System (1.3) has a unique positive equilibrium \(E(S^{\ast}, I^{\ast}, Y^{\ast})\), provided that the following conditions are satisfied:
-
\((H_{1})\)
:
-
\(m\omega+K\mu(\beta_{1}+\alpha_{1}m)>dm\), \(\alpha\beta _{1}K\Lambda\mu+m(m\omega+K\mu(\beta_{1}+\alpha_{1}m)-dm)>0\), \(\beta_{1}\beta K\Lambda\mu>m^{2}\mu\omega\), \(\alpha m\mu\omega +\beta(m\omega+K\mu(\beta_{1}+\alpha_{1}m)-dm)>0\),
where
$$\begin{aligned} &S^{\ast}=\frac{\omega(\alpha\beta_{1}K\Lambda\mu+m(m\omega +K\mu(\beta_{1}+\alpha_{1}m)-dm))}{\beta_{1}\beta\Lambda(\omega -d)+\alpha\beta_{1}\Lambda\mu\omega+\beta_{1}m\mu\omega+\alpha _{1}m^{2}\mu\omega},\\ & I^{\ast}=\frac{\beta_{1}\beta K\Lambda\mu -m^{2}\mu\omega}{\beta_{1}\beta\Lambda(\omega-d)+\alpha\beta _{1}\Lambda\mu\omega+\beta_{1}m\mu\omega+\alpha_{1}m^{2}\mu \omega}, \\ &Y^{\ast}=\frac{\mu(\beta\beta_{1}K\Lambda-\omega m^{2})}{m(\alpha m\mu\omega+\beta(m\omega+K\mu(\beta_{1}+\alpha _{1}m)-dm))}. \end{aligned}$$
The linearized system of system (1.3) at \(E(S^{\ast}, I^{\ast}, Y^{\ast})\) is
$$\begin{aligned} \textstyle\begin{cases} \frac{du_{1}(t)}{dt}=-\mu u_{1}(t)-A_{0}u_{1}(t-\tau _{1})+du_{2}(t)-B_{0}u_{3}(t-\tau_{1}),\\ \frac{du_{2}(t)}{dt}=A_{0}u_{1}(t-\tau_{1})-\omega u_{2}(t)+B_{0}u_{3}(t-\tau_{1}),\\ \frac{du_{3}(t)}{dt}=C_{0}u_{2}(t-\tau_{2})+D_{0}u_{3}(t-\tau_{2})-mu_{3}(t), \end{cases}\displaystyle \end{aligned}$$
(2.1)
where \(A_{0}=\frac{\beta Y^{\ast}}{1+\alpha Y^{\ast}}\), \(B_{0}=\frac {\beta S^{\ast}}{(1+\alpha Y^{\ast})^{2}}\), \(C_{0}=\frac{\beta _{1}}{(1+\alpha_{1}I^{\ast})^{2}}(\frac{\Lambda}{m}-Y^{\ast})\), and \(D_{0}=\frac{-\beta_{1}I^{\ast}}{1+\alpha_{1}I^{\ast}}\).
The characteristic equation of system (2.1) is
$$\begin{aligned} &\lambda^{3}+A_{1}\lambda^{2}+A_{2} \lambda+A_{3}+ \bigl(B_{1}\lambda ^{2}+B_{2} \lambda+B_{3} \bigr)e^{-\lambda\tau_{1}} \\ &\quad{}+ \bigl(C_{1}\lambda^{2}+C_{2} \lambda+C_{3} \bigr)e^{-\lambda\tau _{2}}+(D_{1} \lambda+D_{2})e^{-\lambda(\tau_{1}+\tau_{2})}=0, \end{aligned}$$
(2.2)
where
$$\begin{aligned} &A_{1}=\mu+\omega+m,\qquad A_{2}=\mu\omega+\mu m+m\omega,\qquad A_{3}=\mu m\omega, \\ & B_{1}=A_{0},\qquad B_{2}=A_{0}( \omega+m-d),\qquad B_{3}=A_{0}m(\omega-d), \\ & C_{1}=-D_{0}, \qquad C_{2}=D_{0}(- \mu-\omega),\qquad C_{3}=-D_{0}\mu\omega , \\ & D_{1}=-A_{0}D_{0}-B_{0}C_{0}, \qquad D_{2}=A_{0}D_{0}d-B_{0}C_{0} \mu -A_{0}D_{0}\omega. \end{aligned}$$
Next, we consider the following four cases.
Case \((1)\): \(\tau_{1}=0, \tau_{2}=0\).
The characteristic equation (2.2) becomes
$$ \lambda^{3}+(A_{1}+B_{1}+C_{1}) \lambda ^{2}+(A_{2}+B_{2}+C_{2}+D_{1}) \lambda+(A_{3}+B_{3}+C_{3}+D_{2})=0. $$
(2.3)
Let
-
\((H_{2})\)
:
-
\(A_{1}+B_{1}+C_{1}>0\), \(A_{3}+B_{3}+C_{3}+D_{2}>0\), \((A_{1}+B_{1}+C_{1})(A_{2}+B_{2}+C_{2}+D_{1})-(A_{3}+B_{3}+C_{3}+D_{2})>0\).
According to the Routh–Hurwitz criteria, if conditions \((H_{1})\) and \((H_{2})\) hold, then all the roots of (2.3) must have negative real parts. We have the following results.
Theorem 2.1
Assume that
\((H_{1})\)
and
\((H_{2})\)
hold. If
\(\tau _{1}=\tau_{2}=0\), then the positive equilibrium
\(E(S^{\ast},I^{\ast },Y^{\ast})\)
of system (1.3) is locally asymptotically stable.
Case \((2)\): \(\tau_{1}>0, \tau_{2}=0\).
