- Research
- Open Access
- Published:
Periodic solutions for discrete \(p(k)\)-Laplacian systems with partially periodic potential
Advances in Difference Equations volume 2018, Article number: 242 (2018)
Abstract
In this paper, we are concerned with the existence of periodic solutions for discrete \(p(k)\)-Laplacian systems with partially periodic potential. Some new existence results are obtained by using the generalized saddle point theorem in critical point theory, which extends and improves some known results in the literature.
1 Introduction
The theory of nonlinear difference equations has been widely used to study discrete models in many fields, such as statistics, neural network, computer science, electrical circuit analysis, optimal control, biological models, data classification, and so on.
The existence results on periodic solutions were usually obtained by analytic techniques or various fixed point theorems. In [1, 2], Guo and Yu developed a new method to study the existence and multiplicity of periodic and subharmonic solutions of the second order difference equation via variational methods. In 2005, Zhou et al. [3] applied the same approach for subharmonic solutions of a class of subquadratic Hamiltonian systems. Here we also point out the contribution of Mawhin [4, 5] in the study of second order nonlinear difference systems with φ-Laplacian and periodic potential by using critical point theory.
During the past decade, periodic solutions, subharmonic solutions, and homoclinic orbits for second order discrete Hamiltonian systems have captured special attention, and some solvability conditions have been given under distinct hypotheses on potential function [6–13].
Especially, Yan et al. [12] considered the second order discrete Hamiltonian system
where \(\mathbb{Z}\) is the set of all integers, \(\Delta x(k)=x(k+1)-x(k)\) is the forward difference, \(\Delta^{2}x(k)=\Delta (\Delta x(k))\), \(F: \mathbb{Z}\times\mathbb{R}^{N}\rightarrow\mathbb{R}\), and \(\nabla F(k,x)\) denotes the gradient of \(F(k,x)\) in x.
In [12], the authors obtained some existence results for system (1.1) with partially periodic potentials and sublinear nonlinearity.
Theorem A
([12])
Suppose that F satisfies the following conditions:
-
(F1)
There exists an integer \(r\in[0,N]\) such that \(F(k,x)\) is \(T_{i}\)-periodic in \(x_{i}\), \(1\leq i\leq r\), where \(x_{i}\) is the ith component of \(x=(x_{1},x_{2},\ldots,x_{N})^{T}\in\mathbb{R}^{N}\).
-
(F2)
There exist constants \(M_{1}>0\), \(M_{2}>0\), and \(0\leq \alpha <1\) such that
$$\bigl\vert \nabla F(k,x) \bigr\vert \leq M_{1} \vert x \vert ^{\alpha}+M_{2} $$for all \((k,x)\in\mathbb{Z} [1,T]\times\mathbb{R}^{N}\), where \(\mathbb{Z} [a,b]: =\mathbb{Z}\cap[a,b]\) for every \(a,b\in\mathbb{Z}\) with \(a\leq b\).
-
(F3)
\(\lim_{|x|\rightarrow\infty}|x|^{-2\alpha}\sum_{k=1}^{T} F(k,x)=+\infty\), \(x\in\{0\}\times\mathbb{R}^{N-r}\).
Then problem (1.1) possesses at least \(r+1\) distinct T-periodic solutions.
Recently, Jiang et al. [13] extended Theorem A, and they proved the same results under more general coercive condition:
-
(F4)
\(\liminf_{|x|\rightarrow\infty}|x|^{-2\alpha}\sum_{k=1}^{T} F(k,x)>L\), \(x\in\{0\}\times\mathbb{R}^{N-r}\), where L is a positive constant.
Theorem B
([13])
Suppose that F satisfies (F1), (F2), and (F4). Then problem (1.1) possesses at least \(r+1\) distinct T-periodic solutions.
In [10, 13], when F satisfies (F1) and \(\nabla F(k,x)\) is growing linearly, that is, there exist constants \(M_{1}>0\) and \(M_{2}>0\), such that
for all \((k,x)\in\mathbb{Z} [1,T]\times\mathbb{R}^{N}\), the authors considered the multiple periodic solutions for system (1.1) and got some interesting results.
