Skip to main content

Theory and Modern Applications

Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods

Abstract

We have employed a modified form of the F-expansion technique on four nonlinear waves models and obtained numerous exact and soliton wave solutions in a different form. New constructed solutions showed the significance of these models. The constructed results have plenty applications in nonlinear research.

1 Introduction

The exact solutions to NLEEs lead to basic knowledge of the structure of physical phenomena. Therefore researchers have been interested in studying and seeking the derived exact solutions and made a great effort in it due to the great importance in nonlinear science. It is a fact that there is no unique method which is fruitful to solve all kinds of nonlinear wave problems. Exact traveling wave solutions to nonlinear systems of PDEs are essential for analyzing natural phenomena in wide areas of the physical sciences [115].

The exploitation of a symbolic computation package will make it realistic to propose a number of direct analytical methods. The research of traveling wave solutions of some nonlinear evolution equations derived from such fields played an important role in the analysis of some phenomena such as the exp\((-\varphi(\xi)\) method, Bernoulli’s sub-ODE method, the homogeneous balance method, the modified simple equation method, the modified extended direct algebraic method, the modified extended mapping method, the Kudryashov method, the extended sinh–cosh and sin–cos methods, the Lie symmetry method, the soliton ansatz method and many more methods [1540].

Previous authors in [24] applied a new auxiliary technique on the complex fractional Kundu–Eckhaus equation and in [23] applied six methods on the van der Waals normal form for fluidized granular matter wave equations. Further the authors in [26] derived results on a Benney-like equation with the help of a modified simple equation method. Similarly, in [28] one employed an auxiliary equation method for the \((3 + 1)\)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. But here our decision is to investigate a novel soliton of models in Eq. (1), Eq. (23), Eq. (58) and Eq. (100) by employing the modified F-expansion method. Our obtained solutions are more powerful than those in the previous existing literature. These solutions have potential applications to handle nonlinear problems in mathematics and physics.

This article is organized as follows: Applications of the modified F-expansion method are described in Sect. 2, Discussion of our results with other results is in Sect. 3. Our conclusion is in Sect. 4.

2 Applications

2.1 The nonlinear integer order Kundu–Eckhaus equation

Consider the general form of the complex fractional Kundu–Eckhaus equation [24],

$$ i\frac{\partial^{\alpha}v}{\partial t^{\alpha}}+v_{xx}-2\beta \vert v \vert ^{2}v+\gamma^{2} \vert v \vert ^{4}v+2i\gamma \bigl( \vert v \vert ^{2} \bigr)_{x}v =0,\quad 0< \alpha< 1. $$
(1)

The above model having applications in optical fiber, quantum field theory and in dispersive water waves. Let a wave transformation be \(v(x, t)=u(\xi)e^{i\eta}\) and, moreover, \(\xi=ik(x-\frac{2\mu t^{\alpha}}{\alpha})\), \(\eta=(\mu x+\frac{\epsilon t^{\alpha}}{\alpha})\) in Eq. (1) for conversion of the complex fractional Kundu–Eckhaus equation to integer order; for further details about the conformable fractional derivative see [2022]. We have

$$\begin{aligned} \begin{aligned} &\frac{\partial^{\alpha}v}{\partial t^{\alpha}}=i\bigl(\epsilon u-2\mu k u' \bigr)e^{i\eta},\qquad \frac{\partial^{2}v}{\partial x^{2}}=-\bigl(\mu^{2}u+2\mu k u'+k^{2}u''\bigr)e^{i\eta}, \\ &\frac{\partial }{\partial x}\bigl( \vert v \vert ^{2}v\bigr) =2ik u^{2}u'e^{i\eta}. \end{aligned} \end{aligned}$$
(2)

Substituting (2) in (1), this action gives an ODE such that

$$ -\bigl( \epsilon+\mu^{2}\bigr)u-k^{2}u''-2 \beta u^{3}+\gamma^{2}u^{5}-4\gamma k u^{2}u'=0. $$
(3)

Balancing between \(u''\) and \(u^{5}\) in (3), we obtain \(N=\frac {1}{2}\). Now using another transformation \(u(\xi)=\Psi^{\frac{1}{2}})\) on (3), we obtain

$$ -4\bigl( \epsilon+\mu^{2}\bigr)\Psi^{2}+k^{2} \Psi^{\prime2}-2k^{2}\Psi\Psi''-8 \beta\Psi ^{3}+4\gamma^{2}\Psi^{4}-8 k \Psi^{2}\Psi'=0. $$
(4)

Balancing between the highest derivative and nonlinear term in (4), we obtain N=1. Assuming (4) has a solution [25],

$$ \Psi(\xi)= a_{0}+a_{1}F(\xi)+b_{1}F^{-1}( \xi), $$
(5)

where F satisfies the Ricatti equation [25]

$$ F'( \xi)= B_{1}+B_{2}F+B_{3}F^{2}. $$
(6)

Put (5) with (6) in (4), we obtain numerous equations involving these parameters, \(a_{0}\), \(a_{1}\), \(b_{1}\), \(B_{1}\), \(B_{2}\), \(B_{3}\), β, γ, k, μ and ϵ, after solving this equation system, we have the following solution possibilities.

2.1.1 The soliton-like solutions of Eq. (1)

If \(B_{1}=0\), \(B_{2}=1\), \(B_{3}=-1\), then we have the following results:

$$ \begin{aligned}&k= \frac{\sqrt{7} \beta+\beta}{2 \gamma},\qquad \mu=\pm\frac{\sqrt {-\frac{\sqrt{7} \beta^{2}}{\gamma^{2}}-\frac{4 \beta^{2}}{\gamma^{2}}-8 \epsilon}}{2 \sqrt{2}},\\ & `a_{1}= \frac{5 \beta-\sqrt{7} \beta}{4 \gamma^{2}},\qquad a_{0}= 0,\qquad b_{1}= 0. \end{aligned}$$
(7)

Put (7) in (5), then the solution of (1) becomes

$$ \Psi_{1}(\xi)= \biggl(\frac{5 \beta-\sqrt{7} \beta}{8 \gamma ^{2}} \biggl(1+\tanh \biggl(\frac{1}{2}\xi\biggr) \biggr) \biggr)^{\frac {1}{2}}e^{i\eta} . $$
(8)

If \(B_{1}=0\), \(B_{2}=-1\), \(B_{3}=1\), then we have the following results:

$$ \begin{aligned}& k= \frac{-\sqrt{7} \beta-\beta}{2 \gamma}, \qquad \mu=\pm\frac{\sqrt {-\frac{\sqrt{7} \beta^{2}}{\gamma^{2}}-\frac{4 \beta^{2}}{\gamma^{2}}-8 \epsilon}}{2 \sqrt{2}},\\ & a_{1}= \frac{5 \beta-\sqrt{7} \beta}{4 \gamma^{2}}, \qquad a_{0}= 0,\qquad b_{1}= 0 . \end{aligned}$$
(9)

Substitute (9) in (5)

$$ \Psi_{2}(\xi)= \biggl(\frac{5 \beta-\sqrt{7} \beta}{8 \gamma ^{2}} \biggl(1-\coth \biggl(\frac{1}{2}\xi\biggr) \biggr) \biggr)^{\frac {1}{2}}e^{i\eta} . $$
(10)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

$$ \begin{aligned} &k= \frac{3 (\sqrt{7} \beta-2 \beta )}{ (\sqrt {7}-5 ) \gamma}, \qquad \mu= \pm\frac{\sqrt{8 (5 \sqrt {7}-16 ) \gamma^{2} \epsilon+9 (4 \sqrt{7}-11 ) \beta^{2}}}{2 (\sqrt{7}-5 ) \gamma},\\ &a_{1}= -\frac{9 \beta}{4 (\sqrt{7}-5 ) \gamma^{2}},\qquad a_{0}= \frac{\sqrt {7} \beta+5 \beta}{8 \gamma^{2}},\qquad b_{1}= 0. \end{aligned}$$
(11)