The characteristic equation (2.2) reduces to
$$ \lambda^{3}+(A_{1}+C_{1}) \lambda^{2}+(A_{2}+C_{2})\lambda +(A_{3}+C_{3})+ \bigl[B_{1}\lambda^{2}+(B_{2}+D_{1}) \lambda +(B_{3}+D_{2}) \bigr]e^{-\lambda\tau_{1}}=0. $$
(2.4)
Let \(\lambda=i\omega_{1}\ (\omega_{1}>0)\) be the root of equation (2.4). Then we have:
$$\begin{aligned} \textstyle\begin{cases} (B_{2}+D_{1})\omega_{1}\cos\omega_{1}\tau_{1}+[B_{1}\omega ^{2}_{1}-(B_{3}+D_{2})]\sin\omega_{1}\tau_{1}=\omega ^{3}_{1}-(A_{2}+C_{2})\omega_{1}, \\ (B_{2}+D_{1})\omega_{1}\sin\omega_{1}\tau_{1}-[B_{1}\omega ^{2}_{1}-(B_{3}+D_{2})]\cos\omega_{1}\tau_{1}\\ \quad=(A_{1}+C_{1})\omega ^{2}_{1}-(A_{3}+C_{3}). \end{cases}\displaystyle \end{aligned}$$
(2.5)
It follows that
$$ \omega^{6}_{1}+E_{21} \omega^{4}_{1}+E_{22}\omega^{2}_{1}+E_{23}=0, $$
(2.6)
where
$$\begin{aligned} &E_{21}=(A_{1}+C_{1})^{2}-2(A_{2}+C_{2})-B^{2}_{1}, \\ &E_{22}=(A_{2}+C_{2})^{2}-2(A_{1}+C_{1}) (A_{3}+C_{3})+2B_{1}(B_{3}+D_{2})-(B_{2}+D_{1})^{2}, \\ &E_{23}=(A_{3}+C_{3})^{2}-(B_{3}+D_{2})^{2}. \end{aligned}$$
Let \(r_{1}=\omega^{2}_{1}\). Then equation (2.6) becomes
$$ r^{3}_{1}+E_{21}r^{2}_{1}+E_{22}r_{1}+E_{23}=0. $$
(2.7)
Denote
$$ h_{1}(r_{1})=r^{3}_{1}+E_{21}r^{2}_{1}+E_{22}r_{1}+E_{23}. $$
(2.8)
Thus
$$\begin{aligned} \frac{dh_{1}(r_{1})}{dr_{1}}=3r^{2}_{1}+2E_{21}r_{1}+E_{22}. \end{aligned}$$
If \(E_{23}=(A_{3}+C_{3})^{2}-(B_{3}+D_{2})^{2}<0\), then \(h_{1}(0)<0\) and \(\lim_{r_{1}\longrightarrow+\infty}h_{1}(r_{1})=+\infty\). Equation (2.7) has at least one positive root.
If \(E_{23}=(A_{3}+C_{3})^{2}-(B_{3}+D_{2})^{2}\geq0\) and \(\bigtriangleup_{1}=E^{2}_{21}-3E_{22}\leq0\), then equation (2.7) has no positive root for \(r_{1}\in[0,+\infty)\).
If \(E_{23}=(A_{3}+C_{3})^{2}-(B_{3}+D_{2})^{2}\geq0\) and \(\bigtriangleup_{1}=E^{2}_{21}-3E_{22}>0\), then the equation
$$\begin{aligned} 3r^{2}_{1}+2E_{21}r_{1}+E_{22}=0 \end{aligned}$$
has two real roots, \(r^{\ast}_{11}=\frac{-E_{21}+\sqrt {\bigtriangleup_{1}}}{3}\) and \(r^{\ast}_{12}=\frac{-E_{21}-\sqrt {\bigtriangleup_{1}}}{3}\). Because \(h^{\prime\prime}_{1}(r^{\ast}_{11})=2\sqrt {\bigtriangleup_{1}}>0\) and \(h^{\prime\prime}_{1}(r^{\ast}_{12})=-2\sqrt {\bigtriangleup_{1}}<0\), equation (2.7) has at least one positive root if and only if \(r^{\ast}_{11}=\frac{-E_{21}+\sqrt {\bigtriangleup_{1}}}{3}>0\) and \(h_{1}(r^{\ast}_{11})\leq0\), where \(r^{\ast}_{11}\) and \(r^{\ast}_{12}\) are the local minimum and maximum of \(h_{1}(r_{1})\), respectively.
Without loss of generality, we assume that (2.7) has three positive roots, defined by \(r_{11}, r_{12}\), and \(r_{13}\), respectively. Then (2.6) has three positive roots \(\omega_{1k}=\sqrt{r_{1k}},k=1,2,3\). From (2.5) we get
$$\begin{aligned} \cos\omega_{1k}\tau_{1k}={}& \frac {[(B_{2}+D_{1})-B_{1}(A_{1}+C_{1})]\omega^{4}_{1k}}{[B_{1}\omega ^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \\ &{}-\frac{(A_{3}+C_{3})(B_{3}+D_{2})}{[B_{1}\omega ^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \\ &{}+\frac {[(A_{1}+C_{1})(B_{3}+D_{2})+B_{1}(A_{3}+C_{3})-(A_{2}+C_{2})(B_{2}+D_{1})]\omega ^{2}_{1k}}{[B_{1}\omega^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \end{aligned}$$
and
$$\begin{aligned} \tau^{(j)}_{1k}={}& \frac{1}{\omega_{1k}} \biggl\{ \arccos \biggl(\frac {[(B_{2}+D_{1})-B_{1}(A_{1}+C_{1})]\omega^{4}_{1k}}{[B_{1}\omega ^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \\ &{}-\frac{(A_{3}+C_{3})(B_{3}+D_{2})}{[B_{1}\omega ^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \\ &{}+\frac {[(A_{1}+C_{1})(B_{3}+D_{2})+B_{1}(A_{3}+C_{3})-(A_{2}+C_{2})(B_{2}+D_{1})]\omega ^{2}_{1k}}{[B_{1}\omega^{2}_{1k}-(B_{3}+D_{2})]^{2}+ (B_{2}+D_{1})^{2}\omega^{2}_{1k}} \biggr)+2j\pi \biggr\} , \end{aligned}$$
where \(k=1,2,3,j=0,1,2,\dots\).
