- Research
- Open Access
- Published:
Approximation of derivations and the superstability in random Banach ∗-algebras
Advances in Difference Equations volume 2018, Article number: 418 (2018)
Abstract
We prove that approximations of derivations on random Banach ∗-algebras are exactly derivations by using a fixed point method. Furthermore, we show that approximations of quadratic ∗-derivations on random Banach ∗-algebras are exactly quadratic ∗-derivations. We, moreover, prove that approximations of derivations on random \(C^{*}\)-ternary algebras are exactly derivations by using a fixed point method.
1 Introduction
Ulam [1] presented an effective lecture at the University of Wisconsin in which he stated a number of essential unsolved problems, in the fall of 1940. The next question concerning the stability of homomorphisms was among those:
Assume that \(\varOmega_{1}\) is a group and suppose that \(\varOmega_{2}\) is a metric group with a metric \(\Delta (\cdot,\cdot)\). Let \(\xi > 0\), is there \(\eta > 0\) such that if a function \(\varphi : \varOmega_{1}\to \varOmega _{2}\) satisfies the inequality \(\Delta (\varphi (uv), \varphi (u) \varphi (v)) <\eta \) for all \(u,v \in \varOmega_{1}\) then there is a homomorphism \(\varPhi : \varOmega_{1}\to \varOmega_{2}\) with \(\Delta (\varphi (u),\varPhi (u)) <\xi \) for all \(u \in \varOmega_{1}\)?
When the answer is established, the functional equation for homomorphisms is stable.
The first mathematician who presented the result concerning the stability of functional equations was Hyers [2]. He intelligently answered Ulam’s question when \(\varOmega_{1}\) and \(\varOmega_{2}\) are Banach spaces. Recently, Rassias [3] and others have obtained important results on stability and applied them to the investigations in the nonlinear sciences.
2 Preliminaries
Assume that \(\Delta^{+}\) is the family of distribution functions, i.e., the family of all left-continuous functions \(G:[-\infty ,\infty ] \to [0,1]\) such that G is increasing on \([-\infty ,\infty ]\), \(G(0)=0\) and \(G(+\infty )=1\). \(D^{+}\subseteq \Delta^{+}\) contains each function \(G \in \Delta^{+}\) for which \(\ell^{-}G(+\infty )=1\) and \(\ell^{-}g(x)\) is the left limit of the map g at x, i.e., \(\ell^{-}g(x)=\lim_{t\to x^{-}}g(t)\). In \(\Delta^{+}\), we have \(H \leq F\) if and only if \(H(s) \leq F(s)\) for all s in \(\mathbb{R}\) (partially ordered). Note that the function \(\varepsilon_{u}\) defined by
is an element of \(\Delta^{+}\) and \(\varepsilon_{0}\) is the maximal element in this space. For more details see [4,5,6].
Definition 2.1
([6])
Let \(I=[0,1]\). A continuous triangular norm (briefly, ct-norm) is a function T from I to I with continuity property such that:
-
(a)
\(T(\theta ,\vartheta )=T(\vartheta ,\theta )\) and \(T(\theta ,T( \vartheta ,\iota ))=T(T(\theta ,\vartheta ),\iota )\) for all \(\theta ,\vartheta ,\iota \in I\);
-
(b)
\(T(\theta ,1)=\theta \) for \(0\leq \theta \leq 1\);
-
(c)
\(T(\theta ,\vartheta )\leq T(\iota ,\kappa )\) whenever \(\theta \leq \iota \) and \(\vartheta \leq \kappa \) for each \(\theta ,\vartheta ,\iota ,\kappa \in I\).
\(T_{P}(\theta ,\vartheta )=\theta \vartheta \), \(T_{M}(\theta ,\vartheta )=\min (\theta ,\vartheta )\) and \(T_{L}(\theta ,\vartheta )=\max ( \theta +\vartheta -1,0)\) (the Lukasiewicz t-norm) are some examples of t-norms. Also, we define \(\prod^{n}_{j=1}\theta_{j}=T^{n-1}( \theta_{1},\ldots,\theta_{n})\).
Definition 2.2
([6])
Suppose that T is a ct-norm, V is a vector space and let μ be a map from V to \(D^{+}\). In this case, the ordered triple \((V,\mu ,T)\) with the properties
-
(RN1)
\(\mu_{v}(\theta )=\varepsilon_{0}(\theta )\) for all \(\theta >0\) if and only if \(v=0\);
-
(RN2)
\(\mu_{\alpha v}(\theta )=\mu_{v}(\frac{\theta }{ \vert \alpha \vert })\) for all \(v\in V\), \(\alpha \neq 0\);
-
(RN3)
\(\mu_{u+v}(\theta +\vartheta )\geq T(\mu_{u}(\theta ),\mu _{v}(\vartheta ))\) for all \(u,v\in V\) and all \(\theta ,\vartheta \geq 0\),
is said to be a random normed space (in short, RN-space).