Put (11) in (5), we obtain

$$ \Psi_{3}(\xi)= \biggl(\frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}}- \frac{9 \beta}{4 (\sqrt{7}-5 ) \gamma^{2}} \bigl(\coth(\xi)\pm csch(\xi) \bigr) \biggr) ^{\frac{1}{2}}e^{i\eta} . $$
(12)

If \(B_{1}=1\), \(B_{2}=0\), \(B_{3}=-1\), then we have the following results:

$$\begin{aligned} \begin{aligned} &k= -\frac{3 (\sqrt{7} \beta-2 \beta )}{ (\sqrt {7}-5 ) \gamma},\qquad \mu= \pm\frac{\sqrt{8 (5 \sqrt {7}-16 ) \gamma^{2} \epsilon+9 (4 \sqrt{7}-11 ) \beta^{2}}}{2 (\sqrt{7}-5 ) \gamma},\\ &a_{1}= \frac{9 \beta }{4 (\sqrt{7}-5 ) \gamma^{2}},\qquad a_{0}= \frac{\sqrt{7} \beta+5 \beta}{8 \gamma^{2}},\qquad b_{1}= 0. \end{aligned} \end{aligned}$$
(13)

Put (13) in (5),

$$ \Psi_{4}= \biggl(\frac{\sqrt{7} \beta+5 \beta}{8 \gamma^{2}}+\frac {9 \beta}{4 (\sqrt{7}-5 ) \gamma^{2}} \bigl(\tanh(\xi ) \bigr) \biggr)^{\frac{1}{2}}e^{i\eta} . $$
(14)

2.1.2 The trigonometric function solutions of Eq. (1)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=\frac{1}{2}\), then we have the following results:

$$\begin{aligned} \begin{aligned} &k= \frac{ (\sqrt{7}-2 ) \sqrt{32+10 \sqrt{7}} \sqrt{-\beta^{2}}}{6 \gamma}, \qquad\mu=\pm\frac{\sqrt{-8 \gamma^{2} \epsilon+\sqrt{7} \beta^{2}-4 \beta^{2}}}{2 \sqrt{2} \gamma}, \\ &a_{1}= \frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt{2} \gamma^{2}},\qquad a_{0}=\frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}},\qquad b_{1}= 0. \end{aligned} \end{aligned}$$
(15)

Putting (15) in (5), then solution (1) is

$$ \Psi_{5}(\xi)= \biggl(\frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}}+ \frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt{2} \gamma^{2}} \bigl(\sec(\xi)+\tan(\xi) \bigr) \biggr)^{\frac {1}{2}}e^{i\eta} . $$
(16)

If \(B_{1}=-\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

$$\begin{aligned} \begin{aligned} &k=-\frac{ (\sqrt{7}-2 ) \sqrt{32+10 \sqrt{7}} \sqrt{-\beta^{2}}}{6 \gamma},\qquad \mu= \pm\frac{\sqrt{-8 \gamma^{2} \epsilon+\sqrt{7} \beta^{2}-4 \beta^{2}}}{2 \sqrt{2} \gamma}, \\ &a_{1}=\frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt{2} \gamma^{2}},\qquad a_{0}= \frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}},\qquad b_{1}= 0. \end{aligned} \end{aligned}$$
(17)

Put (17) in Eq. (5),

$$ \Psi_{6}(\xi)= \biggl(\frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}}+ \frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt{2} \gamma^{2}} \bigl(\sec(\xi)-\tan(\xi) \bigr) \biggr)^{\frac {1}{2}}e^{i\eta} . $$
(18)

If \(B_{1}=1(-1)\), \(B_{2}=0\), \(B_{3}=1(-1)\), then we have the following results:

$$\begin{aligned} \begin{aligned} &k=-\frac{ (\sqrt{7}-2 ) \sqrt{8+\frac{5 \sqrt {7}}{2}} \sqrt{-\beta^{2}}}{6 \gamma}, \qquad \mu=\pm\frac{\sqrt{-8 \gamma^{2} \epsilon+\sqrt{7} \beta^{2}-4 \beta^{2}}}{2 \sqrt{2} \gamma }, \\ &a_{1}= \frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt {2} \gamma^{2}},\qquad a_{0}= \frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}},\qquad b_{1}= 0. \end{aligned} \end{aligned}$$
(19)

Replace (19) in (5),

$$ \Psi_{7}(\xi)= \biggl(\frac{\sqrt{7} \beta+5 \beta}{8 \gamma ^{2}}+ \frac{\sqrt{-5 \sqrt{7} \beta^{2}-16 \beta^{2}}}{4 \sqrt{2} \gamma^{2}} \bigl(\tan(\xi) \bigl(\cot(\xi)\bigr) \bigr) \biggr)^{\frac {1}{2}}e^{i\eta} . $$
(20)

2.1.3 The rational function solutions of Eq. (1)

If \(B_{3}=0\), then we have the following results:

$$ \begin{aligned}& k= \frac{\sqrt{7} \beta-\beta}{2 B_{2} \gamma},\qquad \mu\pm\frac {\sqrt{\frac{\sqrt{7} \beta^{2}}{\gamma^{2}}-\frac{4 \beta^{2}}{\gamma ^{2}}-8 \epsilon}}{2 \sqrt{2}},\\ & a_{1}= 0,\qquad a_{0}= 0,\qquad b_{1}= \frac {-\sqrt{7} B_{1} \beta-5 B_{1} \beta}{4 B_{2} \gamma^{2}} . \end{aligned}$$
(21)

Transfer (21) in (5),

$$ \Psi_{8}(\xi)= \biggl(\frac{-\sqrt{7} B_{1} \beta-5 B_{1} \beta}{4 \gamma^{2}} \biggl( \frac{1}{ (\exp(B_{2}\xi)-B_{1})} \biggr) \biggr)^{\frac{1}{2}}e^{i\eta} . $$
(22)

2.2 The van der Waals normal form for fluidized granular matter wave equation

Consider the generalized form of the nonlinear the van der Waals normal form for fluidized granular matter wave model [23] given by

$$ \frac{\partial^{2} v}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}} \biggl(\frac{\partial^{2}v}{\partial x^{2}}- \eta\frac{\partial v}{\partial t}-v^{3}-\epsilon v \biggr)=0, $$
(23)

where η is the bulk viscosity, ϵ is for the bifurcation parameter. The extreme advantage of this model is that it is used to explain the basic physical phase phenomenon in nonlinear science.

Let us make a traveling wave transformation for (23),

$$ v(x,t)=\Psi(\xi),\qquad \xi=kx+\omega t. $$
(24)

Substituting (24) in (23) and twice integrating with zero constant, we obtain

$$ \Psi+k^{4}\frac{1}{\omega^{2} (1-\frac{\text{k$\epsilon $}}{\omega^{2}} )}\Psi''+ \frac{\eta k^{2} \Psi'}{\omega (1-\frac{\text{k$\epsilon$}}{\omega^{2}} )}+ \frac{k^{2} \Psi ^{3}}{\omega^{2} (1-\frac{\text{k$\epsilon$}}{\omega^{2}} )}=0. $$
(25)

Suppose that (25) has the same solution form (5), we obtain collections of equations involving these parameters, \(a_{0}\), \(a_{1}\), \(b_{1}\), \(B_{1}\), \(B_{2}\), \(B_{3}\), k and ω. After solving we have the following results.

