- Research
- Open Access
- Published:
The extended fractional Caputo–Fabrizio derivative of order \(0\leq \sigma <1\) on \(C_{\mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations
Advances in Difference Equations volume 2018, Article number: 255 (2018)
Abstract
We extend the fractional Caputo–Fabrizio derivative of order \(0\leq \sigma <1\) on \(C_{\mathbb{R}}[0,1]\) and investigate two higher-order series-type fractional differential equations involving the extended derivation. Also, we provide an example to illustrate one of the main results.
1 Introduction
Recently, Caputo and Fabrizio suggested a new fractional derivative [15, 16]), and Losada and Nieto [21] investigated some of its properties. Later, some authors tried to utilized it for solving various equations (see [2–14, 17], and [26]), whereas some researchers studied some singular fractional integro-differential equations [22–25]. As you know, the fractional Caputo–Fabrizio derivative is defined on the space \(H^{1}\) (which is not necessarily a Banach space), and because of this reason, a researcher has to investigate approximate solutions for some problems [11, 13]. It seems that Caputo and Fabrizio tried to give a formula for an extension of their definition (see formula (3) in [15]), but they did not use it in their investigation. In 2016, Alqahtani tried to extend the Caputo–Fabrizio derivative by using formula (2.2) in [5]. Again, he did not use it for investigating the problems reported in [5]. In this manuscript, we extend the fractional Caputo–Fabrizio derivative on \(C_{\mathbb{R}}[0,1]\). Using it, we discuss some higher-order series-type fractional integro-differential equations.
The properties of the fractional Caputo–Fabrizio derivative were investigated very recently in [7]. Specifically, the Caputo–Fabrizio fractional derivative is discussed in he distributional setting [7]. For more detail about physical interpretation of the Caputo–Fabrizio derivative, the reader can see the new results presented recently in [19]. Specifically, the physical origin of Caputo–Fabrizio derivative is demonstrated in [18]. Besides, very recently the determination of the fractional order (relation to physical characteristics of the process) was investigated in [20].
Having all the mentioned things in mind, in this paper, we extend the fractional Caputo–Fabrizio derivative on \(C_{\mathbb{R}}[0,1]\). Using it, we investigate some higher-order series-type fractional integro-differential equations.
Let \(b>0\), \(\kappa \in H^{1}(0,b)\), and \(\sigma \in [0,1]\). Thus, for the function κ, its Caputo–Fabrizio fractional derivative is written as \({}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)=\frac{ B(\sigma)}{ 1-\sigma } \int_{0}^{t}\exp (\frac{-\sigma }{1-\sigma }(t-s))\kappa^{\prime }(p)\,dp\), where \(t\geq 0\), and \(B(\sigma)\) denotes a normalization constant obeying \(B(0)=B(1)=1\) [1, 15]. The associated fractional integral of order σ for the function κ is defined by \({}^{CF\hspace{-1pt}}I^{\sigma } \kappa (t)=\frac{ 1-\sigma }{ B(\sigma)}\kappa (t) +\frac{\sigma }{ B(\sigma)}\int_{0}^{t} \kappa (s)\,ds\) for \(0<\sigma <1\) [1, 21].
If \(n\geq 1\) and \(\sigma \in [0,1]\), then the fractional derivative \({}^{CF\hspace{-1pt}}D^{\sigma +n}\) of order \(n+\sigma \) is defined by \({}^{CF\hspace{-1pt}}D^{ \sigma +n}\kappa:={}^{CF\hspace{-1pt}}D^{\sigma }(D^{n}\kappa (t))\) [21]. Also, we have \(\lim_{\sigma \to 0}{}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)=\kappa (t)- \kappa (0)\), \(\lim_{\sigma \to 1}{}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)= \kappa^{\prime }(t)\), and \({}^{CF\hspace{-1pt}}D^{\sigma } (\lambda \kappa (t)+ \gamma \upsilon (t))=\lambda {}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)+\gamma {}^{CF\hspace{-1pt}}D ^{\sigma }\upsilon (t)\) for all \(\kappa,\upsilon \in H^{1}\) and \(\lambda,\gamma \in \mathbb{R}\) [15]. We now present the following important results.