Denote
$$\begin{aligned} \tau_{10}=\tau^{(0)}_{{1k}_{0}}=\mathop{\min} _{k\in\{1,2,3\}} \bigl\{ \tau^{(0)}_{1k} \bigr\} ,\qquad \omega_{10}=\omega_{{1k}_{0}}. \end{aligned}$$
Next, we verify the transversality condition. Let \(\lambda(\tau_{1})=\alpha_{1}(\tau_{1})+i\omega_{1}(\tau _{1})\) be the root of equation (2.4) near \(\tau_{1}=\tau ^{(j)}_{1k}\) satisfying
$$\begin{aligned} \alpha_{1} \bigl(\tau^{(j)}_{1k} \bigr)=0,\qquad \omega_{1} \bigl(\tau^{(j)}_{1k} \bigr)= \omega_{1k}. \end{aligned}$$
Substituting \(\lambda(\tau_{1})\) into (2.4) and taking the derivative with respect to \(\tau_{1}\), we have
$$\begin{aligned} \biggl[\frac{d\lambda}{d \tau_{1}} \biggr]^{-1}={}&\frac{[3\lambda ^{2}+2(A_{1}+C_{1})\lambda+(A_{2}+C_{2})]e^{\lambda\tau_{1}} }{\lambda[B_{1}\lambda^{2}+(B_{2}+D_{1})\lambda +(B_{3}+D_{2})]} \\ &{}+ \frac{2B_{1}\lambda+(B_{2}+D_{1})}{\lambda [B_{1}\lambda^{2}+(B_{2}+D_{1})\lambda+(B_{3}+D_{2})]}-\frac{\tau _{1}}{\lambda}. \end{aligned}$$
(2.9)
By (2.9) we have
$$\begin{aligned} & \biggl[\frac{\operatorname{Red}(\lambda(\tau_{1}))}{d\tau_{1}} \biggr]^{-1}_{\tau _{1}=\tau^{(j)}_{1k}} \\ &\quad =\operatorname{Re} \biggl[\frac{[3\lambda^{2}+2(A_{1}+C_{1})\lambda +(A_{2}+C_{2})]e^{\lambda\tau_{1}}}{\lambda[B_{1}\lambda ^{2}+(B_{2}+D_{1})\lambda+(B_{3}+D_{2})]} \biggr]_{\tau_{1}=\tau ^{(j)}_{1k}} \\ &\qquad{} +\operatorname{Re} \biggl[\frac{2B_{1}\lambda+(B_{2}+D_{1})}{\lambda[B_{1}\lambda ^{2}+(B_{2}+D_{1})\lambda+(B_{3}+D_{2})]} \biggr]_{\tau_{1}=\tau^{(j)}_{1k}} \\ & \quad=\frac{1}{\Lambda_{1}} \bigl\{ - \bigl[-3\omega^{2}_{2k}+(A_{2}+C_{2}) \bigr]\omega _{1k} \bigl[ \bigl[B_{1}\omega^{2}_{1k}-(B_{3}+D_{2}) \bigr]\sin \bigl(\omega_{1k}\tau ^{(j)}_{1k} \bigr) \\ &\qquad{} +(B_{2}+D_{1})\omega_{1k}\cos \bigl( \omega_{1k}\tau^{(j)}_{1k} \bigr) \bigr] \\ &\qquad{} -2(A_{1}+C_{1})\omega^{2}_{1k} \bigl[ \bigl[B_{1}\omega ^{2}_{1k}-(B_{3}+D_{2}) \bigr]\cos \bigl(\omega_{1k}\tau ^{(j)}_{1k} \bigr)-(B_{2}+D_{1})\omega_{1k}\sin \bigl( \omega_{1k}\tau ^{(j)}_{1k} \bigr) \bigr] \\ &\qquad{} -(B_{2}+D_{1})^{2}\omega^{2}_{1k}+2B_{1} \omega ^{2}_{1k} \bigl[(B_{3}+D_{2}) \omega_{1k}-B_{1}\omega^{3}_{1k} \bigr] \bigr\} \\ &\quad =\frac{1}{\Lambda_{1}} \bigl\{ 3\omega ^{6}_{1k}+2 \bigl[(A_{1}+C_{1})^{2}-2(A_{2}+C_{2})-B^{2}_{1} \bigr]\omega ^{4}_{1k} \\ & \qquad{}+ \bigl[(A_{2}+C_{2})^{2}-2(A_{1}+C_{1}) (A_{3}+C_{3})+2B_{1}(B_{3}+D_{2})-(B_{2}+D_{1})^{2} \bigr]\omega ^{2}_{1k} \bigr\} \\ &\quad =\frac{1}{\Lambda_{1}} \bigl\{ r_{1k} \bigl(3r^{2}_{1k}+2E_{31}r_{1k}+E_{32} \bigr) \bigr\} \\ &\quad =\frac{1}{\Lambda_{1}}r_{1k}h^{\prime\prime}_{1}(r_{1k}), \end{aligned}$$
where \(\Lambda_{1}=(B_{2}+D_{1})^{2}\omega ^{4}_{1k}+[(B_{3}+D_{2})\omega_{1k}-B_{1}\omega^{3}_{1k}]^{2}>0\). Notice that \(\Lambda_{1}>0, r_{1k}>0\),
$$\operatorname{sign} \biggl\{ \biggl[\frac{\operatorname{Red}(\lambda(\tau_{1}))}{d\tau_{1}} \biggr]{_{\tau_{1}=\tau^{(j)}_{1k}} \biggr\} =\operatorname{sign} \biggl\{ \biggl[\frac {\operatorname{Red}(\lambda(\tau_{1}))}{d\tau_{1}} \biggr]^{-1}_{\tau_{1}=\tau ^{(j)}_{1k}}} \biggr\} , $$
and thus \(\frac{d(\operatorname{Re}\lambda({\tau^{(j)}_{1k}}))}{d\tau_{1}}\) has the same sign as \(h'_{1}(r_{1k})\).
To investigate the root distribution of the transcendental equation (2.4), we introduce the result of Ruan and Wei [16].
Lemma 2.1
Consider the exponential polynomial
$$\begin{aligned} &P \bigl(\lambda,e^{-\lambda\tau_{1}},\ldots,e^{-\lambda\tau_{m}} \bigr)\\ &\quad = \lambda^{n}+p_{1}^{(0)} \lambda^{n-1}+ \cdots+p_{n-1}^{(0)}\lambda +p_{n}^{(0)}+ \bigl[p_{1}^{(1)} \lambda^{n-1}+ \cdots+p_{n-1}^{(1)}\lambda+p_{n}^{(1)} \bigr] e^{-\lambda\tau_{1}} \\ &\qquad{}+\cdots+ \bigl[p_{1}^{(m)}\lambda^{n-1}+ \cdots+p_{n-1}^{(m)} \lambda+p_{n}^{(m)} \bigr] e^{-\lambda\tau_{m}}, \end{aligned}$$
where
\(\tau_{i}\geq0\)
\((i=1,2,\ldots,m)\)
and
\(p_{j}^{(i)}\)
\((i=0,1,\ldots, m;j=1,2,\ldots,n)\)
are constants. As
\((\tau_{1},\tau _{2},\ldots,\tau_{m})\)
vary, the sum of the order of the zeros of
\(P(\lambda,e^{-\lambda\tau _{1}},\ldots,e^{-\lambda\tau_{m}})\)
on the open right half-plane can change only if a zero appears on or crosses the imaginary axis.
According to this analysis, we have the following results.