2.2.1 The soliton-like solutions of Eq. (23)

If \(B_{1}=0\), \(B_{2}=1\), \(B_{3}=-1\), then we have the following results:

$$ \begin{aligned}& k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}}, \qquad \omega= \frac{3 \sqrt[3]{-1} \sqrt[3]{\eta} \epsilon ^{2/3}}{ (9-2 \eta^{2} )^{2/3}},\\ &a_{1} =\pm\frac{\sqrt [6]{-1} \sqrt{2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta ^{2}}},\qquad a_{0}=\pm\frac{\sqrt[6]{-1} \sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad b_{1}= 0. \end{aligned}$$
(26)

Put (26) in (5),

$$ \Psi_{9}(\xi)=\frac{\sqrt[6]{-1} \sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}} \biggl(\pm1\pm \frac{1 }{2} \biggl(1+\tanh\biggl(\frac{1}{2}\xi\biggr) \biggr) \biggr) . $$
(27)

If \(B_{1}=0\), \(B_{2}=-1\), \(B_{3}=1\), then we have the following results:

$$ \begin{aligned}& k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad \omega= \frac{3 \sqrt[3]{-1} \sqrt[3]{\eta} \epsilon ^{2/3}}{ (9-2 \eta^{2} )^{2/3}},\qquad a_{1}=\pm\frac{\sqrt [6]{-1} \sqrt{2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta ^{2}}},\\ & a_{0}=\pm\frac{\sqrt[6]{-1} \sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad b_{1}= 0. \end{aligned}$$
(28)

Put (28) in (5), then the solution of (23) becomes

$$ \Psi_{10}(\xi)=\frac{\sqrt[6]{-1} \sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}} \biggl(\pm1\pm \frac{1 }{2} \biggl(1-\coth\biggl(\frac{1}{2}\xi\biggr) \biggr) \biggr) . $$
(29)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

$$\begin{aligned} \begin{aligned} &k=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{2^{2/3} \sqrt[3]{9-2 \eta^{2}}}, \qquad \omega\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt[3]{2} \sqrt[6]{9-2 \eta^{2}} \sqrt{2 \eta^{2}-9}},\\ & a_{1}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt [6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta ^{2}-9}}, \\ &a_{0}=\pm\frac{\sqrt[6]{-\frac{1}{2}} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad b_{1}= \pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(30)

Replace (30) in Eq. (5),

$$\begin{aligned} \Psi_{11}(\xi)={}&\frac{\sqrt[6]{-\frac{1}{2}} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}} \\ &{}\pm\frac{(-1)^{2/3} \eta ^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta^{2}-9}} \biggl(\coth(\xi)\pm csch(\xi)+\frac{1}{\coth (\xi)\pm csch(\xi) } \biggr) . \end{aligned}$$
(31)

If \(B_{1}=1\), \(B_{2}=0\), \(B_{3}=-1\), then we have the following results:

Family I

$$\begin{aligned} \begin{aligned} &k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{2^{2/3} \sqrt[3]{9-2 \eta^{2}}}, \qquad \omega=\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt[3]{2} \sqrt[6]{9-2 \eta^{2}} \sqrt{2 \eta^{2}-9}},\qquad a_{1}= 0, \\ &a_{0}= -\frac{\sqrt[6]{-\frac {1}{2}} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta ^{2}}},\qquad b_{1}= \pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(32)

Substitute (32) in (5),

$$ \Psi_{12}(\xi)=-\frac{\sqrt[6]{-\frac{1}{2}} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}}\pm\frac{(-1)^{2/3} \eta ^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt {2 \eta^{2}-9}} \biggl(\frac{1}{\tanh(\xi) } \biggr) . $$
(33)

Family II

$$\begin{aligned} \begin{aligned} &k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{2^{2/3} \sqrt[3]{9-2 \eta^{2}}},\qquad \omega\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt[3]{2} \sqrt[6]{9-2 \eta^{2}} \sqrt{2 \eta^{2}-9}}, \\ &a_{1}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt [6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt{2 \eta ^{2}-9}},\qquad a_{0}= \frac{\sqrt[6]{-\frac{1}{2}} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad b_{1}= 0. \end{aligned} \end{aligned}$$
(34)

Put (34) in (5),

$$ \Psi_{13}=\frac{\sqrt[6]{-\frac{1}{2}} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}}\pm\frac{(-1)^{2/3} \eta ^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt {2 \eta^{2}-9}} \bigl( \tanh(\xi) \bigr) . $$
(35)

Family III

$$\begin{aligned} \begin{aligned} &k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{2 \sqrt[3]{2} \sqrt[3]{9-2 \eta^{2}}},\qquad \omega=\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon^{2/3}}{2^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt {2 \eta^{2}-9}},\\ &a_{1}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt{2 \eta^{2}-9}},\qquad \\ &a_{0}= \frac{\sqrt[6]{-2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9-2 \eta^{2}}},\qquad `b_{1}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta ^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(36)

Transfer (36) in Eq. (5),

$$ \Psi_{14}=\frac{\sqrt[6]{-2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt [3]{9-2 \eta^{2}}}\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta ^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt{2 \eta^{2}-9}} \biggl(\tanh(\xi )+\frac{1}{\tanh(\xi) } \biggr) . $$
(37)

2.2.2 The trigonometric function solutions of Eq. (23)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=\frac{1}{2}\), then we have the following results:

Family I

$$ \begin{aligned}& k=-\frac{\sqrt[3]{-1} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{2 \eta^{2}-9}}, \qquad \omega=\pm\frac{3 \sqrt[6]{-1} \sqrt[3]{\eta} \epsilon^{2/3}}{ (2 \eta^{2}-9 )^{2/3}},\qquad a_{1}= \pm\frac {(-1)^{5/6} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}, \\ & a_{0}= -\frac{\sqrt[3]{-1} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}},\qquad b_{1}= 0. \end{aligned}$$
(38)

Substitute (38) in (5),

$$ \Psi_{15}=-\frac{\sqrt[3]{-1} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}\pm\frac{(-1)^{5/6} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}} \bigl(\sec(\xi )+\tan(\xi) \bigr) . $$
(39)

Family II

$$ \begin{aligned}& k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{2 \eta ^{2}-9}}, \qquad \omega=\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon ^{2/3}}{ (2 \eta^{2}-9 )^{2/3}},\qquad a_{1}= 0, \\ & a_{0}=\pm\frac {(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}},\qquad b_{1}= - \frac{\sqrt[6]{-1} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}. \end{aligned}$$
(40)

Put (40) in (5),

$$ \Psi_{16}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}-\frac{\sqrt[6]{-1} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}} \biggl(\frac {1}{\sec(\xi)+\tan(\xi)} \biggr) . $$
(41)

Family III

$$\begin{aligned} \begin{aligned} &k= -\frac{\eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}},\qquad \omega=\pm\frac{3 \sqrt[3]{\eta} \epsilon ^{2/3}}{\sqrt[6]{36-8 \eta^{2}} \sqrt{2 \eta^{2}-9}},\qquad a_{1}= \frac {\eta^{2/3} \sqrt[6]{36-8 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt{2} \sqrt{2 \eta^{2}-9}}, \\ &a_{0}=\pm\frac{\sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}},\qquad b_{1}= -\frac{\eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(42)

Replace (42) in (5),

$$\begin{aligned} \Psi_{17}={}&\pm\frac{\sqrt{2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt [3]{36-8 \eta^{2}}}+\frac{\eta^{2/3} \sqrt[6]{36-8 \eta^{2}} \sqrt [3]{\epsilon}}{2 \sqrt{2} \sqrt{2 \eta^{2}-9}} \bigl(\sec(\xi)+\tan (\xi) \bigr) \\ &{}-\frac{\eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt [3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta^{2}-9}} \biggl(\frac {1}{\sec(\xi)+\tan(\xi)} \biggr) . \end{aligned}$$
(43)

If \(B_{1}=-\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

Family I

$$ \begin{aligned} &k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{2 \eta ^{2}-9}},\qquad `\omega=\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon ^{2/3}}{ (2 \eta^{2}-9 )^{2/3}},\qquad a_{1}= \frac{\sqrt[6]{-1} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta ^{2}-9}},\\ & a_{0}= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}},\qquad b_{1}= 0. \end{aligned}$$
(44)

Put (44) in (5),

$$ \Psi_{18}=\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt {2} \sqrt[3]{2 \eta^{2}-9}}+\frac{\sqrt[6]{-1} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}} \bigl( \sec(\xi )-\tan(\xi) \bigr) . $$
(45)