Lemma 1.1
([21])
Let \(0<\sigma <1\). Then the unique solution of \({}^{CF\hspace{-1pt}}D^{\sigma }\kappa (p)=\upsilon (p)\) such that \(\kappa (0)=c\) is written as \(\kappa (p)=c+a_{\sigma }(\upsilon (p)-\upsilon (0))+b_{ \sigma }\int_{0}^{p} \upsilon (s)\,ds\), where \(a_{\sigma }=\frac{ 1- \sigma }{B(\sigma)} \) and \(b_{\sigma }=\frac{ \sigma }{B(\sigma)} \). Note that \(\upsilon (0)=0\).
Lemma 1.2
([27])
Let \(t\in \mathbb{R}\) and \(0\leq |t|<\infty \). Then \(t\prod_{i=1} ^{\infty }(1-\frac{t^{2}}{i^{2} \pi^{2}})=\sin t\), \(\prod_{i=1} ^{\infty }(1-\frac{4t^{2}}{(2i-1)^{2} \pi^{2}})=\cos t\) and \(e^{t}=\sum_{i=0} ^{\infty } \frac{t^{i}}{i!}\) for \(0<|t|<\infty \).
2 Results and discussion
We further show our main results. Let \(\kappa \in C_{\mathbb{R}}[0,b]\), \(b>0\), and \(\sigma \in (0,1)\). We define the expended fractional Caputo–Fabrizio derivative of order σ by
If \(\kappa (0)=0\), then we have \({}^{CF\hspace{-1pt}}_{{N}} D^{\sigma }\kappa (p)=\frac{B( \sigma)}{1-\sigma }\kappa (p) - \frac{\sigma B(\sigma)}{(1-\sigma)^{2}}\int_{0}^{p} \exp (-\frac{ \sigma }{1-\sigma }(p-s))\kappa (s)\,ds\). We recall that
Now, let us po define \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}}\kappa (p):= \underbrace{ \hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }({}^{CF\hspace{-1pt}}_{{N}}D ^{\sigma }\cdots ({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }}_{n~\text{times}}\kappa (p))\cdots )) \) for \(n\geq 1\), \(a, p\in \mathbb{R}\), and \(p>0\). Also, we define \(J^{0}\kappa (p)=\int_{0}^{p^{[0]}} \kappa (s)\,ds=\kappa (p)\),
and
The following result shows that our definition is a generalization of the Caputo–Fabrizio derivative.
Lemma 2.1
Let \(\kappa \in H^{1}(0,b)\), \(b>0 \), and \(\sigma \in (0,1)\). Then \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)= {}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)\). If \(\kappa \in C_{\mathbb{R}}[0,b]\), then there exists a sequence \((\kappa_{n} )_{n=1}^{\infty }\) of \(H^{1}(0,b)\) such that \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)= \lim_{n\to \infty } {}^{CF\hspace{-1pt}}_{{N}}D ^{\sigma }\kappa_{n}(t)\) and \(\lim_{\sigma \to 0} {}^{CF\hspace{-1pt}}_{{N}}D ^{\sigma }\kappa (t)=\kappa (t)-\kappa (0)\).
Proof
Let \(\kappa \in H^{1}(0,b)\). Note that
Now, let \(\kappa \in C_{\mathbb{R}}[0,b]\). Choose a sequence of polynomials \({\{\kappa_{n} =P_{n}\}}_{n=1}^{\infty }\) that converges uniformly to κ. Hence \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)= \lim_{n\to \infty } \hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa_{n}(t)\). Since \(P_{n}\in H^{1}\), we conclude that \(\lim_{\sigma \to 0} {}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t) =\lim_{\sigma \to 0} \lim_{n\to \infty } {}^{CF\hspace{-1pt}}D^{\sigma }P_{n}(t)=\lim_{n\to \infty } \lim_{\sigma \to 0} {}^{CF\hspace{-1pt}}D^{\sigma }P_{n}(t)= \lim_{n\to \infty }[P_{n}(t)-P_{n}(0)]= \kappa (t)-\kappa (0)\). □
Note that if \(\kappa \in H^{1}(0,b)\), then \(\lim_{\sigma \to 1} {}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)=\kappa^{\prime }(t)\). But this may be not true for \(\kappa \in C_{\mathbb{R}}[0,b]\).