Theorem 2.2
For
\(\tau_{1}>0\)
and
\(\tau_{2}=0\), suppose that
\((H_{1})\)
and
\((H_{2})\)
hold. Then:
-
(i)
If
\(E_{23}\geq0\)
and
\(\bigtriangleup _{1}=E^{2}_{21}-3E_{22}\leq0\), then all roots of equation (2.4) have negative real parts for all
\(\tau_{1}\geq0\), and the positive equilibrium
\(E(S^{\ast},I^{\ast},Y^{\ast})\)
is locally asymptotically stable for all
\(\tau_{1}\geq0\).
-
(ii)
If either
\(E_{23}<0\)
or
\(E_{23}\geq0\), \(\bigtriangleup_{1}=E^{2}_{21}-3E_{22}>0\), \(r^{\ast}_{11}>0\), and
\(h_{1}(r^{\ast}_{11})\leq0\), then
\(h_{1}(r_{1})\)
has at least one positive root, and all roots of equation (2.4) have negative real parts for
\(\tau_{1}\in[0,\tau_{10})\), and the positive equilibrium
\(E(S^{\ast},I^{\ast},Y^{\ast})\)
is locally asymptotically stable for all
\(\tau_{1}\in[0,\tau_{10})\).
-
(iii)
If (ii) holds and
\(h^{\prime}_{1}(r_{1k})\neq0\), then system (1.3) undergoes Hopf bifurcations at the positive equilibrium
\(E(S^{\ast},I^{\ast},Y^{\ast })\)
for
\(\tau_{1}=\tau^{(j)}_{1k}\)
\((k=1,2,3;j=0,1,2,\dots)\).
When \(\tau_{1}=0\) and \(\tau_{2}>0\), the stability of the equilibrium \(E(S^{\ast},I^{\ast},Y^{\ast})\) and the existence of Hopf bifurcation can be obtained based on a similar discussion, which we omit in this paper.
Case \((3)\): \(\tau_{1}=\tau_{2}=\tau>0\).
When \(\tau_{1}=\tau_{2}=\tau>0\), the characteristic equation (2.2) becomes
$$ \lambda^{3}+A_{31}\lambda^{2}+A_{32} \lambda+A_{33}+ \bigl(B_{31}\lambda ^{2}+B_{32} \lambda+B_{33} \bigr)e^{-\lambda\tau}+(C_{31}\lambda +C_{32})e^{-2\lambda\tau}=0, $$
(2.10)
where
$$\begin{aligned} &A_{31}=A_{1},\qquad A_{32}=A_{2}, \qquad A_{33}=A_{3}, \\ &B_{31}=B_{1}+C_{1},\qquad B_{32}=B_{2}+C_{2}, \qquad B_{33}=B_{3}+C_{3}, \\ &C_{31}=D_{1},\qquad C_{32}=D_{2}. \end{aligned}$$
Both sides of equation (2.10) are multiple \(e^{\lambda\tau}\), and we obviously get
$$ \bigl(\lambda^{3}+A_{31}\lambda^{2}+A_{32} \lambda+A_{33} \bigr)e^{\lambda\tau }+ \bigl(B_{31} \lambda^{2}+B_{32}\lambda+B_{33} \bigr)+(C_{31}\lambda +C_{32})e^{-\lambda\tau}=0. $$
(2.11)
Let \(\lambda=i\omega_{3}\ (\omega_{3}>0)\) be the root of equation (2.11). Separating the real and imaginary parts, we obtain:
$$\begin{aligned} \textstyle\begin{cases} (\omega^{3}_{3}-(C_{31}+A_{32})\omega_{3})\cos\omega_{3}\tau +(A_{31}\omega^{2}_{3}-A_{33}+C_{32})\sin\omega_{3}\tau =B_{32}\omega_{3}, \\ (\omega^{3}_{3}+(C_{31}-A_{32})\omega_{3})\sin\omega_{3}\tau +(-A_{31}\omega^{2}_{3}+A_{33}+C_{32})\cos\omega_{3}\tau \\ \quad=B_{31}\omega^{2}_{3}-B_{33}, \end{cases}\displaystyle \end{aligned}$$
(2.12)
from which it follows that
$$\begin{aligned} \textstyle\begin{cases} \cos\omega_{3}\tau=\frac{l_{34}\omega^{4}_{3}+l_{32}\omega ^{2}_{3}+l_{30}}{\omega^{6}_{3}+k_{34}\omega^{4}_{3}+k_{32}\omega ^{2}_{3}+k_{30}}, \\ \sin\omega_{3}\tau=\frac{l_{35}\omega^{5}_{3}+l_{33}\omega ^{3}_{3}+l_{31}\omega_{3}}{\omega^{6}_{3}+k_{34}\omega ^{4}_{3}+k_{32}\omega^{2}_{3}+k_{30}}, \end{cases}\displaystyle \end{aligned}$$
(2.13)
where
$$\begin{aligned} &l_{30}=-A_{33}B_{33}+C_{32}B_{33}, \qquad l_{31}=A_{32}B_{33}+B_{33}C_{31}-A_{33}B_{32}-A_{32}B_{32}, \\ &l_{32}=-A_{32}B_{32}+A_{31}B_{33}+A_{33}B_{31}-B_{31}C_{32}+B_{32}C_{31}, \\ &l_{33}=A_{31}B_{32}-B_{31}C_{31}-A_{32}B_{31}-B_{33}, \qquad l_{34}=B_{32}-A_{31}B_{31}, \qquad l_{35}=B_{31}, \\ &k_{30}=A^{2}_{33}-C^{2}_{32}, \qquad k_{32}=-2A_{31}A_{33}+A^{2}_{32}-C^{2}_{31}, \qquad k_{34}=A^{2}_{31}-2A_{32}. \end{aligned}$$
Since \(\sin^{2}\omega_{3}\tau+\cos^{2}\omega_{3}\tau=1\), we have
$$ \omega^{12}_{3}+E_{31} \omega^{10}_{3}+E_{32}\omega ^{8}_{3}+E_{33} \omega^{6}_{3}+E_{34}\omega^{4}_{3}+E_{35} \omega ^{2}_{3}+E_{36}=0, $$
(2.14)
where
$$\begin{aligned} &E_{31}=2k_{34}-l^{2}_{35}, \qquad E_{32}=2k_{32}+k^{2}_{34}-2l_{33}l_{35}-l^{2}_{34}, \\ & E_{33}=2k_{30}+2k_{32}k_{34}-2l_{31}l_{35}-l^{2}_{33}-2l_{32}l_{34}, \\ & E_{34}=2k_{30}k_{34}+k^{2}_{32}-2l_{31}l_{33}-2l_{30}l_{34}-l^{2}_{32}, \\ & E_{35}=2k_{30}k_{32}-l^{2}_{31}-2l_{30}l_{32}, \qquad E_{36}=k^{2}_{30}-l^{2}_{30}. \end{aligned}$$
Letting \(r_{3}=\omega^{2}_{3}\), equation (2.14) is transformed into
$$ r^{6}_{3}+E_{31}r^{5}_{3}+E_{32}r^{4}_{3}+E_{33}r^{3}_{3}+E_{34}r^{2}_{3}+E_{35}r_{3}+E_{36}=0. $$
(2.15)
If all the parameters of system (1.3) are given, then it is easy to get the roots of equation (2.15) by using the Matlab software package. To give the main results in this paper, we make the following assumption.