Family II

$$ \begin{aligned}&k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{2 \eta ^{2}-9}}, \qquad \omega=\pm\frac{3 (-1)^{5/6} \sqrt[3]{\eta} \epsilon ^{2/3}}{ (2 \eta^{2}-9 )^{2/3}},\qquad a_{1}= 0,\\ & a_{0}=\pm\frac {(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}, \qquad b_{1}= \frac{\sqrt[6]{-1} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}. \end{aligned}$$
(46)

Substitute (46) in Eq. (5),

$$ \Psi_{19}(\xi)=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}}+\frac{\sqrt[6]{-1} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt{2} \sqrt[3]{2 \eta^{2}-9}} \biggl(\frac {1}{\sec(\xi)-\tan(\xi)} \biggr) . $$
(47)

Family III

$$\begin{aligned} \begin{aligned} &k= -\frac{\eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}},\qquad \omega= \pm\frac{3 \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt [6]{36-8 \eta^{2}} \sqrt{2 \eta^{2}-9}},\qquad a_{1}= \pm\frac{\eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta^{2}-9}}, \\ &a_{0}= \pm\frac{\sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}},\qquad b_{1}= \frac{\eta^{2/3} \sqrt[6]{36-8 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt{2} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(48)

Put (48) in (5),

$$\begin{aligned} \Psi_{20}(\xi)={}&\pm\frac{\sqrt{2} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt[3]{36-8 \eta^{2}}}+\frac{\eta^{2/3} \sqrt[6]{36-8 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt{2} \sqrt{2 \eta^{2}-9}} \biggl(\frac {1}{\sec(\xi)-\tan(\xi)} \biggr) \\ &{}\pm\frac{\eta^{2/3} \sqrt [6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2 \sqrt[6]{2} \sqrt{2 \eta ^{2}-9}} \bigl(\sec(\xi)-\tan(\xi) \bigr) . \end{aligned}$$
(49)

If \(B_{1}=1(-1)\), \(B_{2}=0\), \(B_{3}=1(-1)\), then we have the following results:

Family I

$$ \begin{aligned}& k= -\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}},\qquad \omega=\pm\frac{3 \sqrt[3]{-1} \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt[6]{36-8 \eta^{2}} \sqrt{2 \eta ^{2}-9}},\\ &a_{1}=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt{2 \eta^{2}-9}}, \qquad a_{0}= -\frac {(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt [3]{9-2 \eta^{2}}},\qquad b_{1}= 0. \end{aligned}$$
(50)

Replace (50) in (5),

$$ \Psi_{21}(\xi)=-\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt[6]{2} \sqrt[3]{9-2 \eta^{2}}}\pm\frac{(-1)^{2/3} \eta ^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt {2 \eta^{2}-9}} \bigl(\tan(\xi) \bigl(\cot(\xi)\bigr) \bigr) . $$
(51)

Family II

$$ \begin{aligned} &k= -\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{36-8 \eta^{2}}}, \qquad \omega\pm\frac{3 \sqrt[3]{-1} \sqrt[3]{\eta} \epsilon^{2/3}}{\sqrt[6]{36-8 \eta^{2}} \sqrt{2 \eta^{2}-9}},\qquad a_{1}= 0,\\ & a_{0}\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt [6]{2} \sqrt[3]{9-2 \eta^{2}}}, \qquad b_{1}= - \frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt{2 \eta^{2}-9}}. \end{aligned}$$
(52)

Substituting (52) in (5),

$$ \Psi_{22}(\xi)=\pm\frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt[6]{2} \sqrt[3]{9-2 \eta^{2}}}-\frac{(-1)^{2/3} \eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{\sqrt[6]{2} \sqrt{2 \eta ^{2}-9}} \biggl(\frac{1}{\tan(\xi)(\cot(\xi)) } \biggr) . $$
(53)

Family III

$$\begin{aligned} \begin{aligned} &k= -\frac{\eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{144-32 \eta^{2}}}, \qquad\omega=\pm\frac{3 \sqrt[3]{\eta} \epsilon ^{2/3}}{\sqrt[6]{144-32 \eta^{2}} \sqrt{2 \eta^{2}-9}},\\ & a_{1}= -\frac {\eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt {2 \eta^{2}-9}}, \\ &a_{0}=\pm\frac{2 \sqrt{2} \eta^{2/3} \sqrt [3]{\epsilon}}{\sqrt[3]{144-32 \eta^{2}}},\qquad b_{1}=\pm \frac{\eta ^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt{2 \eta^{2}-9}}. \end{aligned} \end{aligned}$$
(54)

Put (54) in (5),

$$ \Psi_{23}(\xi)=\pm\frac{2 \sqrt{2} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt[3]{144-32 \eta^{2}}}- \frac{\eta^{2/3} \sqrt[6]{9-2 \eta^{2}} \sqrt[3]{\epsilon}}{2^{5/6} \sqrt{2 \eta^{2}-9}} \biggl( \tan(\xi ) \bigl(\cot(\xi)\bigr)+\frac{1}{\tan(\xi)(\cot(\xi)) } \biggr) . $$
(55)

2.2.3 The rational function solutions of Eq. (23)

If \(B_{3}=0\), then we have the following results:

$$ \begin{aligned}&k= \frac{(-1)^{2/3} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{9 B_{2}^{2}-2 B_{2}^{2} \eta^{2}}},\qquad \omega= \frac{3 \sqrt[3]{-1} B_{2} \sqrt [3]{\eta} \epsilon^{2/3}}{ (-B_{2}^{2} (2 \eta^{2}-9 ) )^{2/3}},\qquad a_{1}= 0, \\ & a_{0}= \pm\frac{\sqrt[6]{-1} \sqrt{2} B_{2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{-B_{2}^{2} (2 \eta ^{2}-9 )}}, \qquad b_{1}= \pm\frac{\sqrt[6]{-1} \sqrt{2} B_{1} \eta ^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{-B_{2}^{2} (2 \eta^{2}-9 )}}. \end{aligned}$$
(56)

Put (56) in (5),

$$ \Psi_{24}(\xi)=\pm\frac{\sqrt[6]{-1} \sqrt{2} B_{2} \eta^{2/3} \sqrt[3]{\epsilon}}{\sqrt[3]{-B_{2}^{2} (2 \eta^{2}-9 )}}\pm \frac{\sqrt[6]{-1} \sqrt{2} B_{1} \eta^{2/3} \sqrt[3]{\epsilon }}{\sqrt[3]{-B_{2}^{2} (2 \eta^{2}-9 )}} \biggl(\frac{B_{2}}{ (\exp(B_{2}\xi)-B_{1})} \biggr) . $$
(57)

2.3 The Benney–Luke equation

Let us consider the general form of the Benney–Luke equation in [26],

$$ u_{tt}-u_{xx}+\beta u_{xxxx}-\gamma u_{xxtt}+u_{t}u_{xx}+2u_{x}u_{xt}=0. $$
(58)

This equation is also called a water wave equation, it is used to describe two-way water wave propagation. Let \(u(x,t)=\Psi(\xi)\), \(\xi =x-kt\); substituting in (58), integrating and by removal of the constant of integration,

$$ \bigl(k^{2}-1 \bigr) \Psi'+ \Psi^{'''} \bigl(\beta-\gamma k^{2} \bigr)-\frac{3}{2}k \Psi^{'2}=0. $$
(59)

We assumed that (5) is the solution of (59). Substitute Eq. (5) with (6) in (59), After solving these equations system, we have following solution cases.