Lemma 2.2
A solution of the problem \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)= \upsilon (t)\) such that \(\kappa (0)=0\) is of the form \(\kappa (t)= a _{\sigma } \upsilon (t) +b_{\sigma }\int_{0}^{t} \upsilon (s)\,ds\) for \(0<\sigma <1\).
Proof
Note that \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)=\frac{B(\sigma)}{1- \sigma }\kappa (t) - \frac{\sigma B(\sigma)}{(1-\sigma)^{2}}\int _{0}^{t} \exp (-\frac{\sigma }{1-\sigma }(t-s))\kappa (s)\,ds=\upsilon (t)\). Hence \(\frac{\sigma B(\sigma)}{(1-\sigma)^{2}}\int_{0}^{t} \exp ( \frac{\sigma }{1-\sigma } s)\kappa (s)\,ds=\exp ( \frac{\sigma }{1-\sigma } t)[\frac{B(\sigma)}{1-\sigma }\kappa (t)-\upsilon (t) ]\). By differentiating both sides we get \(\upsilon (t)=\frac{1-\sigma }{ \sigma }[\frac{B(\sigma)}{1-\sigma } \kappa (t)-\upsilon (t)]^{ \prime }\). Now by integrating we obtain \(\kappa (t)= a_{\sigma } \upsilon (t) +b_{\sigma }\int_{0}^{t} \upsilon (s)\,ds\). □
It is crucial to check that in the last result the equation \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)=0\) with \(\kappa (0)=0\) possesses a unique solution. Using this note and Lemma 2.2, we deduce the next result.
Lemma 2.3
Let \(0<\sigma <1\). Then the unique solution of \({}^{CF\hspace{-1pt}}_{{N}}D^{ \sigma }\kappa (t)=\upsilon (t)\) with \(\kappa (0)=0\) is written as \(\kappa (t)= a_{\sigma } \upsilon (t) +b_{\sigma }\int_{0}^{t} \upsilon (p)\,dp\).
Lemma 2.4
Let \(0<\sigma <1\) and \(\kappa (0)=0\). Then the unique solution for the problem \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}}\kappa (t)=\upsilon (t)\) is given by \(\kappa (t)= (a_{\sigma } +b_{\sigma }J\upsilon (t) )^{[n]}\).
Proof
Applying Lemma 2.3 to \({}^{CF\hspace{-1pt}}_{{N}} D^{\sigma } \kappa (t)= \upsilon (t)\), we conclude that \(\kappa (t)= a_{\sigma } \upsilon (t) + b_{\sigma } \int_{0}^{t} \upsilon (p)\,dp\). Using Lemma 2.3 for equation \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[2]}} \kappa (t)=\upsilon (t)\), we get \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)= a_{\sigma } \upsilon (t) +b _{\sigma } \int_{0}^{t} \upsilon (s)\,ds\), and so
Now, suppose that \(\kappa (t)= (a_{\sigma } +b_{\sigma }J\upsilon (t) )^{[n]} \) is the solution of \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}} \kappa (t)=\upsilon (t)\). We prove that \(\kappa (t)= (a_{\sigma } +b _{\sigma }J\upsilon (t) )^{[n+1]} \) is the solution of \(\hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n+1]}} \kappa (t)=\upsilon (t)\). If \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}} ({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma } \kappa (t))=\upsilon (t)\), then \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma } \kappa (t))= (a_{\sigma } +b _{\sigma }J\upsilon (t) )^{[n ]} \), and so
□
By using the details of the proof of the last result, we can easily deduce the following results (see [13]).
