer’s results. On the other hand, we prove a completely monotonic property for the generalized digamma function by using Ismail and Laforgia’s idea.

5 Methods and experiment

Not applicable.

References

  1. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alzer, H., Jameson, G.: A harmonic mean inequality for the digamma function and related results. Rend. Semin. Mat. Univ. Padova 137, 203–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berg, C., Pedersen, H.L.: A completely monotone function related to the gamma function. J. Comput. Appl. Math. 133, 219–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiu, S.N., Yin, C.-C.: On the complete monotonicity of the compound geometric convolution with applications to risk theory. Scand. Actuar. J. 2014(2), 116–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coffey, M.C.: On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 183, 84–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulg. Math. 15(2), 179–192 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Doelder, P.J.: On some series containing \(\psi(x)-\psi(y)\) and \((\psi (x)-\psi(y))^{2}\) for certain values of x and y. J. Comput. Appl. Math. 37, 125–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, H., Yin, C.-C.: Complete monotonicity of the probability of ruin and DE Finetti’s dividend problem. J. Syst. Sci. Complex. 25(1), 178–185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, Q., Meng, F.-W.: Some new Gronwall-type inequalities arising in the research of fractional differential equations. J. Inequal. Appl. 2013, 429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grinshpan, A.Z., Ismail, M.E.H.: Completely monotonic functions involving the gamma and q-functions. Proc. Am. Math. Soc. 134, 1153–1160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ismail, M.E.H., Laforgia, A.: Monotonicity properties of determinants of special functions. Constr. Approx. 26, 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ismail, M.E.H., Muldoon, M.E., Lorch, L.: Completely monotonic functions associated with the gamma function and its q-analogues. J. Math. Anal. Appl. 116, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murty, M.R., Saradha, N.: Transcendental values of the digamma function. J. Number Theory 125, 298–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nantomah, K.: Convexity properties and inequalities concerning the \((p,k)\)-gamma function. Commun. Fac. Sci. Univ. Ank. Sér. A1 66(2), 130–140 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Nantomah, K., Prempeh, E., Twum, S.B.: On a \((p,k)-\)analogue of the gamma function and some associated inequalities. Moroccan J. Pure Appl. Anal. 2(2), 79–90 (2016)

    MATH  Google Scholar 

  16. Ogreid, O.M., Osland, P.: Some infinite series related to Feynman diagrams. J. Comput. Appl. Math. 140, 659–671 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296, 603–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, F., Guo, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Collect. 7(1), 63–72 (2004)

    Google Scholar 

  19. Qi, F., Guo, B.-N.: Some logarithmically completely monotonic functions related to the gamma function. J. Korean Math. Soc. 47(6), 1283–1297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, F., Guo, B.-N., Chen, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions. RGMIA Res. Rep. Collect. 7(1), 31–36 (2004)

    MATH  Google Scholar 

  21. Qi, F., Guo, B.-N., Chen, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions. J. Aust. Math. Soc. 80, 81–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qi, F., Guo, S.-L., Guo, B.-N.: Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 233, 2149–2160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shao, J., Meng, F.-W.: Gronwall–Bellman type inequalities and their applications to fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 217641 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Wang, Y., Liu, L.-S., Wu, Y.-H.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74(11), 3599–3605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Liu, L.-S., Wu, Y.-H.: Existence and uniqueness of a positive solution to singular fractional differential equations. Bound. Value Probl. 2012, 81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Liu, L.-S., Wu, Y.-H.: Positive solutions for a class of higher-order singular semipositone fractional differential system. Adv. Differ. Equ. 2014, 268 (2014)

    Article  Google Scholar 

  27. Xu, R., Meng, F.-W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, 78 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, Z.-W., Zhang, X.-J., Shao, J.: Existence for certain systems of nonlinear fractional differential equations. J. Appl. Math. 2014, Article ID 376924 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referee for their valuable suggestions and comments, which helped us to improve this paper greatly.

Funding

The authors were supported by the National Natural Science Foundation of China (Grant Nos. 11401041, 11705122), the Science and Technology Foundations of Shandong Province (Grant Nos. J16li52 and J14li54) and Science Foundations of Binzhou University (Grant Nos. BZXYL1104 and BZXYL1704).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Li Yin.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Huang, LG., Lin, XL. et al. Monotonicity, concavity, and inequalities related to the generalized digamma function. Adv Differ Equ 2018, 246 (2018). https://doi.org/10.1186/s13662-018-1695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-018-1695-7

MSC

Keywords