2.3.1 The soliton-like solutions of Eq. (58)

If \(B_{1}=0\), \(B_{2}=1\), \(B_{3}=-1\), then we have the following results:

$$ k= \pm\frac{\sqrt{\beta-1}}{\sqrt{\gamma-1}},\qquad a_{1}= \frac{4 (\gamma-\beta)}{\sqrt{(\beta-1)( \gamma-1)}},\qquad b_{1}= 0. $$
(60)

Put (60) in (5),

$$ \Psi_{25}=a_{0}+\frac{2 (\gamma-\beta)}{\sqrt{(\beta-1)( \gamma -1)}} \biggl(1+ \tanh\biggl(\frac{1}{2}\xi\biggr) \biggr),\quad \beta>1, \gamma>0. $$
(61)

If \(B_{1}=0\), \(B_{2}=-1\), \(B_{3}=1\), then we have the following results:

$$ k= \pm\frac{\sqrt{\beta-1}}{\sqrt{\gamma-1}},\qquad a_{1}= \frac{4 (\beta-\gamma)}{\sqrt{(\beta-1)( \gamma-1)}},\qquad b_{1}= 0. $$
(62)

Replace (62) in (5),

$$ \Psi_{26}=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{(\beta-1)( \gamma -1)}} \biggl(1- \coth\biggl(\frac{1}{2}\xi\biggr) \biggr),\quad \beta>1, \gamma>0. $$
(63)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

Family I

$$ k= \pm\frac{\sqrt{\beta-1}}{\sqrt{\gamma -1}},\qquad a_{1}=0,\qquad b_{1}= \frac{2 (\beta-\gamma)}{\sqrt{(\beta -1)(\gamma-1)}}. $$
(64)

Put (64) in (5),

$$ \Psi_{27}=a_{0}-\frac{2 (\beta-\gamma)}{\sqrt{(\beta-1)(\gamma -1)}} \biggl( \frac{1}{\coth(\xi)\pm csch(\xi) } \biggr),\quad \beta >1, \gamma>0. $$
(65)

Family II

$$ k= \pm\frac{\sqrt{\alpha-1}}{\sqrt{\beta -1}},\qquad b_{1}=0,\qquad a_{1}= \frac{2 (\beta-\gamma)}{\sqrt{(\beta -1)(\gamma-1)}} . $$
(66)

Transfer (66) in (5),

$$ \Psi_{28}=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{(\beta-1)(\gamma -1)}} \bigl( \coth(\xi)\pm csch(\xi) \bigr), \quad \beta>1, \gamma>1. $$
(67)

Family III

$$ k= \pm\frac{\sqrt{1-4 \beta}}{\sqrt{1-4 \gamma}},\qquad a_{1}=\frac{2 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt{1-4 \gamma}},\qquad b_{1}=\frac {2 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt{1-4 \gamma}} . $$
(68)

Replace (68) in (5),

$$\begin{aligned} &\Psi_{29}=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt {1-4 \gamma}} \biggl( \bigl(\coth(\xi)\pm csch(\xi)\bigr)+\frac{1}{\coth(\xi )\pm csch(\xi) } \biggr), \\ & \quad \beta< \frac{1}{4}, \gamma< \frac{1}{4}. \end{aligned}$$
(69)

If \(B_{1}=1\), \(B_{2}=0\), \(B_{3}=-1\), then we have the following results:

Family I

$$ k=\pm\frac{\sqrt{1-4 \beta}}{\sqrt{1-4 \gamma }},\qquad a_{1}=0,\qquad b_{1}=- \frac{4 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt {1-4 \gamma}}. $$
(70)

Put (70) in (5),

$$ \Psi_{30}=a_{0}-\frac{4 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt {1-4 \gamma}} \biggl( \frac{1}{\tanh(\xi)} \biggr), \quad\beta< \frac {1}{4}, \gamma< \frac{1}{4}. $$
(71)

Family II

$$ k= \frac{\sqrt{1-4 \beta}}{\sqrt{1-4 \gamma }},\qquad b_{1}=0,\qquad a_{1}=- \frac{4 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt {1-4 \gamma}} . $$
(72)

Replace (72) in (5),

$$ \Psi_{31}=a_{0}-\frac{4 (\beta-\gamma)}{\sqrt{1-4 \beta} \sqrt {1-4 \gamma}} \bigl( \tanh(\xi) \bigr), \quad \beta< \frac {1}{4}, \gamma< \frac{1}{4}. $$
(73)

Family III

$$ k= \pm\frac{\sqrt{1-16 \beta}}{\sqrt{1-16 \gamma}},\qquad a_{1}=\frac {4 (\beta-\gamma)}{\sqrt{1-16 \beta} \sqrt{1-16 \gamma }},\qquad b_{1}=\frac{4 (\beta-\gamma)}{\sqrt{1-16 \beta} \sqrt{1-16 \gamma}} . $$
(74)

Put (60) in (5),

$$ \Psi_{32}=a_{0}+\frac{4 (\beta-\gamma)}{\sqrt{1-16 \beta} \sqrt {1-16 \gamma}} \biggl( \tanh(\xi)+\frac{1}{\tanh(\xi)} \biggr), \quad \beta< \frac{1}{16}, \gamma< \frac{1}{16}. $$
(75)

2.3.2 The trigonometric function solutions of Eq. (58)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=\frac{1}{2}\), then we have the following results:

Family I

$$ k=\pm\frac{\sqrt{\beta+1}}{\sqrt{\gamma+1}},\qquad a_{1}= \frac{2 (\beta-\gamma)}{\sqrt{\beta+1} \sqrt{\gamma+1}},\qquad b_{1}= 0, $$
(76)

Substitute (76) in (5),

$$ \Psi_{33}(\xi)=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{\beta+1} \sqrt{\gamma+1}} \bigl(\sec(\xi)+\tan(\xi) \bigr), \quad \beta >-1, \gamma>-1. $$
(77)

Family II

$$ k=\pm\frac{\sqrt{\beta+1}}{\sqrt{\gamma+1}},\qquad b_{1}= \frac{2 (\gamma-\beta)}{\sqrt{\beta+1} \sqrt{\gamma+1}},\qquad a_{1}= 0. $$
(78)

Put (78) in (6),

$$ \Psi_{34}(\xi)=a_{0}+\frac{2 (\gamma-\beta)}{\sqrt{\beta+1} \sqrt{\gamma+1}} \biggl(\frac{1}{\sec(\xi)+\tan(\xi)} \biggr),\quad \beta>-1, \gamma>-1. $$
(79)

Family III

$$ k=\pm\frac{\sqrt{-4 \beta-1}}{\sqrt{-4\gamma-1}}, \qquad a_{1}= \frac{2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}},\qquad b_{1}= -\frac{2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4\gamma+1}}. $$
(80)

Put (80) in (5),

$$\begin{aligned} & \Psi_{35}=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}} \biggl( \sec(\xi)+\tan(\xi)-\frac{1}{\sec(\xi)+\tan (\xi)} \biggr), \\ &\quad \beta>\frac{-1}{4}, \gamma>\frac{-1}{4}. \end{aligned}$$
(81)

If \(B_{1}=-\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

Family I

$$ k=\pm\frac{\sqrt{\beta+ 1}}{\sqrt{\gamma+1}},\qquad a_{1}= \frac{2 (\gamma-\beta)}{\sqrt{\beta +1} \sqrt{\gamma+1}},\qquad b_{1}= 0. $$
(82)

Put (82) in(6),

$$ \Psi_{(}\xi)=a_{0}+\frac{2 (\gamma-\beta)}{\sqrt{\beta+1} \sqrt {\gamma+1}} \bigl(\sec(\xi)- \tan(\xi) \bigr),\quad \beta >-1, \gamma-1. $$
(83)

Family II

$$ k=\pm\frac{\sqrt{\beta+1}}{\sqrt{\gamma+1}},\qquad b_{1}=\frac{2 (\beta-\gamma)}{\sqrt{\beta+1} \sqrt{\gamma+1}},\qquad a_{1}= 0. $$
(84)

Put (84) in (5),

$$ \Psi_{37}=a_{0}+\frac{2 (\beta-\gamma)}{\sqrt{\beta+1} \sqrt {\gamma+1}} \biggl( \frac{1}{\sec(\xi)-\tan(\xi)} \biggr), \quad\beta >-1, \gamma-1. $$
(85)