In recent years, many scholars were interested in difference equations involving the discrete variable exponent Laplacian operator. For instance, the case of homoclinic solutions of a class of \(p(k)\)-Laplacian difference systems was first considered by Chen et al. [14]. The existence of nontrivial homoclinic solutions was obtained by using the mountain pass theorem and the symmetric mountain pass theorem.
In [15], when \(N=1\), Bereanu et al. considered the existence of periodic or Neumann boundary value problems for the discrete \(p(k)\)-Laplacian equations of this type
through the use of Rabinowitz saddle point theorem, where \(p(k): \mathbb {Z} [0,T]\rightarrow(1,+\infty)\) and the nonlinear term \(f(k): \mathbb {Z} [0,T]\rightarrow\mathbb{R}\) is continuous and bounded.
In this paper, we further investigate the existence and multiplicity of periodic solution for the nonautonomous discrete \(p(k)\)-Laplacian system
where the variable exponent \(p(k): \mathbb{Z} [0,T]\rightarrow (1,+\infty )\) satisfies \(p(0)=p(T)\), T is a positive integer, and \(\Delta x(k)=x(k+1)-x(k)\) is the forward difference operator, F: \(\mathbb{Z}\times\mathbb{R}^{N}\mapsto \mathbb{R}\) is continuously differentiable in x for every \(k\in \mathbb{Z}\) and T-periodic in k for all \(x\in\mathbb{R}^{N}\).
We may think of (1.2) as being a discrete analogue of the following \(p(t)\)-Laplacian system:
where \(\Phi(x)=-\frac{d}{dt}(|\dot{x}(t)|^{p(t)-2}\dot{x}(t))\) is said to be \(p(t)\)-Laplacian.
During the last fifteen years, differential and partial differential equations with variable exponent growth conditions have become increasingly popular. This type of problems has very strong background, the \(p(t)\)-Laplacian systems provide a natural description of the physical phenomena with “pointwise different properties” which first arose from the nonlinear elasticity theory, see [16]. In [17], the authors proposed a framework for image restoration based on a nonhomogeneous \(p(t)\)-Laplacian operator.
In addition, problem (1.2) is also very interesting from a purely mathematical point of view. When the variable exponent \(p(k)\equiv2\), discrete \(p(k)\)-Laplacian system (1.2) becomes the second order discrete Hamiltonian system (1.1), problem (1.2) represents the extension to the variable exponent space setting. The \(p(k)\)-Laplacian operator possesses more complicated nonlinearity than the constant case, for example, it is inhomogeneous, which provokes some mathematical difficulties. We point out that commonly known methods and techniques for studying constant exponent equations fail in the setting of problems involving variable exponents, thus our problem (1.2) is more difficult and more delicate.
Inspired by the above-mentioned papers, the objective of this article is to use a control function \(\omega(|x|)\) instead of \(|x|^{\alpha}\) in conditions (F2), (F3), and (F4). By using the theory of variable exponent Sobolev spaces and the generalized saddle point theorem in [18], we will prove the existence of multiple periodic solutions for (1.2) for a new and large range of nonlinear terms.
Now, we state the assumptions on function F:
-
(F5)
There exist constants \(K_{0}>0\), \(K_{1}>0\), \(K_{2}>0\), \(\alpha\in [0,p^{-}-1)\) and a nonnegative function \(\omega\in C ([0,\infty ),[0,\infty))\) such that
- (\(\omega_{1}\)):
-
\(\omega(s)\leq\omega(t)\), \(\forall s\leq t\), \(s,t\in [0,\infty )\).
- (\(\omega_{2}\)):
-
\(\omega(s+t)\leq K_{0} (\omega(s)+\omega(t))\), \(\forall s,t\in[0,\infty)\).
- (\(\omega_{3}\)):
-
\(0\leq\omega(s)\leq K_{1} s^{\alpha}+K_{2}\), \(\forall s,t\in[0,\infty)\).
- (\(\omega_{4}\)):
-
\(\omega(s)\rightarrow\infty\), as \(s\rightarrow \infty\).