Let \((V, \Vert \cdot \Vert )\) be a linear normed space. Then
for all \(\vartheta >0\), defines a random norm, and the ordered triple \((V,\mu ,T_{M})\) is an RN-space.
Definition 2.3
Assume that the following algebraic structure on an RN-space \((V,\mu ,T)\) holds:
-
(RN-4)
\(\mu_{uv}(\theta \vartheta )\geq T'(\mu_{u}(\theta ), \mu _{v}(\vartheta ))\) for each \(u,v\in V\) and all \(\theta ,\vartheta >0\), where \(T'\) is a ct-norm.
Then \((V,\mu ,T,T')\) is called a random normed algebra.
Suppose that \((V, \Vert \cdot \Vert )\) is a normed algebra. Then \((V,\mu ,T _{M},T_{P})\) is a random normed algebra, where
for all \(\vartheta >0\) if and only if
For more details, see [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22].
Definition 2.4
A random Banach ∗-algebra \(\mathcal{B}\) is a random complex Banach algebra \(({\mathcal{B}},\mu ,T,T')\), together with an involution on \(\mathcal{B}\) which is a mapping \(g\mapsto g^{*}\) from \(\mathcal{B}\) into \(\mathcal{B}\) that satisfies
-
(i)
\(g^{**}=g\) for \(g\in \mathcal{B}\);
-
(ii)
\((a g+b h)^{*}=\overline{a} g^{*}+\overline{b} h^{*}\);
-
(iii)
\((gh)^{*}=h^{*}g^{*}\) for \(g,h\in \mathcal{B}\).
If, in addition, \(\mu_{g^{*}g}(\theta \vartheta )=T'(\mu_{g}(\theta ), \mu_{g}(\vartheta ))\) for \(g\in \mathcal{B}\) and \(\theta ,\vartheta >0\), then \(\mathcal{B}\) is called a random \(C^{*}\)-algebra.
Assume that \(\mathcal{B}\) is a random Banach ∗-algebra. A derivation on \(\mathcal{B}\) is a mapping δ from \(\mathcal{B}\) to \(\mathcal{B}\) such that:
for all \(g,h\in \mathcal{B}\) and all \(\lambda \in \mathbb{C}\). A derivation δ is called a ∗-derivation on \(\mathcal{B}\) if \(\delta (g^{*})=\delta (g)^{*} \) for all \(g \in \mathcal{B}\) (see [23]).
Recall that
respectively, are Cauchy additive and Cauchy quadratic functional equations.
Firstly, Baker, Lawrence and Zorzitto [24] defined the concept of superstability. Let \((\mathcal{B},\mu ,T,T')\) be an RN algebra. The random norm is multiplicative if \(\mu_{uv}(\theta \vartheta )=T'(\mu _{u}(\theta ), \mu_{v}(\vartheta ))\) for all \(u,v\in \mathcal{B}\) and all \(\theta ,\vartheta >0\).
Suppose that \(\varGamma \neq \emptyset \). A function \(\Delta : \varGamma \times \varGamma \rightarrow [0, \infty ] \) is a generalized metric (GM) on Γ if
-
(1)
\(\Delta (\rho ,\varrho )=0 \) if and only if \(\rho =\varrho \);
-
(2)
\(\Delta (\rho ,\varrho )=\Delta (\varrho ,\rho ) \) for all \(\rho , \varrho \in \varGamma \);
-
(3)
\(\Delta (\rho ,\varrho )\leq \Delta (\rho ,\sigma )+\Delta (\sigma , \varrho ) \) for all \(\rho ,\varrho ,\sigma \in \varGamma \).
Theorem 2.1
Suppose that \((\varGamma , \Delta )\) is a complete GM space and assume that the selfmapping ϒ on Γ with Lipschitz constant \(0< L<1\) is strictly contractive. Then, for \(\varrho \in \varGamma \), either
for each \(0\leq n\in \mathcal{Z}\), or there exists \(n_{0}\in \mathbb{N}\) such that
-
(1)
\(\Delta (\varUpsilon^{n}\varrho , \varUpsilon^{n+1}\varrho )<\infty \), \(\forall n \geq n_{0} \);
-
(2)
the sequence \(\{\varUpsilon^{n} \varrho \}\) tends to \(\sigma^{*}\) in Γ;
-
(3)
\(\varUpsilon (\sigma^{*})=\sigma^{*}\);
-
(4)
\(\varUpsilon (\sigma^{*})=\sigma^{*}\) and is unique in \(\mathbb{E}=\{ \sigma \in \varGamma| \Delta (\varUpsilon^{n_{0}} \varrho , \sigma )< \infty \}\)
-
(5)
\((1-L)\Delta (\sigma , \sigma^{*}) \leq \Delta (\sigma ,\varUpsilon \sigma )\) for all \(\sigma \in \varGamma \).