Family III

$$ k=\pm\frac{\sqrt{-4 \beta-1}}{\sqrt{-4 \gamma-1}},\qquad a_{1}=-\frac {2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma +1}},\qquad b_{1}=\frac{2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}}. $$
(86)

Replace (86) in (5),

$$\begin{aligned} & \Psi_{38}=a_{0}-\frac{2 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}} \biggl( \bigl(\sec(\xi)-\tan(\xi)\bigr) -\frac{1}{\sec(\xi)-\tan (\xi)} \biggr), \\ &\quad \beta>- \frac{1}{4}, \gamma>-\frac{1}{4}. \end{aligned}$$
(87)

If \(B_{1}=1(-1)\), \(B_{2}=0\), \(B_{3}=1(-1)\), then we have the following results:

Family I

$$ k\pm\frac{\sqrt{4 \beta+1}}{\sqrt{4 \gamma+1}},\qquad a_{1}=\frac{4 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}},\qquad b_{1}=0, $$
(88)

Put (88) in (5),

$$ \Psi_{39}=a_{0}+\frac{4 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}} \bigl( \tan(\xi) \bigl(\cot(\xi)\bigr) \bigr), \quad \beta>-\frac {1}{4}, \gamma>- \frac{1}{4}. $$
(89)

Family II

$$ k=\pm\frac{\sqrt{4 \beta+1}}{\sqrt{4 \gamma+1}},\qquad b_{1}=-\frac{4 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}},\qquad a_{1}=0. $$
(90)

Replace (90) in (5),

$$ \Psi_{40}(\xi)=a_{0}-\frac{4 (\beta-\gamma)}{\sqrt{4 \beta+1} \sqrt{4 \gamma+1}} \biggl(\frac{1}{\tan(\xi)(\cot(\xi)} \biggr),\quad \beta>-\frac{1}{4}, \gamma>- \frac{1}{4}. $$
(91)

Family III

$$ k=\pm\frac{\sqrt{16 \beta+1}}{\sqrt{16 \gamma+1}},\qquad a_{1}=-\frac {4 (\beta-\gamma)}{\sqrt{16 \beta+1} \sqrt{16 \gamma +1}},\qquad b_{1}=\frac{4 (\beta-\gamma)}{\sqrt{16\beta+1} \sqrt{16 \gamma+1}}. $$
(92)

Transfer (92) in (5),

$$\begin{aligned} &\Psi_{41}=a_{0}-\frac{4 (\beta-\gamma)}{\sqrt{16 \beta+1} \sqrt {16 \gamma+1}} (\tan( \xi) \biggl(\cot(\xi) -\frac{1}{\tan(\xi )(\cot(\xi)} \biggr), \\ & \quad \beta>-\frac{1}{16}, \gamma>-\frac{1}{16}. \end{aligned}$$
(93)

2.3.3 The rational function solutions of Eq. (58)

If \(B_{1}=0\), \(B_{2}=0\), then we have the following results:

$$ k= \pm1,\qquad a_{1}= \pm4B_{3} (\beta-\gamma),\qquad b_{1}= 0, $$
(94)

Substitute (94) in (5),

$$ \Psi_{42}=a_{0}+4B_{3} \biggl( \frac{(\beta-\gamma)}{A_{3}\xi+\epsilon } \biggr) . $$
(95)

If \(B_{2}=0\), \(B_{3}=0\), then we have the following results:

$$ k= \pm1,\qquad b_{1}= \pm4B_{1} (\beta-\gamma),\qquad a_{1}= 0. $$
(96)

Put (96) in (5),

$$ \Psi_{43}=a_{0}\pm4 \biggl( \frac{(\beta-\gamma)}{\xi} \biggr) . $$
(97)

If \(B_{1}\neq0\), \(B_{2}\neq0\), \(B_{3}=0\), then we have the following results:

$$ k= \frac{\sqrt{\beta B_{2}^{2}-1}}{\sqrt{\gamma B_{2}^{2}-1}}, \qquad b_{1}= \frac {4 B_{1} (\beta-\gamma)}{\sqrt{\beta B_{2}^{2}-1} \sqrt{\gamma B_{2}^{2}-1}},\qquad a_{1}= 0. $$
(98)

Replace (98) in (5),

$$ \Psi_{44}=a_{0}+\frac{4 B_{1} (\beta-\gamma)}{\sqrt{\beta B_{2}^{2}-1} \sqrt{\gamma B_{2}^{2}-1}} \biggl( \frac{B_{2}}{ (\exp(B_{2}\xi)-B_{1})} \biggr). $$
(99)

2.4 The \((3 + 1)\)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation

Let us consider the general form in [28],

$$ u_{t}+\alpha u^{2}u_{x}+\beta u_{xxx}+\gamma(u_{yy}+u_{zz})_{x}=0. $$
(100)

Consider the wave transformation for Eq. (100),

$$ u(x,y,z,t)=\Psi(\xi), \quad\xi=x+y+z-\eta t. $$
(101)

Put Eq. (101) in Eq. (100) and after integrating we have the following ODE form:

$$ -\eta\Psi+\alpha\frac{\Psi^{3}}{3}+(\beta+2\gamma) \Psi''=0. $$
(102)

Let (5) be a solution of (102). Substitute (5) with (6) in (102); after solving we have the following solution possibilities.

2.4.1 The soliton-like solutions of Eq. (100)

If \(B_{1}=0\), \(B_{2}=1\), \(B_{3}=-1\), then we have the following results:

$$ a_{1}= \pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}},\qquad \eta = \frac{1}{2} (-\beta-2 \gamma),\qquad a_{0}= \pm\frac{\sqrt{-3\beta -6\gamma} }{ \sqrt{2\alpha}},\qquad b_{1}= 0. $$
(103)

Put (103) in (5), we have

$$ \Psi_{45}= \pm\frac{\sqrt{-3\beta-6\gamma} }{ \sqrt{2\alpha }}\pm\frac{ \sqrt{-6\beta-12 \gamma}}{2 \sqrt{\alpha}} \biggl(1+\tanh\biggl(\frac{1}{2}\xi\biggr) \biggr) . $$
(104)

If \(B_{1}=0\), \(B_{2}=-1\), \(B_{3}=1\), then we have the following results:

$$ \begin{aligned}&a_{1}= \pm\frac{ \sqrt{-6(\beta+2 \gamma) }}{\sqrt{\alpha }}, \qquad \eta= \frac{1}{2} (-\beta-2 \gamma), \\ & a_{0}= \pm\frac{\sqrt {-3(\beta+2\gamma)} }{ \sqrt{2\alpha}},\qquad b_{1}= 0. \end{aligned}$$
(105)

Replace (105) in (5),

$$ \Psi_{46}=\pm\frac{\sqrt{-3(\beta+2\gamma)} }{ \sqrt{2\alpha }}\pm\frac{ \sqrt{-6(\beta+2 \gamma) }}{2 \sqrt{\alpha}} \biggl(1-\coth\biggl(\frac{1}{2}\xi\biggr) \biggr) . $$
(106)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

Family I

$$ a_{1}= 0,\qquad \eta= -\frac{1}{2} (\beta+2 \gamma),\qquad a_{0}= 0,\qquad b_{1}= \pm \frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}} . $$
(107)

Substitute (107) in (5),

$$ \Psi_{47}=\pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl( \frac{1}{\coth(\xi)\pm csch(\xi) } \biggr) . $$
(108)

Family II

$$ b_{1}= 0,\qquad \eta= -\frac{1}{2} (\beta+2 \gamma),\qquad a_{0}= 0,\qquad a_{1}= \pm \frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}} . $$
(109)

Put (109) in (5),

$$ \Psi_{48}=\pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \bigl(\coth(\xi)\pm csch(\xi) \bigr) . $$
(110)

Family III

$$ b_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}},\qquad \eta = (\beta+2 \gamma),\qquad a_{0}= 0,\qquad a_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}} . $$
(111)