Moreover, there exist \(f,g: \mathbb{Z} [0,T]\rightarrow\mathbb {R}^{+}\) such that
$$\bigl\vert \nabla F(k,x) \bigr\vert \leq f(k) \omega\bigl( \vert x \vert \bigr)+g(k) $$for all \((k,x)\in\mathbb{Z} [1,T]\times\mathbb{R}^{N}\).
-
(F6)
Let \(\frac{1}{q^{+}}+\frac{1}{p^{-}}=1\), and
$$\liminf_{|x|\rightarrow\infty}\frac{\sum_{k=1}^{T} F(k,x)}{\omega ^{q^{+}}(|x|)}>\frac{p^{-} ( 2K_{0}C_{0}\sum_{k=1}^{T}f(k) )^{q^{+}}}{q^{+}(p^{-}-1)}, $$as \(x\in\{0\}\times\mathbb{R}^{N-r}\), where \(C_{0}\) is a positive constant.
Our main results are the following theorems.
Theorem 1.1
Suppose that F satisfies (F1), (F5), and (F6). Then problem (1.2) possesses at least \(r+1\) distinct T-periodic solutions.
Remark 1.1
Obviously, Theorem 1.1 generalizes Theorem A, which corresponds to the spacial case \(p(k)=2\), \(f(k)=M_{1}\), \(g(k)=M_{2}\) and control function \(\omega(|x|)=|x|^{\alpha}\).
Comparing with the results in [6–11, 13–15], Theorem 1.1 is a different result even in the case \(p(k)=2\). For example, \(x=(x_{1},x_{2},\ldots,x_{N})^{T}\in\mathbb{R}^{N}\), let \(p(k)=2\) and
where \(M_{1}\) and \(M_{2}\) are positive constants. Then F satisfies (F1) with \(T_{i}=\pi\), \(i=1,2,\ldots,r\). Choose
and control function
it is easy to see that all the conditions of Theorem 1.1 hold, but F is not covered by the results in [6–13].
Remark 1.2
When \(p(k)\equiv2\), (F5) was introduced in [19], which is an extension of the usual sublinear growth condition, that is, there exist \(\alpha\in[0,1)\) and \(f,g: \mathbb{Z} [0,T]\rightarrow \mathbb {R}^{+}\) such that
for all \((k,x)\in\mathbb{Z} [1,T]\times\mathbb{R}^{N}\). From (F5), we can see that the nonlinearity \(\nabla F(k,x)\) grows slightly slower than \(|x|^{\alpha}\). Comparing with the results in [19], the periodicity and coercivity conditions in our theorems are only in a part of variables of potentials, and
has appropriate lower bound.
By Theorem 1.1, it is easy to obtain the following corollary.
Corollary 1.1
Suppose that (F1), (F5) hold and
as \(x\in\{0\}\times\mathbb{R}^{N-r}\), where \(\frac{1}{q^{+}}+\frac {1}{p^{-}}=1\). Then problem (1.2) possesses at least \(r+1\) distinct T-periodic solutions.
2 Preliminaries
For the reader’s convenience, we first give some necessary background knowledge and propositions concerning the generalized Lebesgue–Sobolev spaces. We can refer the reader to [14, 15, 20].
Let \(p(k): \mathbb{Z} [0,T]\rightarrow(1,+\infty)\) satisfy \(p(0)=p(T)\). From now on, we shall employ the usual notations: \(p^{-}=\min_{k\in [0,T]}p(k)\), \(p^{+}=\max_{k\in[0,T]}p(k)\).
Define
with the norm
Define
and
For \(x\in E\), we write
then \(\|\cdot\|\) is an equivalent norm on E, where \(\overline{x}=\frac{1}{T}\sum_{k=1}^{T}x(k)\in\mathbb{R}^{N}\) and \(\widetilde{x}(k):=x(k)-\overline{x}\in\widetilde{E}\). Obviously, E and Ẽ are finite dimensional, and
This enables us to split
Proposition 2.1
([14])
If we denote
then
-
(i)
\(|x|_{p(k)}<1\ (=1;>1)\Leftrightarrow\rho(x)<1\ (=1;>1)\);
-
(ii)
\(|x|_{p(k)}>1\Rightarrow|x|_{p(k)}^{p^{-}}\leq\rho(x)\leq |x|_{p(k)}^{p^{+}}\);
-
(iii)
\(|x|_{p(k)}<1\Rightarrow|x|_{p(k)}^{p^{+}}\leq\rho(x)\leq |x|_{p(k)}^{p^{-}}\).
