- Research
- Open Access
- Published:
Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation
Advances in Difference Equations volume 2018, Article number: 318 (2018)
Abstract
In this paper, we propose a cubic non-polynomial spline method to solve the time-fractional nonlinear Schrödinger equation. The method is based on applying the \(L_{1}\) formula to approximate the Caputo fractional derivative and employing the cubic non-polynomial spline functions to approximate the spatial derivative. By considering suitable relevant parameters, the scheme of order \(O(\tau^{2-\alpha }+h^{4})\) has been obtained. The unconditional stability of the method is analyzed by the Fourier analysis. Numerical experiments are given to illustrate the effectiveness and accuracy of the proposed method.
1 Introduction
In this paper, we consider the following time-fractional nonlinear Schrödinger equation:
subject to the initial condition
and boundary conditions
where \(0< \alpha< 1\) and \(\lambda\geq0\) is a constant. \(\frac {\partial^{\alpha}u(x,t)}{\partial t^{\alpha}}\) denotes the Caputo fractional derivative of the function \(u(x,t)\) defined by
In recent years, fractional differential equations have attracted extensive attention in many branches of science and engineering [1–5]. Particularly, there has been explosive research about studying quantum phenomena by fractional calculus. The time-fractional Schrödinger equation is a fundamental equation of fractional quantum mechanics which can be obtained from the classical Schrödinger equation by replacing the time derivative by a Caputo fractional derivative [6]. Although analytic solutions of fractional Schrödinger equations can be found in terms of special functions [7–9], it is difficult to obtain these functions most of the time. In general cases, numerical methods have become important for the approximate solutions of time-fractional Schrödinger equations. Wei et al. [10] presented an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for the time-fractional Schrödinger equation. Mohebbi et al. [11] proposed a meshless technique based on collocation and radial basis functions. In [12], a shifted Legendre collocation method was developed for solving multi-dimensional fractional Schrödinger equations subject to initial-boundary and nonlocal conditions. Garrappa et al. [13] analyzed some approaches based on the Krylov projection methods to approximate the Mittag–Leffler function which expressed the solution of the time-fractional Schrödinger equation. In [14], the stability analysis was presented for a first order difference scheme applied to a nonhomogeneous time-fractional Schrödinger equation. Bhrawy et al. [15]used Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Shivanian et al. [16] applied a kind of spectral meshless radial point interpolation technique to the time-fractional nonlinear Schrödinger equation in regular and irregular domains.
The possibility of using spline functions for smooth approximate solution of differential systems was given by Ahlberg et al. [17]. Since then, the spline method has been applied to solve the boundary value problems [18–21] and some partial differential equations [22–26]. Recently, the spline method has been extended to solve the fractional partial differential equations. In [27], Talaat et al. presented a general framework of the cubic parametric spline functions to develop a numerical method for the time-fractional Burgers’ equation. In [28], Mohammad et al. used both polynomial and non-polynomial spline functions for approximating the solution of the fractional subdiffusion equation. In [29], Ding et al. proposed two classes of difference schemes for solving the fractional reaction-subdiffusion equations based on a mixed spline function. In [30], Li et al. developed a numerical scheme for the fractional subdiffusion equation using parametric quintic spline. In [31], Yaseen et al. adopted a cubic trigonometric B-spline collocation approach for the numerical solution of fractional subdiffusion equation. In [32–35], the spline method was employed for the numerical solution of time-fractional fourth order partial differential equation. In this paper, we apply the spline method based on a cubic non-polynomial spline function to the time-fractional nonlinear Schrödinger equation.
The remainder of this paper is organized as follows. In Sect. 2, we give a description of the cubic non-polynomial function. In Sect. 3, the method depends on the use of the cubic non-polynomial spline is derived. In Sect. 4, stability analysis of the scheme is performed. An illustrative example is carried out to justify the theoretical results in Sect. 5. Finally, the conclusion is included in the last section.
2 Cubic non-polynomial spline function
In order to construct a numerical method to simulate the solution of (1), we let \(x_{j}=jh\), \(j=0,1,\ldots,M\), and \(t_{n}=n\tau\), \(n=0,1,\ldots,N\), where \(h=\frac{b-a}{M}\) and \(\tau=\frac{T}{N}\) are the uniform spatial and temporal step sizes, respectively, and M, N are two positive integers. Let \(P_{j}^{n}\) be an approximation to \(u_{j}^{n}=u(x_{j},t_{n})\), obtained by the segment \(P_{\Delta j}(x,t_{n})\) of the parametric cubic spline functions \(P_{\Delta }(x,t_{n})\) passing through the points \((x_{j},P_{j}^{n})\) and \((x_{j+1},P_{j+1}^{n})\). \(P_{\Delta}(x,t_{n},\theta)=P_{\Delta }(x,t_{n})\) is a parametric cubic spline function, depending on a parameter \(\theta> 0\), satisfying the differential equation
which satisfies the following interpolation conditions:
The spline derivative approximations to the function derivatives \(u''(x_{j},t_{n})\) are given by
Basing on Eq. (4) and the above interpolatory conditions (5), we have
where \(\omega=h\sqrt{\theta}\).