Putting (111) in (5),

$$ \Psi_{49}=\pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl( \bigl(\coth( \xi)\pm csch(\xi)\bigr)+\frac{1}{\coth(\xi)\pm csch(\xi) } \biggr) . $$
(112)

If \(B_{1}=1\), \(B_{2}=0\), \(B_{3}=-1\), then we have the following results:

Family I

$$ a_{1}= 0,\qquad \eta= -2 (\beta+2 \gamma),\qquad a_{0}= 0,\qquad b_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} . $$
(113)

Replacing (113) in (5),

$$ \Psi_{50}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha }} \biggl( \frac{1}{\tanh(\xi)} \biggr). $$
(114)

Family II

$$ b_{1}= 0, \qquad \eta= -2 (\beta+2 \gamma), \qquad a_{0}= 0,\qquad a_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} . $$
(115)

Put (115) in (5),

$$ \Psi_{51}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha }} \bigl(\tanh(\xi) \bigr). $$
(116)

Family III

$$ b_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}},\qquad \eta= -8 (\beta+2 \gamma),\qquad a_{0}= 0,\qquad a_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} . $$
(117)

Substitute (117) in (5),

$$ \Psi_{52}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha }} \biggl(\tanh(\xi)+ \frac{1}{\tanh(\xi)} \biggr). $$
(118)

2.4.2 The trigonometric function solutions of Eq. (100)

If \(B_{1}=\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=\frac{1}{2}\), then we have the following results:

Family I

$$ a_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}},\qquad \eta = \frac{1}{2} (\beta+2 \gamma), \qquad a_{0}= 0, \qquad b_{1}= 0. $$
(119)

Put (119) in (5),

$$ \Psi_{53}=\pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}} \bigl(\sec(\xi)+\tan( \xi) \bigr). $$
(120)

Family II

$$ b_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}}, \qquad \eta = \frac{1}{2} (\beta+2 \gamma),\qquad a_{0}= 0, \qquad a_{1}= 0. $$
(121)

Put (121) in (5),

$$ \Psi_{54}=\pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl( \frac{1}{\sec(\xi)+\tan(\xi)} \biggr). $$
(122)

Family III

$$ b_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}},\qquad \eta = (2\beta+4 \gamma),\qquad a_{0}= 0,\qquad a_{1}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}} . $$
(123)

Replace (123) in Eq. (5),

$$ \Psi_{55}= \pm\frac{ \sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl(\bigl(\sec( \xi)+\tan(\xi)\bigr)+\frac{1}{\sec(\xi)+\tan(\xi)} \biggr). $$
(124)

If \(B_{1}=-\frac{1}{2}\), \(B_{2}=0\), \(B_{3}=-\frac{1}{2}\), then we have the following results:

Family I

$$ a_{1}= \pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}},\qquad \eta= \frac{1}{2} (\beta+2 \gamma),\qquad a_{0}= 0,\qquad b_{1}= 0. $$
(125)

Substitute (125) in (5),

$$ \Psi_{56}=\pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \bigl(\sec(\xi)-\tan( \xi) \bigr). $$
(126)

Family II

$$ b_{1}= \pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}},\qquad \eta= \frac{1}{2} (\beta+2 \gamma),\qquad a_{0}= 0, \qquad a_{1}= 0. $$
(127)

Put (127) in (5),

$$ \Psi_{57}=\pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl( \frac{1}{\sec(\xi)-\tan(\xi)} \biggr). $$
(128)

Family III

$$ b_{1}= \pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}}, \qquad \eta= (-\beta-2 \gamma),\qquad a_{0}= 0, \qquad a_{1}= \pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha}}. $$
(129)

Put (129) in (5),

$$ \Psi_{58}= \pm\frac{\sqrt{-3\beta-6 \gamma}}{\sqrt{2\alpha }} \biggl(\bigl(\sec( \xi)-\tan(\xi)\bigr) +\frac{1}{\sec(\xi)-\tan(\xi)} \biggr). $$
(130)

If \(B_{1}=1(-1)\), \(B_{2}=0\), \(B_{3}=1(-1)\), then we have the following results:

Family I

$$ a_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}},\qquad \eta= 2 (\beta+2 \gamma),\qquad a_{0}= 0,\qquad b_{1}= 0. $$
(131)

Put (131) in (5),

$$ \Psi_{59}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} \bigl(\tan(\xi) \bigl( \cot(\xi)\bigr) \bigr). $$
(132)

Family II

$$ b_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}},\qquad \eta= 2 (\beta+2 \gamma),\qquad a_{0}= 0,\qquad a_{1}= 0. $$
(133)

Replace (133) in (5),

$$ \Psi_{60}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} \biggl( \frac{1}{\tan(\xi)(\cot(\xi)} \biggr). $$
(134)

Family III

$$ b_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}},\qquad \eta =- 4 (\beta+2 \gamma), \qquad a_{0}= 0,\qquad a_{1}=\pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha}} . $$
(135)

Substitute (135) in (5),

$$ \Psi_{61}= \pm\frac{ \sqrt{-6\beta-12 \gamma}}{\sqrt{\alpha }} (\tan(\xi) \biggl( \cot(\xi) +\frac{1}{\tan(\xi)(\cot(\xi )} \biggr). $$
(136)

2.4.3 The rational function solution of Eq. (100)

If \(B_{1}\neq0\), \(B_{2}\neq0\), \(B_{3}=0\), then we have the following results:

$$ \begin{aligned}& a_{1}= 0, \qquad \eta= \frac{1}{2} \bigl(-\beta B_{2}^{2}-2 B_{2}^{2} \gamma \bigr),\\ & a_{0}= \pm\frac{B_{2} \sqrt{-\beta-2 \gamma}}{\sqrt{\alpha }},\qquad b_{1}=\pm\frac{ B_{1} \sqrt{-6 (\beta+2 \gamma)}}{\sqrt{\alpha } } . \end{aligned}$$
(137)

Put (137) in (5),

$$ \Psi_{62}= \pm\frac{B_{2} \sqrt{-\beta-2 \gamma}}{\sqrt{\alpha}} \pm\frac{ B_{1} \sqrt{-6 (\beta+2 \gamma)}}{\sqrt{\alpha} } \biggl(\frac{B_{2}}{ (\exp(B_{2}\xi)-B_{1})} \biggr) . $$
(138)

3 Discussion of the results

After successfully employing the modified F-expansion method on four important models, now in this section we shall discuss the similarities and dissimilarities of our novel constructed results with other results in the previous literature. By choosing different values of \(a_{i}\) and \(b_{i}\) in Eq. (5) with Eq. (6), we have obtained a collection of different solutions. Few of our results are similar to others, our solution (15) and (19) approximate in the same way as (2.37), (2.59) in [24], respectively. In the same way our constructed solutions (39) and (39) are similar to the solutions (22) and (26) in [23], respectively. Furthermore our solutions (49) and (81) are approximately similar solutions to (3.16) and (3.14) in [27]. The results of all our constructed solutions of both models are new and have not been investigated before in any previous research literature. The discussion of the results and graphically illustration of some solution demonstrate that our methods are more efficient, and a reliable and powerful tool to solve nonlinear problems.

4 Conclusion

From this study, we have seen the analytical structure of the complex fractional Kundu–Eckhaus, the van der Waals normal form for fluidized granular matter, the Benny–Luke and the \((3 + 1)\)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov waves models for constructing the exact, solitary wave solutions by employing the modified F-expansion method. The constructed solutions are novel and more general. These results facilitate us to explore the physical phenomena of these nonlinear models. The obtained results having potential applications in mathematical physics.