3 Approximation of derivations on random Banach ∗-algebras
Assume that a random ∗-Banach algebra \(\mathcal{B}\) has unit e. Our results improve and expand the result presented by Jang [27].
Theorem 3.1
Let \(\psi_{1}: \mathcal{B} \times \mathcal{B} \rightarrow D^{+}\) and \(\psi_{2}: \mathcal{B} \rightarrow D^{+}\) be distribution functions. Assume that \(f: \mathcal{B} \rightarrow \mathcal{B} \) is a mapping such that
for all \(\xi \in \mathbb{T}\), \(p,q\in \mathcal{B}\) and \(t>0\). If there exist \(n\in \mathbb{N}\) and \(0< L<1\) such that \(\psi_{1} (sp,sq,Lst)> \psi_{1}(p,q,t)\), \(\psi_{1} (sp,q,Lst)>\psi_{1}(p,q,t)\), \(\psi_{1} (p,sq,Lst)> \psi_{1}(p,q,t)\) and \(\psi_{2} (sp,Lst)>\psi_{2}(p,t)\) for all \(p,q \in \mathcal{B}\) and \(t>0\). Then f on \(\mathcal{B}\) is a ∗-derivation.
Proof
Putting \(p=q\) and \(\xi =1\) in (3.1), we get
for all \(p \in \mathcal{B}\) and \(t>0\). By induction, we can prove that
for all \(p,q \in \mathcal{B}\), \(t>0\) and \(n\geq 2\) where \(\sum^{n-1} _{j=1} t_{j}=t\).
Define
for \(p \in \mathcal{B}\), \(t>0\) and \(s\geq 2\) where \(\sum^{s-1}_{j=1} t _{j}=t\). So
Put \(\varGamma =\{g; g:\mathcal{B} \rightarrow \mathcal{B}\}\). Define a function \(\Delta : \varGamma \times \varGamma \to [0, \infty ]\) such that
where \(\vartheta , \upsilon \in \varGamma \). Miheţ and Radu [28] proved that \((\varGamma , \Delta )\) is a complete GM space. Define a mapping \(H: \varGamma \rightarrow \varGamma \) by \(H(\vartheta )(p)=s ^{-1} \upsilon (sp)\). Put
where \(\vartheta ,\upsilon \in \varGamma \). Then
So, for \(\vartheta ,\upsilon \in S\), we have
Then the mapping H on Γ with Lipschitz constant L is strictly contractive. From (3.6), we have
which implies that \(\Delta (H(f), f)\leq 1/ \vert s \vert \). Theorem 2.1 implies that, in the set
\(h: \mathcal{B} \rightarrow \mathcal{B}\) is a unique fixed point of H. Also for every \(p \in \mathcal{A}\)
Using (3.6), we get
for all \(p,q \in \mathcal{B}\), \(\xi \in T\) and \(t>0\). Let \(\xi =\xi _{1}+i \xi_{2} \in \mathbb{C}\), \(\xi_{1},\xi_{2} \in \mathbb{R}\) and let \(\mu_{1}=\xi_{1}-[\xi_{1}]\) and \(\mu_{2}=\xi_{2}-[\xi_{2}]\) where \([\xi ]\) denotes the integer part of ξ. So \(0\leq \mu_{i}<1\) (\(1 \leq i \leq 2\)). Now, we represent \(\mu_{i}\) as \(\mu_{i}=\frac{\xi _{i,1}+\xi_{i,2}}{2}\) such that \(\xi_{ i,j} \in \mathbb{T}\) (\(1\leq i\), \(j\leq 2\)). Since \(h(\xi p+q)=\lambda h(p)+h(q)\) for \(\xi \in T\), we conclude that
for all \(p \in \mathcal{B}\) and \(\xi \in \mathbb{C}\). So, on \(\mathcal{B}\), h is a \(\mathbb{C}\)-linear mapping. For the involution of h, we have
Now, we prove the derivation property of h. In (3.2), we replace p by \(s^{n} p\), q by \(s^{n} q\), divide by \(s^{2n}\) and get
In (3.9), letting \(n\rightarrow \infty \), we get
for all \(p,q \in \mathcal{B}\). So h is a ∗-derivation on \(\mathcal{B}\). Now, in (3.2), replacing p by \(s^{n} p\) and dividing by \(s^{n}\), we get