Differentiating the above Eq. (7) yields the following expression:
Considering the interval \([x_{j-1},x_{j}]\) and proceeding similarly, we have
Using the continuity condition of the first derivative of the spline function \(P_{\Delta}(x,t_{n})\) at \((x_{j},t_{n})\), we get the following consistency relation:
where \(\gamma=\frac{h^{2}}{\omega^{2}} [1-\frac{\omega}{\sinh (\omega)} ]\), \(\beta=\frac{2h^{2}}{\omega^{2}} [\frac{\omega \cosh(\omega)}{\sinh(\omega)}-1 ]\).
3 Derivation of numerical method
In this section, we develop a numerical scheme for solving (1)–(3) using cubic non-polynomial spline. The time Caputo derivative is replaced by the \(L_{1}\) -approximation and the approximation order can be given in the following lemma.
Lemma 1
([36])
Suppose \(0< \alpha< 1\) and \(g(t)\in C^{2}[0,t_{k}]\), it holds that
where \(b_{m}=(m+1)^{1-\alpha}-m^{1-\alpha}\), \(m\geq0\).
Lemma 2
([37])
Let \(0<\alpha<1\) and \(b_{m}=(m+1)^{1-\alpha}-m^{1-\alpha}\), \(m=0,1,\ldots\) , then
Based on Lemma 1, we can approximate the Caputo fractional derivative as follows:
where \(\mu=\frac{\tau^{-\alpha}}{\Gamma(2-\alpha)}\).
The second order space derivative can be replaced by a non-polynomial spline function at \((x_{j},t_{n})\) as follows:
where \(S_{j}^{n}=S(x_{j},t_{n})\).
At the grid point \((x_{j},t_{n})\), from Eqs. (1), (12), and (13), one can write \(S_{j}^{n}\) in the form
Replacing j with \(j-1\) and \(j+1\) in Eq. (14) respectively yields
and
Substituting Eqs. (14)–(16) into Eq. (10), we have
where \(T_{j}^{n}=\gamma R^{n}_{j+1}+\beta R^{n}_{j}+\gamma R^{n}_{j-1}\).
Omitting the small term \(T_{j}^{n}\) and replacing the function \(u_{j}^{n}\) with its numerical approximation \(U_{j}^{n}\) in Eq. (17), we can get the following difference scheme for Eq. (1):
System (18) contains \(N-1\) equations with \(N+1\) unknowns. To get a solution to this system, we need two additional equations. These equations are obtained from the initial and boundary conditions which can be written as
For the convenience of implementation, scheme (18) can be rewritten as the following system:
and
where
and
Remark 1
To cope with the nonlinear terms in system (20)–(21), the following steps are taken:
-
1.
At \(n=1\), we approximate \(\delta_{j}^{1}\) by \(U_{j}^{0}\) and then system (20) becomes a linear equation. We can solve the linear equation to obtain a first approximation \(\widehat{U}_{j}^{1}\) to \(U_{j}^{1}\). We iterate using (20) for some iterations with \(\delta_{j}^{1}\) approximated by \(\widehat{U}_{j}^{1}\) to refine the approximation to \(U_{j}^{1}\). The process is repeated until the result satisfies the error precision requirement.
-
2.
At \(n=k\), we approximate \(\delta_{j}^{k}\) by \(U_{j}^{k-1}\) and then system (21) becomes a linear equation. We can solve the linear equation to obtain a first approximation \(\widehat{U}_{j}^{k}\) to \(U_{j}^{k}\). We iterate using (21) for some iterations with \(\delta_{j}^{k}\) approximated by \(\widehat{U}_{j}^{k}\) to refine the approximation to \(U_{j}^{k}\). The process is repeated until the result satisfies the error precision requirement.