-
\((H_{3})\)
:
-
equation (2.15) has at least one positive real root.
Suppose that condition \((H_{3})\) holds. Without loss of generality, we assume that (2.14) has six positive real roots, say \(r_{31}, r_{32}, \ldots, r_{36}\). Then (2.13) has six positive real roots
$$\begin{aligned} \omega_{31}=\sqrt{r_{31}},\qquad \omega_{32}= \sqrt{r_{2}}, \qquad\ldots,\qquad \omega_{3i}= \sqrt{r_{3i}}\quad (i=1,2,\ldots,6). \end{aligned}$$
Thus, if we denote
$$ \tau^{(j)}_{3k}=\frac{1}{\omega_{3k}} \biggl\{ \arccos \biggl(\frac {l_{34}\omega^{4}_{3k}+l_{32}\omega^{2}_{3k}+l_{30}}{\omega ^{6}_{3k}+k_{34}\omega^{4}_{3k}+k_{32}\omega^{2}_{3k}+k_{30}} \biggr)+2j\pi \biggr\} $$
(2.16)
for \(k=1,2,\ldots,6,j=0,1,2,\ldots \) , then \(\pm i\omega_{3k}\) is a pair of purely imaginary roots of (2.11) corresponding to \(\tau ^{(j)}_{3k}\). Define
$$\begin{aligned} \tau_{30}=\tau_{{3k}_{0}}=\mathop{\min} _{k\in\{1,2,\ldots,6\}} \bigl\{ \tau^{(0)}_{3k} \bigr\} ,\qquad \omega_{30}= \omega_{{3k}_{0}}. \end{aligned}$$
Let \(\lambda(\tau)=\alpha_{3}(\tau)+i\omega_{3}(\tau)\) be the root of equation (2.11) near \(\tau=\tau^{(j)}_{3k}\) satisfying
$$\begin{aligned} \alpha_{2} \bigl(\tau^{(j)}_{3k} \bigr)=0,\qquad \omega_{3} \bigl(\tau^{(j)}_{3k} \bigr)= \omega_{3k}. \end{aligned}$$
Substituting \(\lambda(\tau)\) into (2.11) and taking the derivative with respect to τ, we have
$$ \biggl[\frac{d\lambda}{d \tau} \biggr]^{-1}=- \frac{(3\lambda^{2}+2A_{31}\lambda +A_{32})e^{\lambda\tau}+2B_{31}\lambda+B_{32}+C_{31}e^{-\lambda\tau }}{\lambda[(\lambda^{3}+A_{31}\lambda^{2}+A_{32}\lambda +A_{33})e^{\lambda\tau}-(C_{31}\lambda+C_{32})e^{-\lambda\tau }]}- \frac{\tau}{\lambda}. $$
(2.17)
Letting \(\lambda=\pm i\omega_{3k}\) at the roots of equation (2.11) at \(\tau=\tau^{(j)}_{3k}\), we should compute \(\frac{d\operatorname{Re}(\lambda ((\tau^{(j)}_{3k}))}{d\tau}\). By calculation we get
$$\operatorname{Re} \biggl[\frac{d\lambda}{d\tau} \biggr]^{-1}_{\tau=\tau ^{(j)}_{3k}}= \frac{P_{33}+iP_{34}}{P_{31}+iP_{32}}-\frac{\tau }{\lambda}, $$
where
$$\begin{aligned} &P_{31}=\bigl(-\omega^{4}_{3k}+A_{32} \omega^{2}_{3k}-C_{31}\omega ^{2}_{3k} \bigr)\cos\bigl(\omega_{3k}\tau^{(j)}_{3k}\bigr)\\ &\phantom{P_{31}=}{}+ \bigl(-A_{31}\omega ^{3}_{3k}+A_{33} \omega_{3k}+C_{32}\omega_{3k}\bigr)\sin\bigl( \omega_{3k}\tau ^{(j)}_{3k}\bigr), \\ & P_{32}=\bigl(A_{31}\omega^{3}_{3k}-A_{33} \omega_{3k}+C_{32}\omega _{3k}\bigr)\cos\bigl( \omega_{3k}\tau^{(j)}_{3k}\bigr)\\ &\phantom{P_{32}=}+\bigl(-\omega ^{4}_{3k}+A_{32}\omega^{2}_{3k}+C_{31} \omega^{2}_{3k}\bigr)\sin\bigl(\omega _{3k} \tau^{(j)}_{3k}\bigr), \\ & P_{33}=\bigl(-3\omega^{2}_{3k}+A_{32}+C_{31} \bigr)\cos\bigl(\omega_{3k}\tau ^{(j)}_{3k} \bigr)-2A_{31}\omega_{3k}\sin\bigl(\omega_{3k} \tau ^{(j)}_{3k}\bigr)+B_{32}, \\ & P_{34}=2A_{31}\omega_{3k}\cos \bigl(\omega_{3k}\tau ^{(j)}_{3k}\bigr)+\bigl(-3 \omega^{2}_{3k}+A_{32}-C_{31}\bigr)\sin \bigl(\omega_{3k}\tau ^{(j)}_{3k} \bigr)+2B_{31}\omega_{3k}. \end{aligned}$$
So, we have
$$\operatorname{Re} \biggl[\frac{d\lambda}{d\tau} \biggr]^{-1}_{\tau=\tau ^{(j)}_{3k}}= \frac{P_{33}P_{31}+P_{34}P_{32}}{P^{2}_{31}+P^{2}_{32}}. $$
Obviously, if condition
-
\((H_{4})\)
:
-
\(P_{31}P_{33}+P_{32}P_{34}\neq0\)
holds, then \(\frac{d\operatorname{Re}\lambda(\tau)}{d\tau}|_{\lambda=i\omega _{3k}}=\operatorname{Re}[\frac{d\lambda(\tau)}{d\tau}]^{-1}_{\lambda=i\omega _{3k}}\neq0\). Thus, we have the following results.