Proposition 2.2
([15])
For all \(\widetilde{x}\in \widetilde{E}\) and \(x\in E\), one has
-
(i)
\(\|\widetilde{x}\|<1\Rightarrow\|\widetilde{x}\|^{p^{+}}\leq \sum_{k=1}^{T+1}|\Delta x(k-1)|^{p(k-1)}\leq\|\widetilde{x}\|^{p^{-}}\);
-
(ii)
\(\|\widetilde{x}\|>1\Rightarrow\|\widetilde{x}\|^{p^{-}}\leq \sum_{k=1}^{T+1}|\Delta x(k-1)|^{p(k-1)}\leq\|\widetilde{x}\|^{p^{+}}\);
-
(iii)
\(\|\widetilde{x}\|=1\Rightarrow\sum_{k=1}^{T+1}|\Delta x(k-1)|^{p(k-1)}=1\).
Proposition 2.3
([20])
For all \(x\in E\), there exists a constant \(C_{0}>0\) such that
Combining Proposition 2.2 with Proposition 2.3, we can obtain the following.
Proposition 2.4
For all \(\widetilde{x}\in\widetilde{E}\) and \(x\in E\), we have
and
Applying Proposition 2.2, from (2.1) and (2.2), it is easy to prove the following.
Proposition 2.5
For all \(x\in E\), we have
The functional on E given by
is continuously differentiable and weakly semicontinuous on E. Moreover, we have
for all \(x,y\in E\). Then the critical points of φ correspond to the solutions of system (1.2).
Take
where
and
and for \(1\leq i\leq r\), \(l_{i}\) is the unique integer such that
and \(\{e_{1},e_{2},\ldots,e_{N}\}\) is the canonical basis of \(\mathbb {R}^{N}\). Hence, \(| Q\overline{x} |\) is bounded and
Define \(G= \{ \sum_{i=1}^{r}k_{i}T_{i}e_{i} \mid k_{i}\in\mathbb{Z}, 1\leq i\leq r \}\), then G is a discrete subgroup of E. Let \(E/G=X\times V\), \(X=Y\oplus W\), where
and
and V is isomorphic to the torus \(T^{r}\). Let \(\pi: E\rightarrow E/G\) be the canonical surjection and \(\psi: X\times V\rightarrow \mathbb {R}\) by \(\psi(\pi(x))=\varphi(x)\). By (F1), we have
and
Then
Definition 2.1
([21])
Suppose that ψ satisfies the (PS) condition, that is, every sequence \(\{x_{n}\}\) of \(X\times V\) such that \(\psi\{ x_{n}\}\) is bounded and \(\psi'\{x_{n}\}\rightarrow0\) as \(n\rightarrow\infty\) possesses a convergent subsequence.
To prove the main theorem of the paper, we need the following generalized saddle point theorem due to Liu.
Lemma 2.1
(Theorem 1.7 in [18])
Let X be a Banach space with a decomposition \(X=Y+W\), where Y and W are two subspaces of X with \(dim Y<+\infty\). Let V be a finite-dimensional, compact \(C^{2}\)-manifold without boundary. Let \(\psi:X\times V\rightarrow\mathbb{R}\) be a \(C^{1}\)-function and satisfy the (PS) condition. Suppose that there exist constants \(\rho>0\) and \(\gamma <\beta\) such that
where \(S=\partial D\), \(D=\{z\in Y\mid |z|\leq\rho\}\). Then the functional ψ has at least \(\operatorname{cuplength}(V)+1\) critical points.
3 Proof of Theorem 1.1
Now, we give the proof of Theorem 1.1. For the sake of convenience, we denote by \(C_{i}\) (\(i=1,2,\ldots,27\)) various positive constants.