Lemma 2.5
Let \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\). If there exists a real number K such that \(|\kappa (t)-\upsilon (t)|\leq K\) for all \(t\in [0,1]\), then \(|{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)-{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\upsilon (t)| \leq \frac{(2-\sigma)B(\sigma) }{(1- \sigma)^{2}}K\) for all \(t\in [0,1]\). If \(\kappa (0)=\upsilon (0)\), then \(|{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)-{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\upsilon (t)| \leq \frac{B(\sigma) }{(1-\sigma)^{2}}K\).
This result implies that \(|{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)| \leq \frac{(2-\sigma)B(\sigma) }{(1-\sigma)^{2}}K\) for all \(t\in [0,1]\) whenever \(\kappa \in C_{\mathbb{R}}[0,1]\) with \(|\kappa (t)|\leq K\) for some \(K\geq 0\) and all \(t\in [0,1]\).
Lemma 2.6
Suppose that \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\) and there exists a real number K such that \(|\kappa (t)-\upsilon (t)|\leq K\) for all \(t\in [0,1]\). Then \(|{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}}\kappa (t)-{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}}\upsilon (t)| \leq (\frac{ (2-\sigma) B( \sigma)}{(1-\sigma)^{2 }})^{n}K\) for all \(t\in [0,1]\). If \(\kappa (0)=\upsilon (0)\), then \(|{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}} \kappa (t)-{}^{CF\hspace{-1pt}}_{{N}}D^{\sigma^{[n]}}\upsilon (t)| \leq (\frac{ B( \sigma)}{(1-\sigma)^{2 }})^{n}K\) for all \(t\in [0,1]\).
In [21], the nonlinear fractional differential problem \({}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)= f(t,\kappa (t)) \) with \(0\leq \sigma <1\) was studied. In the proof of the related result (Theorem 1), the self-map \(F: \in C_{\mathbb{R}}[0,1]\to C_{\mathbb{R}}[0,1]\) defined by \((F\kappa)(t)=a_{\sigma } f(t,\kappa (t)) + b_{\sigma } \int_{0} ^{t} f(s,\kappa (s))\,ds \) is well defined, and there is no problem. Note that this method of proofs cannot be useful for the problem
because the map F cannot be defined on the space \(H^{1}\). Here \(\sigma, \beta \in (0,1)\). For finding a new method for solving such problems, we defined a new notion by replacing \({}^{CF\hspace{-1pt}}D^{\sigma } \kappa (t)\) with \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)\). Note that our extended derivative can only be used for order \(\sigma \in (0,1)\). First, we investigate the fractional differential problem
with \(\kappa (0)=0\), where \(\sigma, \beta \in (0,1)\).
Theorem 2.7
Let \(\sigma, \beta \in (0,1)\), and let \(f:[0,1]\times \mathbb{R}^{2} \rightarrow \mathbb{R}\) be a continuous function such that \(|f(t,x,y)-f(t,x ^{\prime},y^{\prime} )|\leq \eta (t)(|x-x^{\prime}|+|y-y^{\prime}| )\) for all \(t\in [0,1] \) and \(x,y, x^{\prime},y^{\prime} \in \mathbb{R}\). Then problem (1) has a unique solution in \(H^{1}(0,1)\) whenever \(\Delta =\frac{1}{B(\sigma)} [ \eta ^{*}[1+ \frac{MB(\beta)}{(1-\beta)^{2}} ]<1\).
Proof
Consider the map \(F: \in C_{\mathbb{R}}[0,1]\to C_{\mathbb{R}}[0,1]\) defined by
By Lemma 2.5 we get
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\) and \(t\in [0,1]\). Hence
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\). Since \(\Delta <1\), F is a contraction. By the Banach contraction principle F has a unique fixed point, which is the unique solution for problem (1). □
Let h and g be bounded functions on \([0,1]\) with \(M_{1}=\sup_{t \in I}|h(t)| <\infty \) and \(M_{2}=\sup_{t\in I}|g(t)| <\infty \). Now, we investigate the fractional higher-order series-type differential problem
with boundary condition \(\kappa (0)=0\), where \(\sigma, \nu,\varrho,\delta \in (0,1)\). Note that the functions h and g may be discontinuous. Since the left side of equation (2) is continuous, so is the right side as problem (2) should be a well defined equation (check our example). For this reason, we add the continuity of the function f to the assumptions of the next two results in order equations (2) and (3) to be well defined. Consider the Banach space \(C_{\mathbb{R}}[0,1]\) endowed with the norm \(\|\kappa \|= \sup_{t \in I}|\kappa (t)|\).