References

  1. Jafarian, A., Ghaderi, P., Golmankhaneh, A.K.: Construction of soliton solution to the Kadomtsev–Petviashvili-II equation using homotopy analysis method. Rom. Rep. Phys. 65(1), 76–83 (2013)

    Google Scholar 

  2. Jafarian, A., Ghaderi, P., Golmankhaneh, A.K., Baleanu, D.: Analytical approximate solutions of the Zakharov–Kuznetsov equations. Rom. Rep. Phys. 66(2), 296–306 (2014)

    Google Scholar 

  3. Baleanu, D., Inc, M., Yusuf, A., Isa Aliyu, A.: Traveling wave solutions and conservation laws for nonlinear evolution equation. J. Math. Phys. 59, 023506 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baleanu, D., Inc, M., Yusuf, A., Isa Aliyu, A.: Optical solitons, nonlinear self-adjointness and conservation laws for Kundu–Eckhaus equation. Chin. J. Phys. 55, 2341–2355 (2017)

    Article  MathSciNet  Google Scholar 

  5. Inc, M., Yusuf, A., Isa Aliyu, A.: Dark optical and other soliton solutions for the three different nonlinear Schrödinger equations. Opt. Quantum Electron. 49, 354 (2017)

    Article  Google Scholar 

  6. Inc, M., Yusuf, A., Isa Aliyu, A., Baleanu, D.: Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics. Opt. Quantum Electron. 50, 190 (2018)

    Article  Google Scholar 

  7. Inc, M., Yusuf, A., Isa Aliyu, A., Baleanu, D.: Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Opt. Quantum Electron. 50, 20 (2018)

    Article  Google Scholar 

  8. Inc, M., Yusuf, A., Isa Aliyu, A., Baleanu, D.: Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law nonlinearity. Optik 162, 65–75 (2018)

    Article  Google Scholar 

  9. Tchier, F., Yusuf, A., Isa Aliyu, A.: Mustafa inc, Soliton solutions and conservation laws for Lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320–336 (2017)

    Article  Google Scholar 

  10. Helal, M.A., Seadawy, A.R.: Exact soliton solutions of an D-dimensional nonlinear Schrödinger equation with damping and diffusive terms. Z. Angew. Math. Phys. 62, 839–847 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lu, D., Seadawy, A.R., Arshad, M., Wang, J.: New solitary wave solutions of \((3+1)\)-dimensional nonlinear extended Zakharov–Kuznetsov and modified KdV–Zakharov–Kuznetsov equations and their applications. Results Phys. 7, 899–909 (2017)

    Article  Google Scholar 

  12. Seadawy, A.R.: Solitary wave solutions of tow-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in a dust acoustic plasmas. Pramana J. Phys. 89, 49 (2017)

    Article  Google Scholar 

  13. Ali, A., Seadawy, A.R., Lu, D.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017)

    Article  Google Scholar 

  14. Ali, A., Seadawy, A.R., Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16, 219–226 (2018)

    Article  Google Scholar 

  15. Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017)

    Article  MathSciNet  Google Scholar 

  16. Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrodinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 182 (2015)

    Article  Google Scholar 

  17. Khater, A.H., Callebaut, D.K., Seadawy, A.R.: General soliton solutions of an n-dimensional complex Ginzburg–Landau equation. Phys. Scr. 62, 353–357 (2000)

    Article  MathSciNet  Google Scholar 

  18. Khater, A.H., Helal, M.A., Seadawy, A.R.: General soliton solutions of n-dimensional nonlinear Schrodinger equation. Il Nuovo Cimento B 115B, 1303–1312 (2000)

    MathSciNet  Google Scholar 

  19. Seadawy, A.R.: New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 62, 3741–3755 (2011)

    Article  MathSciNet  Google Scholar 

  20. Seadawy, A.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions. Optik, Int. J. Light Electron Opt. 139, 31–43 (2017)

    Article  Google Scholar 

  21. Seadawy, A.R.: Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili–Burgers equation in quantum plasma. Math. Methods Appl. Sci. 40(5), 1598–1607 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mirzazadeh, M., et al.: Optical solitons and conservation law of Kundu–Eckhaus equation. Optik 154, 551–557 (2018)

    Article  Google Scholar 

  23. Lu, D., Seadawy, A.R., Khater, M.: Bifurcations of new multi soliton solutions of the van der Waals normal form for fluidized granular matter via six different methods. Results Phys. 7, 2028–2035 (2017

    Article  Google Scholar 

  24. Khater, M.M.A., Seadawy, A.R., Lu, D.: Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications. Optik 158, 434–450 (2018)

    Article  Google Scholar 

  25. Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Travelling wave solutions of Drinfeld–Sokolov–Wilson, Whitham–Broer–Kaup and \((2+1)\)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 55, 78097 (2017)

    Article  Google Scholar 

  26. Akter, J., Ali Akbar, M.: Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method. Results Phys. 5, 125–130 (2015)

    Article  Google Scholar 

  27. Tariq, K.H., Seadawy, A.R.: Bistable Bright–Dark solitary wave solutions of the \((3 + 1)\)-dimensional breaking soliton, Boussinesq equation with dual dispersion and modified Korteweg–de Vries–Kadomtsev–Petviashvili equations and their applications. Results Phys. 7, 1143–1149 (2017)

    Article  Google Scholar 

  28. Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Travelling wave solutions of Drinfeld–Sokolov–Wilson, Whitham–Broer–Kaup and \((2+1)\)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 000, 1–18 (2017)

    Google Scholar 

  29. Ali, A., Seadawy, A., Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16, 219–226 (2018)

    Article  Google Scholar 

  30. Ali, A., Seadawy, A., Lu, D.: New solitary wave solutions of some nonlinear models and their applications. Adv. Differ. Equ. 2018, 232 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lu, D., Seadawy, A., Ali, A.: Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results Phys. 9, 1403–1410 (2018)

    Article  Google Scholar 

  32. Lu, D., Seadawy, A., Ali, A.: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications. Results Phys. 9, 313–320 (2018)

    Article  Google Scholar 

  33. Helal, M.A., Seadawy, A.R., Zekry, M.H.: Stability analysis solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave equation. Appl. Math. Sci. 7, 3355–3365 (2013)

    MathSciNet  Google Scholar 

  34. Khater, A.H., Callebaut, D.K., Malfliet, W., Seadawy, A.R.: Nonlinear dispersive Rayleigh–Taylor instabilities in magnetohydro-dynamic flows. Phys. Scr. 64, 533–547 (2001). https://doi.org/10.1016/j.jksus.2017.12.015

    Article  MATH  Google Scholar 

  35. Seadawy, A.R., Lu, D., Khater, M.M.A.: Bifurcations of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chin. J. Phys. 55(4), 1310–1318 (2017). https://doi.org/10.1016/j.cjph.2017.07.005

    Article  Google Scholar 

  36. Seadawy, A.R., Lu, D., Khater, M.M.A.: Solitary wave solutions for the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. J. Ocean Eng. Sci. 2, 137–142 (2017)

    Article  Google Scholar 

  37. Seadawy, A.R.: Travelling wave solutions of a weakly nonlinear two-dimensional higher order Kadomtsev–Petviashvili dynamical equation for dispersive shallow water waves. Eur. Phys. J. Plus 132, Article ID 29 (2017)

    Article  Google Scholar 

  38. Seadawy, A.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions. Optik, Int. J. Light Electron Opt. 139, 31–43 (2017)

    Article  Google Scholar 

  39. Abdullah, Seadawy, A., Jun, W.: Modified KdV–Zakharov–Kuznetsov dynamical equation in a homogeneous magnetised electron-positron-ion plasma and its dispersive solitary wave solutions. Pramana J. Phys. 91, 26 (2018)

    Article  Google Scholar 

  40. Seadawy, A., Sultan, A.Z.: Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions. Results Phys. 8, 286–291 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the referees for their suggestions and comments.

Funding

Funding information is not applicable / No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All parts contained in the research were carried out by the authors through hard work and a review of the various references and contributions in the field of mathematics and physics. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Aly R. Seadawy or Dianchen Lu.

Ethics declarations

Competing interests

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors did not have any competing interests in this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Seadawy, A.R. & Lu, D. Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. Adv Differ Equ 2018, 334 (2018). https://doi.org/10.1186/s13662-018-1792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-018-1792-7

Keywords