Proof of Theorem 1.1
Now, we use Lemma 2.1 to prove this theorem. Firstly, we prove that ψ satisfies the (PS) condition. Suppose that \(\{\pi(x_{n})\}\) is a (PS) sequence for ψ, that is, \(\psi (\pi (x_{n}))\) is bounded and \(\psi'(\pi(x_{n}))\rightarrow0\). Then \(\varphi (x_{n})\) is bounded and \(\varphi'(x_{n})\rightarrow0\).
By properties (\(\omega_{1}\))–(\(\omega_{3}\)) of (F5), we have
Then one has
So, we have
From (2.4) and (2.5), we obtain
By Young’s inequality, one has that
where \(\frac{1}{q^{+}}+\frac{1}{p^{-}}=1\). Hence, by (3.1) and (3.2), we have
In a way similar to the proof of (3.3), we have
Then for n large enough, by (3.4), we have
Note (2.3), one has that
Consequently, combining (3.5) with (3.6), we obtain that
where \(C_{16}=\min_{S\in[0,+\infty)} \{ \frac{1}{2} (1-\frac {1}{p^{-}} )S^{p^{-}}-C_{11}S^{\alpha+1}-C_{14}S-C_{15} \}\). Thus, we derive that
According to (3.3) and (3.8), we can obtain
We claim that the sequence \(|P\bar{x}_{n}|\) is bounded. Otherwise, we assume \(|P\bar{x}_{n}|\rightarrow+\infty\) as \(n\rightarrow\infty\). Note that (\(\omega_{4}\)) of (F5), we have \(\omega(|P\bar{x}_{n}|)\rightarrow+\infty\), as \(n\rightarrow\infty\). This together with (F6), \(\alpha\in[0,p^{-}-1)\), and (3.9) yields \(\varphi(x_{n})\rightarrow-\infty\) as \(n\rightarrow\infty\), this contradicts the boundedness of \(\{\varphi(x_{n})\}\), so \(|P\bar {x}_{n}|\) is bounded. Combining the property (\(\omega_{4}\)) of (F5), (2.3), and (3.8), we conclude that \(\|\widetilde {x}_{n}\|\) is bounded. Notice that \(|Q\bar{x}_{n}|\) is bounded, so \(\{\widehat{x}_{n}\}\) is bounded in E. Since E is a finite dimensional space, then \(\{ \widehat{x}_{n}\}\) has a convergent subsequence. By \(\pi(\widehat {x}_{n})=\pi(x_{n})\), we conclude that ψ satisfies the (PS) condition.
Secondly, we only need to verify the linking conditions of the generalized saddle point theorem. For \(\pi(x)\in W\times V\), \(x(k)=\tilde{x}(k)+Q\overline{x}\). By the proof of (3.3), we have
Hence
By Proposition 2.5 and the boundedness of \(|Q\bar{x}|\), one has that
on \(W\times V\). Notice \(\alpha\in[0,p^{-}-1)\), we obtain that
as \(\|x\|\rightarrow-\infty\), for all \(\pi(x)\in W\times V\), which implies that there exists \(\beta\in\mathbb{R}\) such that
on \(W\times V\). Thus part (a) of Lemma 2.1 is verified.
For \(\pi(x)\in Y\times V\), \(x=P\bar{x}+Q\bar{x}\). By (F5) and (2.5), we have
Note that \(\omega(|P\bar{x}|)\rightarrow+\infty\) as \(|P\bar {x}|\rightarrow\infty\), and \(q^{+}>1\), for sufficiently small ε, we can obtain that
uniformly for \(\pi(Q\bar{x})\in V\), where \(x\in \mathbb{R}^{N}\). So part (b) of Lemma 2.1 holds.