Theorem 2.8
Let \(f:[0,1]\times \mathbb{R}^{4}\rightarrow \mathbb{R}\) be a continuous function such that
for some nonnegative real numbers \(\xi_{1}\), \(\xi_{2}\), \(\xi_{3}\), \(\xi_{4}\) and all \(x,y,w,v,x^{\prime},y^{\prime},w^{\prime},v^{\prime} \in \mathbb{R}\) and \(t \in [0,1]\). If \(\Delta = \frac{1}{ B(\sigma)} \sum_{j=0} ^{ \infty } \frac{1}{2^{j}}(\frac{B(\varrho)}{ (1-\varrho)^{2 }})^{j}( \xi_{1} + \xi_{2} \gamma_{0} +\xi_{3} \frac{M_{1}B(\nu)}{(1-\nu)^{2}}+\xi_{4} \frac{M_{2}B(\delta)}{(1- \delta)^{2}}) <1\), then problem (2) has a unique solution.
Proof
Define the map \(F:C_{\mathbb{R}}[0,1]\to C_{\mathbb{R}}[0,1]\) by
where \(a_{\sigma }\) and \(b_{\sigma }\) are introduced in Lemma 1.1. By Lemmas 2.5 and 2.6 we get
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\) and \(t\in [0,1]\). Hence
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\) and \(t\in [0,1]\). This implies that
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\). Note that \(\Delta <1\), so that F is a contraction. The Banach contraction principle implies that F has a unique fixed point, which is the unique solution for (2). □
Note that we used the boundary conditions \(\kappa (0)=0\) for obtaining the key inequality
Let k, s, h, and g be bounded functions on \([0,1]\) with \(M_{1}= \sup_{t\in I}|k(t)|<\infty\), \(M_{2}=\sup_{t\in I}|s(t)|<\infty\), \(M_{3}= \sup_{t\in I}|h(t)| <\infty \), and \(M_{4}=\sup_{t\in I}|g(t)| <\infty\). Now, we investigate the fractional higher-order series-type differential problem
such that \(\kappa (0)=0\), where \(\lambda,\mu \geq 0\), \(\sigma, \beta,\rho,\theta,\nu,\delta,\in (0,1)\), and n, m, p, q, and r are natural numbers.
Theorem 2.9
Assume that \(f:[0,1]\times \mathbb{R}^{4}\rightarrow \mathbb{R}\) is a continuous function such that
for some nonnegative real numbers \(\xi_{1}\), \(\xi_{2}\), \(\xi_{3}\), \(\xi_{4}\) and all \(x,y,w,z,x^{\prime},y^{\prime},w^{\prime},z^{\prime} \in \mathbb{R}\) and \(t \in [0,1]\). If \(\Delta =(\frac{1}{B(\sigma)})^{n}([ \lambda \frac{M_{1}B(\beta)}{(1- \beta)^{2m}}+\mu \frac{ M_{2}B(\rho)}{(1-\rho)^{2p}} ]+ [ e^{\frac{B( \theta)}{(1-\theta)^{2}}}(\xi_{1} + \xi_{2} \gamma_{0} +\xi_{3} \frac{ M_{3}B(\nu)}{(1-\nu)^{2q}} +\xi_{4} \frac{M_{4}B(\delta)}{(1- \delta)^{2r}})])<1\), then problem (3) has a unique solution.