Theorem 2.3
For system (1.3) with
\(\tau_{1}=\tau_{2}=\tau>0\), let
\((H_{1})\)–\((H_{4})\)
hold. The equilibrium point
\(E(S^{\ast },I^{\ast},Y^{\ast})\)
is asymptotically stable for
\(\tau\in[0,\tau ^{(j)}_{3k})\)
and unstable for
\(\tau>\tau^{(j)}_{3k}\); Hopf bifurcation occurs when
\(\tau=\tau^{(j)}_{3k}\).
Case \((4)\): \(\tau_{1}\in(0,\tau_{10})\), \(\tau_{2}>0\), \(\tau _{1}\neq\tau_{2}\).
We consider (2.2) with \(\tau_{1}\) in its stable interval \([0,\tau _{10})\) and \(\tau_{2}\) considered as a parameter. Let \(\lambda=i\omega^{\ast}_{2}(\omega^{\ast}_{2}>0)\) be a root of equation (2.2). Separating real and imaginary parts leads to
$$\begin{aligned} \textstyle\begin{cases} (C_{2}\omega^{\ast}_{2}+D_{1}\omega^{\ast}_{2}\cos(\omega^{\ast }_{2}\tau^{\ast}_{1})-D_{2}\sin(\omega^{\ast}_{2}\tau_{1}))\cos (\omega^{\ast}_{2}\tau_{2})\\ \qquad{}+(C_{1}{\omega^{*}_{2}}^{2}-C_{3}-D_{1}\omega^{\ast}_{2}\sin(\omega ^{\ast}_{2}\tau_{1})-D_{2}(\cos\omega^{\ast}_{2}\tau_{1}))\sin (\omega^{\ast}_{2}\tau_{2})\\ \quad ={\omega^{*}_{2}}^{3}-A_{2}\omega^{\ast}_{2}-B_{2}\omega^{\ast }_{2}\cos(\omega^{\ast}_{2}\tau_{1})-B_{1}{\omega^{*}_{2}}^{2}\sin (\omega^{\ast}_{2}\tau_{1})+B_{3}\sin(\omega^{\ast}_{2}\tau_{1}), \\ (C_{2}\omega^{\ast}_{2}+D_{1}\omega^{\ast}_{2}\cos(\omega^{\ast }_{2}\tau_{1})-D_{2}\sin(\omega^{\ast}_{2}\tau_{1}))\sin(\omega ^{\ast}_{2}\tau_{2})\\ \qquad{}-(C_{1}{\omega^{*}_{2}}^{2}-C_{3}-D_{1}\omega^{\ast}_{2}\sin(\omega ^{\ast}_{2}\tau_{1})-D_{2}(\cos\omega^{\ast}_{2}\tau_{1}))\cos (\omega^{\ast}_{2}\tau_{2})\\ \quad =A_{1}{\omega^{*}_{2}}^{2}-A_{3}-B_{2}\omega^{\ast}_{2}\sin(\omega ^{\ast}_{2}\tau_{1})+B_{1}{\omega^{*}_{2}}^{2}\cos(\omega^{\ast }_{2}\tau_{1})-B_{3}\cos(\omega^{\ast}_{2}\tau_{1}). \end{cases}\displaystyle \end{aligned}$$
(2.18)
From equation (2.18) we can obtain
$$ \cos \bigl(\omega^{\ast}_{2}\tau^{\ast}_{2} \bigr)=\frac{h_{41}{\omega ^{*}_{2}}^{4}+h_{42}{\omega^{*}_{2}}^{3}+h_{43}{\omega ^{*}_{2}}^{2}+h_{44}\omega^{*}_{2}+h_{45}}{f_{41}{\omega ^{*}_{2}}^{4}+f_{42}{\omega^{*}_{2}}^{3}+f_{43}{\omega ^{*}_{2}}^{2}+f_{44}\omega^{*}_{2}+f_{45}}, $$
(2.19)
where
$$\begin{aligned} h_{41}={}&C_{2}-C_{1}A_{1}-B_{1}C_{1} \cos \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)+D_{1}\cos \bigl(\omega^{\ast}_{2} \tau_{1} \bigr), \\ h_{42}={}&{-}B_{1}C_{2}\sin \bigl( \omega^{\ast}_{2}\tau_{1} \bigr)-D_{2}\sin \bigl(\omega^{\ast}_{2}\tau_{1} \bigr)+B_{2}C_{1} \sin \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)+A_{1}D_{1}\sin \bigl(\omega^{\ast}_{2} \tau_{1} \bigr), \\ h_{43}={}&{-}A_{2}C_{2}-B_{2}C_{2} \cos \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)-A_{2}D_{1}\cos \bigl(\omega^{\ast}_{2} \tau _{1} \bigr)-B_{2}D_{1}+B_{1}D_{2} \\ &{}+A_{3}C_{1}+B_{3}C_{1}\cos \bigl( \omega^{\ast}_{2}\tau _{1} \bigr)+A_{1}C_{3}+B_{1}C_{3} \cos \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)+A_{1}D_{2}\cos \bigl(\omega^{\ast}_{2} \tau_{1} \bigr), \\ h_{44}={}&B_{3}C_{2}\sin \bigl( \omega^{\ast}_{2} \tau_{1} \bigr)+A_{2}D_{2} \sin \bigl( \omega^{\ast}_{2}\tau_{1} \bigr)-B_{2}C_{3} \sin \bigl(\omega^{\ast}_{2} \tau _{1} \bigr)-A_{3}D_{1}\sin \bigl( \omega^{\ast}_{2} \tau_{1} \bigr), \\ h_{45}={}&{-}B_{3}D_{2}-A_{3}C_{3}-B_{3}C_{3} \bigl(\cos\omega^{\ast}_{2}\tau _{1} \bigr)-A_{3}D_{2}\cos \bigl(\omega^{\ast}_{2} \tau_{1} \bigr), \\ f_{41}={}&C^{2}_{1}, \\ f_{42}={}&{-}2C_{1}D_{1}\sin \bigl( \omega^{\ast}_{2}\tau_{1} \bigr), \\ f_{43}={}&C^{2}_{2}+2C_{2}D_{1} \cos \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)+D^{2}_{1}-2C_{1}C_{3}-2C_{1}C_{3} \cos \bigl(\omega^{\ast}_{2}\tau _{1} \bigr), \\ f_{44}={}&2C_{3}D_{1}\sin \bigl( \omega^{\ast}_{2}\tau_{1} \bigr)-2C_{2}D_{2} \sin \bigl(\omega^{\ast}_{2}\tau_{1} \bigr), \\ f_{45}={}&C^{2}_{3}+D^{2}_{2}+2C_{3}D_{2} \cos \bigl(\omega^{\ast}_{2}\tau_{1} \bigr). \end{aligned}$$