Now, the functional ψ satisfies all the hypotheses of the generalized saddle point theorem, so it has at least \(\operatorname{cuplength}(V)+1\) critical points, and since V is the torus \(T^{r}\), it implies that \(\operatorname{cuplength}(V)=r\). Hence φ has at least \(r+1\) critical points. Therefore, problem (1.2) has at least \(r+1\) distinct solutions in E. The proof of Theorem 1.1 is completed. □
References
Guo, Z.M., Yu, J.S.: The existence of periodic and subharmonic solutions of subquadratic second order difference equations. J. Lond. Math. Soc. 68, 419–430 (2003)
Guo, Z.M., Yu, J.S.: Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems. Nonlinear Anal., Theory Methods Appl. 55, 969–983 (2003)
Zhou, Z., Yu, J.S., Guo, Z.M.: The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems. ANZIAM J. 47, 89–102 (2009)
Mawhin, J.: Periodic solutions of second order Lagrangian difference systems with bounded or singular φ-Laplacian and periodic potential. Discrete Contin. Dyn. Syst. 6, 1065–1076 (2013)
Mawhin, J.: Periodic solutions of second order nonlinear difference systems with φ-Laplacian: a variational approach. Nonlinear Anal., Theory Methods Appl. 75, 4672–4687 (2012)
Xue, Y.F., Tang, C.L.: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian systems. Nonlinear Anal., Theory Methods Appl. 67, 2072–2080 (2007)
Ye, Y.W., Tang, C.L.: Periodic solutions for second-order discrete Hamiltonian system with a change of sign in potential. Appl. Math. Comput. 219, 6548–6555 (2013)
Gu, H., An, T.Q.: Existence of periodic solutions for a class of second-order discrete Hamiltonian systems. J. Differ. Equ. Appl. 18, 1–12 (2015)
Tang, X.H., Zhang, X.Y.: Periodic solutions for second-order discrete Hamiltonian systems. J. Differ. Equ. Appl. 17, 1413–1430 (2011)
Wang, D.B., Guo, M.: Multiple periodic solutions for second-order discrete Hamiltonian systems. J. Nonlinear Sci. Appl. 10, 410–418 (2017)
Wang, D.B., Xie, H.F., Guan, W.: Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems. Adv. Differ. Equ. 2016, Article ID 309 (2016)
Yan, S.H., Wu, X.P., Tang, C.L.: Multiple periodic solutions for second-order discrete Hamiltonian systems. Appl. Math. Comput. 234, 142–149 (2014)
Jiang, Q., Ma, S., Hu, Z.H.: Existence of multiple periodic solutions for second-order discrete Hamiltonian systems with partially periodic potentials. Electron. J. Differ. Equ. 2016, Article ID 307 (2016)
Chen, P., Tang, X.H., Agarwal, R.P.: Existence of homoclinic solutions for \(p(n)\)-Laplacian Hamiltonian systems on Orlicz sequence spaces. Math. Comput. Model. 55, 989–1002 (2012)
Bereanu, C., Jebelean, P., Serban, C.: Periodic and Neumann problems for discrete \(p(\cdot)\)-Laplacian. J. Math. Anal. Appl. 399, 75–87 (2013)
Ruzicka, M.: Electrorheologial Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)
Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)
Liu, J.Q.: A generalized saddle point theorem. J. Differ. Equ. 82, 372–385 (1989)
Wang, Z.Y., Zhang, J.H.: Periodic solutions of a class of second order non-autonomous Hamiltonian systems. Nonlinear Anal., Theory Methods Appl. 72, 4480–4487 (2010)
Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\). J. Math. Anal. Appl. 263, 453–464 (2001)
Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)
Acknowledgements
The author is grateful to anonymous referees for their constructive comments and suggestions which have greatly improved this paper.
Availability of data and materials
Not applicable.
Funding
This work is supported by the National Natural Science Foundation of China (31260098), Science and Technology Planning Project of Gansu Province (17JR5RA284), and Fundamental Research Funds for the Central Universities (31920180041, 31920180116).
Author information
Authors and Affiliations
Contributions
The author contributed solely to the writing of this paper. He read and approved the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
The author contributed to each part of this study.
Competing interests
The author declares that he has no competing interests.
Consent for publication
The author read and approved the final version of the manuscript.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhang, S. Periodic solutions for discrete \(p(k)\)-Laplacian systems with partially periodic potential. Adv Differ Equ 2018, 242 (2018). https://doi.org/10.1186/s13662-018-1701-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1701-0
MSC
- 39A11
- 58E50
- 70H05
- 37J45
Keywords
- Critical point
- Periodic solution
- Discrete \(p(k)\)-Laplacian systems
- Periodicity
- The generalized saddle point theorem