Proof
Define \((G\kappa)(s)=\sum_{j=0} ^{\infty }\frac{1}{j!}\hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{ \theta^{[j]}}f(s,\kappa (s),(\phi \kappa)(s), h(s)\hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{\nu^{[q]}} \kappa (s),g(s)\hspace{1pt}{}^{CF\hspace{-1pt}}_{{N}}D^{ \delta^{[r]}} \kappa (s)) \) for all \(\kappa \in C_{\mathbb{R}}[0,1]\) and \(s\in [0,1]\). Consider the map \(F:C_{\mathbb{R}}[0,1] \to C_{ \mathbb{R}}[0,1]\) defined by
By Lemma 1.2 we have
for all \(\kappa \in C_{\mathbb{R}}[0,1]\) and \(s\in [0,1]\). Hence
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\) and \(t\in [0,1]\). Also, by Lemma 2.6 we get
for all \(\kappa \in C_{\mathbb{R}}[0,1]\) and \(s\in [0,1]\). Thus we get
for all \(\kappa,\upsilon \in C_{\mathbb{R}}[0,1]\).
Since \(\Delta <1\), F is a contraction. By the Banach contraction principle, F possesses a unique fixed point, which is the unique solution for (3). □
Now, we explicitly show an example to illustrate our aim.
Example 2.1
Consider \(\gamma:[0,1] \times [0,1]\to [0,\infty)\) defined by \(\gamma (t,s)=\frac{e^{2t-s}}{e}\). Note that \(\gamma_{0}\leq e\). Put \(\sigma =\frac{1}{4}\), \(\nu =\frac{1}{4}\), \(\delta =\frac{1}{4}\), \(\varrho =\frac{1}{8}\), \(\xi_{1}=\frac{2}{41}\), \(\xi_{2}=\frac{1}{48}\), \(\xi_{3}=\frac{1}{e^{2}}\), and \(\xi_{4}=\frac{1}{2e^{2}}\). Let \(B(\sigma)=1\) for \(\sigma \in (0,1)\), \(h(t)=1\) for \(x \in Q\cap [0,1]\) and \(h(t)=0\) for \(x \in Q^{c}\cap [0,1]\), \(g(t)=0\) for \(x \in Q\cap [0,1]\) and \(g(t)=2\) for \(x \in Q^{c}\cap [0,1]\). Then, \(M_{1}=\sup_{t\in [0,1]}|h(t)|=1\) and \(M_{2}=\sup_{t\in [0,1]}|g(t)|=2\). We further discuss the fractional problem
such that \(\kappa (0)=0\). Consider \(f(t,x,y,w,v)= t+\frac{2}{41}x+ \frac{1}{48}y+\frac{1}{e^{2}}w+\frac{1}{2e^{2}}v\) for all \(t\in I\) and \(x,y,w, v \in \mathbb{R}\). Note that \(\Delta = \frac{1}{ B(\alpha)} \sum_{j=0} ^{\infty } \frac{1}{2^{j}}(\frac{B(\varrho)}{ (1-\varrho)^{2 }})^{j}(\xi_{1} + \xi_{2} \gamma_{0} +\xi_{3} \frac{M_{1}B( \nu)}{(1-\nu)^{2}}+\xi_{4} \frac{M_{2}B(\delta)}{(1-\delta)^{2}}) <0.3<1\). By Theorem 2.8 we conclude that problem (4) has a unique solution.
3 Conclusion
The nonlinear fractional differential problem \({}^{CF\hspace{-1pt}}D^{\sigma } \kappa (t)= f(t,\kappa (t)) \) with \(0\leq \sigma <1\) has been studied in some works. The method used in the proofs cannot be used for the problem \({}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)= f(t,\kappa (t), {}^{CF\hspace{-1pt}}D ^{ \sigma }\kappa (t))\) for technical reasons. For finding a new method for solving such problems, we define a new extended fractional derivative \({}^{CF\hspace{-1pt}}_{{N}}D^{\sigma }\kappa (t)\) replacing \({}^{CF\hspace{-1pt}}D^{\sigma }\kappa (t)\), and we study two higher-order series-type fractional differential equations involving the extended derivative. We emphasize that our extended derivative can be used only for order \(\sigma \in (0,1)\).