From equation (2.18) we obtain:
$$ {\omega^{\ast}_{2}}^{6}+E_{41}{ \omega^{\ast}_{2}}^{4}+E_{42}{\omega ^{\ast}_{2}}^{2}+E_{43}+E_{44} \sin \bigl(\omega^{\ast}_{2}\tau _{1} \bigr)+E_{45}\cos \bigl(\omega^{\ast}_{2} \tau_{1} \bigr)=0, $$
(2.20)
where
$$\begin{aligned} & E_{41}=B^{2}_{1}-2A_{2}-C^{2}_{1}+A^{2}_{1}, \\ &E_{42}=A^{2}_{2}+2C_{1}C_{3}-2A_{1}A_{3}+B^{2}_{2}-2B_{1}B_{2}-C^{2}_{2}-D^{2}_{1}, \\ &E_{43}=B^{2}_{3}-D^{2}_{2}-C^{2}_{3}+A^{2}_{3}, \\ &E_{44}=-2B_{1}{\omega^{\ast }_{2}}^{5}+2(B_{3}-A_{1}B_{2}+A_{2}B_{1}+C_{1}D_{1}){ \omega^{\ast }_{2}}^{3}+2(C_{2}D_{2}+A_{3}B_{2}-C_{3}D_{1}-A_{2}B_{3}) \omega^{\ast }_{2}, \\ &E_{45}=2(A_{1}B_{1}-B_{2}){ \omega^{\ast }_{2}}^{4}+2(A_{2}B_{2}-A_{3}B_{1}-C_{2}D_{1}+C_{1}D_{2}-A_{1}B_{3}){ \omega ^{\ast}_{2}}^{2}\\ &\phantom{E_{45}=}{}+2(A_{3}B_{3}-C_{3}D_{2}). \end{aligned}$$
Denote \(F_{1}(\omega^{\ast}_{2})={\omega^{\ast }_{2}}^{6}+E_{41}{\omega^{\ast}_{2}}^{4}+E_{42}{\omega^{\ast }_{2}}^{2}+E_{43}+E_{44}\sin(\omega^{\ast}_{2}\tau_{1})+E_{45}\cos (\omega^{\ast}_{2}\tau_{1})\). If \(E_{43}=B^{2}_{3}-D^{2}_{2}-C^{2}_{3}+A^{2}_{3}<0\), then
$$F_{1}(0)< 0, \qquad \lim_{\omega^{\ast}_{2}\longrightarrow+\infty }F_{1} \bigl(\omega^{\ast}_{2} \bigr)=+\infty. $$
We can see that (2.20) has at most six positive roots \(\omega^{\ast }_{21}, \omega^{\ast}_{22}, \ldots, \omega^{\ast}_{26}\). For every fixed \(\omega^{\ast}_{2k}\)
\((k=1,2,\ldots,6)\), for (2.19), the critical value
$$\begin{aligned} &{\tau^{\ast}_{2k}}^{(j)}=\frac{1}{\omega^{*}_{2k}} \biggl\{ \arccos \biggl(\frac{h_{41}{\omega^{*}_{2k}}^{4}+h_{42}{\omega ^{*}_{2k}}^{3}+h_{43}{\omega^{*}_{2k}}^{2}+h_{44}\omega ^{*}_{2k}+h_{45}}{f_{41}{\omega^{*}_{2k}}^{4}+f_{42}{\omega ^{*}_{2k}}^{3}+f_{43}{\omega^{*}_{2k}}^{2}+f_{44}\omega ^{*}_{2k}+f_{45}} \biggr)+2j\pi \biggr\} \\ &\quad (k=1,2, \ldots,6;j=0,1,2, \ldots). \end{aligned}$$
(2.21)
There exists a sequence \(\{{\tau^{\ast}_{2k}}^{(j)}|j=0,1,2,\ldots\} \) such that (2.18) holds.
Let
$$ \tau^{*}_{20}={\tau^{*}_{{2k}_{0}}}^{(0)}= \mathop{\min} _{k\in\{ 1,2,\ldots,6\}} \bigl\{ {\tau^{*}_{2k}}^{(0)} \bigr\} , \qquad \omega^{*}_{20}=\omega ^{*}_{{2k}_{0}}. $$
(2.22)
Substituting \(\tau_{2}\) into (2.2) and taking the derivative with respect to \(\tau_{2}\), we have
$$ \biggl[\frac{d\lambda}{d \tau_{2}} \biggr]^{-1}=\frac{1}{\lambda} \frac {Q_{11}+Q_{12}e^{-\lambda\tau_{1}}+Q_{13}e^{-\lambda\tau _{2}}+Q_{14}e^{-\lambda(\tau_{1}+\tau_{2})}}{Q_{15}e^{-\lambda(\tau _{1}+\tau_{2})}+Q_{16}e^{-\lambda\tau_{2}}}, $$
(2.23)
where
$$\begin{aligned} & Q_{11}=3\lambda^{2}+2A_{1} \lambda+A_{2},\qquad Q_{12}=-B_{1}\tau _{1} \lambda^{2}+(2B_{1}-\tau_{1}B_{2}) \lambda+B_{2}-\tau _{1}B_{3}, \\ & Q_{13}=2C_{1}\lambda+C_{2},\qquad Q_{14}=-\tau_{1}D_{1}\lambda +(D_{1}- \tau_{1}D_{2}), \\ & Q_{15}=D_{1}\lambda+D_{2}, \qquad Q_{16}=C_{1}\lambda^{2}+C_{2}\lambda +C_{3}. \end{aligned}$$
By (2.23) we have
$$\operatorname{Re} \biggl[\frac{d\lambda({\tau^{\ast}_{2k}}^{(j)})}{d\tau _{2}} \biggr]^{-1}_{\lambda=i\omega^{\ast}_{2k}}= \frac {Q_{31}Q_{33}+Q_{32}Q_{34}}{Q^{2}_{31}+Q^{2}_{32}}, $$
where