for all \(p,q \in \mathcal{B}\), \(n\in \mathbb{N}\) and \(t>0\). Letting \(n\rightarrow \infty \), we get
for all \(p,q \in \mathcal{B}\). Fix \(m \in \mathbb{N}\). From
for all \(p,q \in \mathcal{B}\), we have \(pf(q)=p\frac{f(s^{m} q)}{s ^{m}} \) for all \(p,q \in \mathcal{B}\) and \(m \in \mathbb{N}\). Letting \(m\rightarrow \infty \), we get \(p f(q)=p h(q)\). Putting \(p=e\), we get \(h(q)=f(q)\) for all \(q \in \mathcal{B}\). Hence f is a ∗-derivation on \(\mathcal{B}\). □
4 Approximation of quadratic ∗-derivations on random Banach ∗-algebras
Definition 4.1
Assume that a mapping \(\delta : \mathcal{B} \rightarrow \mathcal{B} \) satisfies
-
(1)
\(\delta (\eta +\kappa )+\delta (\eta -\kappa )-2\delta (\eta )-2 \delta (\kappa )=0\);
-
(2)
δ is quadratic homogeneous, that is, \(\delta (\lambda \eta )= \lambda^{2} \delta (\eta )\);
-
(3)
\(\delta (\eta \kappa )=\delta (\eta )\kappa^{2}+\eta^{2} \delta ( \kappa )\);
-
(4)
\(\delta (\eta^{*} )=\delta (\eta )^{*}\);
for all \(\eta , \kappa \in \mathcal{B}\) and \(\lambda \in \mathbb{C}\). Then it is called a ∗-quadratic derivation on \(\mathcal{B}\).
Theorem 4.2
Assume that \(\psi_{1}:\mathcal{B} \times \mathcal{B} \rightarrow D ^{+}\) and \(\psi_{2}:\mathcal{B} \rightarrow D^{+}\) are distribution functions. Let \(f:\mathcal{B} \rightarrow \mathcal{B}\) be a function such that
for all \(\xi \in \mathbb{C}\), \(p,q\in \mathcal{B}\) and \(t>0\). If there exist \(s\in \mathbb{N} \) and \(0< L<1\) such that \(\psi_{1} (2^{s} p, 2^{s} q, 2^{2s}Lt)>\psi_{1} (p,q,t)\), \(\psi_{1} (2^{s} p,q,2^{2s}Lt )>\psi _{1}(p,q,t)\), \(\psi_{1}(p, 2^{s} q,2^{2s}Lt)>\psi_{1}(p,q,t)\) and \(\psi_{2} (2^{s} p, 2^{2s}Lt)>\psi_{2}(p,t)\) for all \(p,q \in \mathcal{B}\) and \(t>0\). Then, on \(\mathcal{B}\), f is a ∗-quadratic derivation.
Proof
Putting \(p=q\) and \(\xi =1\) in (4.1), we get
for all \(p \in \mathcal{B}\) and \(t>0\). Induction on n yields
for all \(p,q \in \mathcal{B}\), \(n\geq 2\) and \(t>0\) where \(\sum^{n-1} _{i=0}t_{i}=t\). Define
Then we have
The set of all mappings \(\zeta : \mathcal{B} \rightarrow \mathcal{B}\) is denoted by Γ. Define a function \(\Delta : \varGamma \times \varGamma \rightarrow [0, \infty ]\) by
Miheţ and Radu [28] proved that \((\varGamma , \Delta )\) is a complete GM space. Now, define a mapping \(H: \varGamma \rightarrow \varGamma \) by \(H(\zeta )(p)=2^{-2s} \zeta (2^{s} p)\). Putting
we obtain
Then, for \(\zeta ,\eta \in S\), we have
which means that H on Γ, with Lipschitz constant L is a strictly contractive mapping. Also, for \(p \in \mathcal{B}\), we have
which implies that \(\Delta (H(f), f)\leq 1/2^{2s}\). Using Theorem 2.1, we conclude that, in the set
and for each \(p \in \mathcal{B}\), \(h: \mathcal{B}\rightarrow \mathcal{B}\) is a unique fixed point of H and
By (4.9), we have
for all \(p,q \in \mathcal{B}\) and \(t>0\). Then h is a quadratic mapping on \(\mathcal{B}\). Also, we have
which implies that h is quadratic homogeneous.