References
Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)
Akbari Kojabad, E., Rezapour, S.: Approximate solutions of a sum-type fractional integro-differential equation by using Chebyshev and Legendre polynomials. Adv. Differ. Equ. 2017, 351 (2017)
Akbari Kojabad, E., Rezapour, S.: Approximate solutions of a fractional integro-differential equation by using Chebyshev and Legendre polynomials. J. Adv. Math. Stud. 11(1), 80–102 (2018)
Al-Salti, N., Karimov, E.T., Sadarangani, K.: On a differential equation with Caputo–Fabrizio fractional derivative of order \(1 <\beta \leq 2\) and application to mass-spring-damper system. Prog. Fract. Differ. Appl. 2(4), 257–263 (2016)
Alqahtani, R.T.: Fixed-point theorem for Caputo–Fabrizio fractional Nagumo equation with nonlinear diffusion and convection. J. Nonlinear Sci. Appl. 9, 1991–1999 (2016)
Alsaedi, A., Baleanu, D., Etemad, S., Rezapour, S.: On coupled systems of time-fractional differential problems by using a new fractional derivative. J. Funct. Spaces 2016, Article ID 4626940 (2016)
Atanacković, T.M., Pillipović, S., Zorica, D.: Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract. Calc. Appl. Anal. 21, 29–44 (2018)
Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)
Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Physica A 505, 688–706 (2018)
Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 166 (2018)
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On approximate solutions for two higher-order Caputo–Fabrizio fractional integro-differential equations. Adv. Differ. Equ. 2017, 221 (2017)
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018)
Baleanu, D., Mousalou, A., Rezapour, S.: A new method for investigating some fractional integro-differential equations involving the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017)
Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017)
Caputo, M., Fabrizzio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Caputo, M., Fabrizzio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)
Gómez-Aguilar, J.F., Yepez-Martínez, H., Calderón-Ramón, C., Cruz-Orduña, I., Escobar-Jimenez, R.F., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17(9), 6289–6303 (2015)
Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative. Therm. Sci. 20(2), 765–770 (2016)
Hristov, J.: Fractional derivative with non-singular kernels: from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, pp. 270–342. Bentham Science Publishers, Sharjah (2017)
Hristov, J.: Derivation of fractional Dodson’s equation and beyond: transient mass diffusion with a non-singular memory and exponentially fading-out diffusivity. Prog. Fract. Differ. Appl. 4, 255–270 (2017)
Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)
Rezapour, S., Shabibi, M.: A singular fractional differential equation with Riemann–Liouville integral boundary condition. J. Adv. Math. Stud. 8(1), 80–88 (2015)
Shabibi, M., Postolache, M., Rezapour, S.: Positive solutions for a singular sum fractional differential system. Int. J. Anal. Appl. 13(1), 108–118 (2017)
Shabibi, M., Postolache, M., Rezapour, S., Vaezpour, S.M.: Investigation of a multi-singular pointwise defined fractional integro-differential equation. J. Math. Anal. 7(5), 61–77 (2016)
Shabibi, M., Rezapour, S., Vaezpour, S.M.: A singular fractional integro-differential equation. UPB Sci. Bull., Ser. A 79(1), 109–118 (2017)
Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 25 (2017). https://doi.org/10.3389/fphy.2017.00052
Tsypkin, A.G., Tsypkin, G.G.: Mathematical Formulas. Mir, Moscow (1985)
Acknowledgements
The second and third authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to the referees for their helpful suggestions, which improved the final version of this paper.
Availability of data and materials
Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.
Funding
Not available.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Baleanu, D., Mousalou, A. & Rezapour, S. The extended fractional Caputo–Fabrizio derivative of order \(0\leq \sigma <1\) on \(C_{\mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations. Adv Differ Equ 2018, 255 (2018). https://doi.org/10.1186/s13662-018-1696-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1696-6
MSC
- 34A08
- 34A99
Keywords
- The extended Caputo–Fabrizio derivative of order \(0\leq \sigma <1\)
- Higher-order fractional differential equation
- Series-type equation