Theorem 1
Suppose that \(T_{j}^{n}\) is the local truncation error of the jth formula in the numerical scheme(18), it holds that
Proof
From (21), we obtain the local truncation error
Expanding (22) in a Taylor series in terms of \(u(x_{j},t_{n})\) and its derivatives, we obtain
Then, after some simple calculations, we have
By choosing suitable values of parameters γ and β, we obtain the following various methods for Eq. (1):
-
(i)
If we choose \(2\gamma+\beta=h^{2}\), we obtain a scheme of order \(O(\tau^{2-\alpha}+h^{2})\).
-
(ii)
If we choose \(2\gamma+\beta=h^{2}\) and \(\gamma=\frac {h^{2}}{12}\), we obtain a scheme of order \(O(\tau^{2-\alpha}+h^{4})\). □
4 Stability analysis
In this section, we analyze the stability of scheme (18) by means of Fourier analysis. Basing on the Fourier method which can only be applied to a linear problem, we must linearize the nonlinear term \(\lambda|u^{2}|u\) of (1) by making the quantity \(\lambda|u^{2}|\) as a local constant d.
Let \(\widetilde{U}_{j}^{n}\) be the approximate solution of (18) and define
With the above definition (24) and regarding (20) and (21), we can easily get the following roundoff error equations:
and
We define the grid function as follows:
where \(\rho^{k}(x)\) can be expanded in a Fourier series
in which \(L=b-a\) and
We define the following discrete \(L_{2}\) norm:
where \(\rho^{k}=[\rho^{k}_{1},\rho^{k}_{2},\ldots,\rho^{k}_{M-1}]^{T}\).
Based on the Parseval equality
we have
According to the above analysis, we suppose that the solution of Eqs. (25) and (26) has the following form:
where \(\sigma=\frac{2\pi l}{L}\) is a real spatial wave number.
Substituting (29) into (25), we have
where
After simple calculations, (30) leads to
Using Euler’s formula, (31) can be rewritten in the form
or
(33) can be rewritten in the form
where
Substituting (29) into (26) results in
where
(35) can be simplified as
For \(n=2\), we have
Because \(|\frac{\xi i}{\mu+\xi i} |>0\), \((1-b_{2,0})>0\), and \(b_{2,0}>0\), we obtain
For \(n=3\), we have
Because\(|\frac{\xi i}{\mu+\xi i} |>0\), \((1-b_{3,1})>0\), \((b_{3,1}-b_{3,0})>0\), and \(b_{3,0}>0\), we obtain
By a similar argument, it is then obtained that \(|\varsigma_{j}|\leq |\varsigma_{0}|\) for \(n=4,5,\ldots\) . Hence, the linearized method is unconditionally stable.
5 Numerical experiments
In this section, some numerical calculations are carried out to test our theoretical results. To illustrate the accuracy of the method and to compare the method with another method in the literature, we compute the maximum norm errors denoted by
Furthermore, the temporal convergence order is denoted by
for sufficiently small h, and the spatial convergence order is denoted by
for sufficiently small τ.
Example 1
Consider the following time-fractional Schrödinger equation:
with the initial condition
and boundary conditions
where
The exact solution of (37) is given by
Firstly, the temporal errors and convergence orders are given in Table 1. We take the sufficiently small spatial step \(h=\frac{1}{1000}\) and let \(\alpha=0.2,0.4,0.6\), and 0.8, respectively. It is observed that the scheme generates temporal convergence order, which is consistent with our theoretical analysis. Secondly, the spatial errors and convergence orders are tabulated in Table 2. We take the sufficiently small temporal step \(\tau=\frac{1}{5000}\) and let \(\alpha=0.2,0.4,0.6\), and 0.8, respectively. The results illustrate that our scheme has accuracy of \(O(h^{4})\) in spatial direction. That is in good agreement with our theoretical analysis. Figure 1 presents the graphs of exact and numerical solutions with \(h=\frac{1}{48}\), \(\tau=\frac{1}{500}\), and \(\alpha=0.3\).
The comparisons of our numerical solutions and the results of the method developed in [11] for \(\alpha=0.1\) and 0.3 are shown in Tables 3 and 4. We take step size \(\tau=\frac{1}{512}\) and \(h=\frac{1}{4},\frac{1}{9},\frac{1}{14},\frac{1}{19},\frac{1}{24}\), and \(\frac{1}{29}\). It can be seen that the results of this paper are better than the results of [11].
6 Conclusion
In this paper, we have studied a numerical method based on cubic non-polynomial spline for the solution of a time-fractional nonlinear Schrödinger equation. By using the Fourier analysis, the scheme is shown to be unconditionally stable. The truncation errors of our scheme can be reached to \(O(\tau^{2-\alpha}+h^{4})\). Numerical results coincide with the theoretical analysis.