$$\begin{aligned} Q_{31}={}&D_{2} \omega^{\ast}_{2k}\sin \bigl(\omega^{\ast}_{2k} \bigl(\tau _{1}+{\tau^{\ast}_{2k}}^{(j)} \bigr) \bigr)-D_{1}{\omega^{\ast}_{2k}}^{2} \cos \bigl(\omega^{\ast}_{2k} \bigl(\tau_{1}+{ \tau^{\ast}_{2k}}^{(j)} \bigr) \bigr) \\ &{}-C_{1}{\omega^{\ast}_{2k}}^{3}\sin \bigl( \omega^{\ast}_{2k}\tau^{\ast }_{2k} \bigr)+C_{3}\omega^{\ast}_{2k}\sin \bigl( \omega^{\ast}_{2k}{\tau^{\ast }_{2k}}^{(j)} \bigr)-C_{2}{\omega^{\ast}_{2k}}^{2}\cos \bigl(\omega^{\ast }_{2k}{\tau^{\ast}_{2k}}^{(j)} \bigr), \\ Q_{32}={}&D_{2}\omega^{\ast}_{2k}\cos \bigl( \omega^{\ast}_{2k} \bigl(\tau _{1}+{ \tau^{\ast}_{2k}}^{(j)} \bigr) \bigr)+D_{1}{ \omega^{\ast}_{2k}}^{2}\sin \bigl( \omega^{\ast}_{2k} \bigl(\tau_{1}+{ \tau^{\ast}_{2k}}^{(j)} \bigr) \bigr) \\ &{}-C_{1}{\omega^{\ast}_{2k}}^{3}\cos \bigl( \omega^{\ast}_{2k}{\tau^{\ast }_{2k}}^{(j)} \bigr)+C_{3}\omega^{\ast}_{2k}\cos \bigl( \omega^{\ast}_{2k}{\tau ^{\ast}_{2k}}^{(j)} \bigr)+C_{2}{\omega^{\ast}_{2k}}^{2}\sin \bigl(\omega ^{\ast}_{2k}{\tau^{\ast}_{2k}}^{(j)} \bigr), \\ Q_{33}={}&{-}3{\omega^{\ast}_{2k}}^{2}+A_{2}+2B_{1} \omega^{\ast }_{2k}\sin \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr)-\tau_{1}B_{2} \omega^{\ast }_{2k} \sin \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr) \\ &{}+B_{2}\cos \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr)+\tau_{1}B_{1}{\omega ^{\ast}_{2k}}^{2}\cos \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr)-\tau _{1}B_{3}\cos \bigl( \omega^{\ast}_{2k}\tau_{1} \bigr) \\ &{}+2C_{1}\omega^{\ast}_{2k}\sin \bigl( \omega^{\ast}_{2k}{\tau^{\ast }_{2k}}^{(j)} \bigr)+C_{2}\cos \bigl(\omega^{\ast}_{2k}{ \tau^{\ast }_{2k}}^{(j)} \bigr)-\tau_{1}D_{1} \omega^{\ast}_{2k}\sin \bigl(\omega^{\ast }_{2k} \bigl(\tau_{1}+{\tau^{\ast}_{2k}}^{(j)} \bigr) \bigr) \\ &{}+D_{1}\cos \bigl(\omega^{\ast}_{2k} \bigl( \tau_{1}+{\tau^{\ast }_{2k}}^{(j)} \bigr) \bigr)-\tau_{1}D_{2}\cos \bigl(\omega^{\ast}_{2k} \bigl(\tau _{1}+{\tau^{\ast}_{2k}}^{(j)} \bigr) \bigr), \\ Q_{34}={}&2A_{1}\omega^{\ast}_{2k}+2B_{1} \omega^{\ast}_{2k}\cos \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr)-\tau_{1}B_{2} \omega^{\ast}_{2k} \cos \bigl(\omega^{\ast}_{2k} \tau_{1} \bigr)-B_{2}\sin \bigl(\omega^{\ast}_{2k} \tau _{1} \bigr) \\ &{}-\tau_{1}B_{1}{\omega^{\ast}_{2k}}^{2} \sin \bigl(\omega^{\ast }_{2k}\tau_{1} \bigr)+ \tau_{1}B_{3}\sin \bigl(\omega^{\ast}_{2k} \tau _{1} \bigr)+2C_{1}\omega^{\ast}_{2k} \cos \bigl(\omega^{\ast}_{2k}\tau^{\ast }_{2k} \bigr) \\ &{}-C_{2}\sin \bigl(\omega^{\ast}_{2k}{ \tau^{\ast}_{2k}}^{(j)} \bigr)-\tau _{1}D_{1} \omega^{\ast}_{2k}\cos \bigl( \omega^{\ast}_{2k} \bigl(\tau_{1}+{\tau ^{\ast}_{2k}}^{(j)} \bigr) \bigr) \\ &{}-D_{1}\sin \bigl(\omega^{\ast}_{2k} \bigl( \tau_{1}+{\tau^{\ast }_{2k}}^{(j)} \bigr) \bigr)+\tau_{1}D_{2}\sin \bigl(\omega^{\ast}_{2k} \bigl(\tau _{1}+{\tau^{\ast}_{2k}}^{(j)} \bigr) \bigr). \end{aligned} $$
We suppose that
-
\((H_{5})\)
:
-
\(Q_{31}Q_{33}+Q_{32}Q_{34}\neq0\).
Then \(\operatorname{Re}(\frac{d\lambda}{d\tau_{2}})_{\lambda=i\omega ^{\ast}_{2k}}\neq0\), and we have the following result on the stability and Hopf bifurcation in system (1.3).
Theorem 2.4
For system (1.3) with
\(\tau_{1}\in[0,\tau_{10})\), suppose that
\((H_{1})\), \((H_{2})\), and
\((H_{5})\)
hold. If
\(E_{43}=B^{2}_{3}-D^{2}_{2}-C^{2}_{3}+A^{2}_{3}<0\), then the positive equilibrium point
\(E(S^{\ast},I^{\ast},Y^{\ast})\)
is locally asymptotically stable for
\(\tau_{2}\in[0,\tau^{\ast}_{20})\)
and unstable for
\(\tau_{2}>\tau^{\ast}_{20}\). Hopf bifurcation occurs when
\(\tau_{2}=\tau{^{\ast}_{2k}}^{(j)}\)
\((k=1,2,\ldots ,6;j=0,1,2,\ldots)\).
When \(\tau_{1}>0, \tau_{2}\in(0,\tau_{20}), \tau_{1}\neq\tau _{2}\), the stability of the equilibrium \(E(S^{\ast},I^{\ast},Y^{\ast })\) and the existence of Hopf bifurcation can be obtained based on a similar discussion, which we omit in this paper.