References
Podlubny, I.: The Method of Order Reduction and Its Application to the Numerical Solution of Partial Differential Equations. Academic Press, New York (1999)
Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. 33, 253–265 (1971)
Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)
Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 370, 114–118 (2006)
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)
Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)
Iomin, A.: Fractional-time Schrödinger equation: fractional dynamics on a comb. Chaos Solitons Fractals 44, 348–352 (2011)
AI-Saqabi, B., Boyadjiev, L., Luchko, Y.: Comments on employing the Riesz–Feller derivative in the Schrödinger equation. Eur. Phys. J. Spec. Top. 222, 1779–1794 (2013)
Wanga, J., Yong, Z., Wei, W.: Fractional Schrödinger equation with potential and optimal controls. Nonlinear Anal., Real World Appl. 13, 2755–2766 (2012)
Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)
Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37, 475–485 (2013)
Bhrawy, A., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)
Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)
Hicdurmaz, B., Ashyralyev, A.: A stable numerical method for multidimensional time fractional Schrödinger equations. Comput. Math. Appl. 72, 1703–1713 (2016)
Bhrawy, A.H., Abdelkawy, M.A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84, 1553–1567 (2016)
Shivanian, E., Jafarabadi, A.: Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains. Numer. Methods Partial Differ. Equ. 33, 1043–1069 (2017)
Ahlberg, J.M., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications. Academic Press, New York (1967)
Siraj-ul-Islam, Noor, M.A., Tirmizi, I.A., Khan, M.A.: Quadratic non-polynomial spline approach to the solution of a system of second-order boundary-value problems. Appl. Math. Comput. 179, 153–160 (2006)
Srivastava, P.K., Kumar, M., Mohapatra, R.N.: Numerical simulation with high order accuracy for the time fractional reaction subdiffusion equation. Comput. Math. Appl. 62, 1707–1714 (2011)
Khan, A., Sultana, T.: Non-polynomial quintic spline solution for the system of third order boundary-value problems. Numer. Algorithms 59, 541–559 (2012)
Jalilian, J.R.R.: Non-polynomial spline for solution of boundary-value problems in plate deflection theory. Int. J. Comput. Math. 84, 1483–1494 (2007)
El-Danaf, T.S., Ramadan, M.A., Alaal, F.E.I.A.: Numerical studies of the cubic non-linear Schrödinger equation. Nonlinear Dyn. 67, 619–627 (2012)
Chegini, N.G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines. Nonlinear Dyn. 69, 459–471 (2011)
Aghamohamadi, M., Rashidinia, J., Ezzati, R.: Tension spline method for solution of non-linear Fisher equation. Appl. Math. Comput. 49, 399–407 (2014)
Zadvan, H., Rashidinia, J.: Non-polynomial spline method for the solution of two-dimensional linear wave equations with a nonlinear source term. Numer. Algorithms 74, 1–18 (2016)
Lin, B.: Septic spline function method for nonlinear Schrödinger equations. Appl. Anal. 94, 279–293 (2015)
El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers’ equation. Appl. Math. Model. 36, 4557–4564 (2012)
Hosseine, S.M., Ghaffari, R.: Polynomial and nonpolynomial spline methods for fractional sub-diffusion equations. Appl. Math. Model. 38, 3554–3566 (2014)
Ding, H.F., Li, C.P.: Mixed spline function method for reaction-subdiffusion equations. J. Comput. Phys. 242, 103–123 (2013)
Li, X.H., Wong, P.J.Y.: A higher order non-polynomial spline method for fractional sub-diffusion problems. J. Comput. Phys. 328, 46–65 (2017)
Yaseen, M., Abbas, M., Ismail, A., Nazir, T.: A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations. Appl. Math. Comput. 293, 311–319 (2017)
Areshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Partial Differ. Equ. 33, 1565–1581 (2017)
Tariq, H., Akram, G.: Quintic spline technique for time fractional fourth-order partial differential equation. J. Comput. Nonlinear Dyn. 33, 445–466 (2017)
Siddiqi, S.S., Arshed, S.: Numerical solution of time-fractional fourth-order partial differential equations. Int. J. Comput. Math. 92, 1496–1518 (2015)
Li, X.X.: Operational method for solving fractional differential equations using cubic B-spline approximation. Int. J. Comput. Math. 91, 2584–2602 (2014)
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, M., Ding, X. & Xu, Q. Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation. Adv Differ Equ 2018, 318 (2018). https://doi.org/10.1186/s13662-018-1743-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1743-3
Keywords
- Fractional Schrödinger equation
- Non-polynomial spline
- Stability
- Fourier analysis