Now, replacing p by \(2^{ns}p\) in (4.2) and dividing by \(2^{-2sn}\), we get
for all \(p,q \in \mathcal{B}\), \(n\in \mathbb{N}\) and \(t>0\). Letting \(n\rightarrow \infty \), we get
for all \(p,q \in \mathcal{B}\). Let \(m \in \mathbb{N}\). We have
for all \(p,q\in \mathcal{B}\), and so \(p^{2} f(q)=p^{2} \frac{f(2^{ms}q)}{2^{2ms}}\) for all \(p,q\in \mathcal{B}\) and \(m \in \mathbb{N}\). Letting \(m \rightarrow \infty \) yields \(p^{2}f(q)=p ^{2} h(q)\). Putting \(p=e\), we get \(h(q)=f(q)\) for all \(q \in \mathcal{B}\). Hence, on \(\mathcal{B}\), f is a ∗-quadratic derivation. □
5 Derivations on random \(C^{*}\)-ternary algebras
A complex random Banach space \((\mathcal{B},\mu ,T,T')\), which has a ternary product \((f, g, h) \longmapsto [f, g, h]\) of \(\mathcal{B}^{3}\) into \(\mathcal{B}\), is a random \(C^{*} \)-ternary algebra if (see [29]):
-
(1)
\([\xi f+v, g, h]=\xi [f, g, h]+[v, g, h]\) for all \(\xi \in \mathbb{C}\);
-
(2)
\([ f, \xi g+v, h]=\xi [f, g, h]+[f, v, h]\) for all \(\xi \in \mathbb{C}\);
-
(3)
\([ f, g, \xi h+v]=\xi [f, g, h]+[f, g, v]\) for all \(\xi \in \mathbb{C}\);
-
(4)
\([f, g, [h, k, j]]=[f, [k, h, g], j]=[[f, g, h], k, j]\);
-
(5)
\(\Vert [f, g, h] \Vert \leq \Vert f \Vert \cdot \Vert g \Vert \cdot \Vert h \Vert \);
-
(6)
\(\Vert [f,f,f] \Vert = \Vert f \Vert ^{3}\);
for \(f,g,h,v,k,j \in \mathcal{B}\).
If \((\mathcal{B},\mu ,T,T')\) has the unit e satisfying \(f=[f, e, e]=[e, e, f]\) for all \(f \in \mathcal{B}\), then the random \(C^{*}\)-ternary algebra has unit e. If for \(f \in \mathcal{B}\), we have \([e,f,e]=f^{*} \), then ∗ is an involution on the \(C^{*}\)-ternary algebra. A \(C^{*}\)-ternary derivation is a mapping \(\delta : \mathcal{B}\longrightarrow \mathcal{B}\) such that
for all \(f,g,h\in \mathcal{B}\) and \(\xi \in \mathbb{C}\). Recall that \(\delta ([e, f, e])=[e, \delta (f), e]\) implies that δ is an involution.
Theorem 5.1
Assume that \(\mathcal{B}\) is a random \(C^{*}\)-ternary algebra which has the unit e. Suppose that \(\psi_{1}: \mathcal{B}^{2} \longrightarrow [0,\infty ) \) and \(\psi_{2}: \mathcal{B}^{3} \longrightarrow [0, \infty ) \) are functions. Let \(f: \mathcal{B} \longrightarrow \mathcal{B}\) be a mapping such that
for all \(\lambda \in \mathbb{C}\), \(p,q,r\in \mathcal{B}\) and \(t>0\). Assume there exist \(s\in \mathbb{N}\) and \(0< L<1\) such that \(\psi_{1} (s ^{i} p, s^{j} q,s^{(i+j)}L^{(i+j)}t)>\psi_{1} (p,q,t)\), \(\psi_{2} (s ^{i} p, s^{j} q, s^{k} r,s^{(i+j+k)}L^{(i+j+k)}t)>\psi_{2} (p,q,r,t)\) for all \(p,q,r \in \mathcal{B}\) and \(i, j, k=0, 1\). Then on \(\mathcal{B}\), f is a ∗-derivation.
Proof
Put
for \(p\in \mathcal{B}\) and \(t>0\) where \(\sum^{s-1}_{j=1} t_{j}=t\). Then we have
We use similar method presented in the proof of Theorem 3.1. Let Γ be the set of all mappings \(r: \mathcal{B}\longrightarrow \mathcal{B}\). Define a function \(\Delta : \varGamma \times \varGamma \longrightarrow [0, \infty ]\) by
for \(\zeta ,\eta \in \varGamma \), \(z \in \mathcal{B}\) and \(t>0\). Miheţ and Radu [28] proved that \((\varGamma , \Delta )\) is a complete GM space. Define a mapping \(H: \varGamma \longrightarrow \varGamma \) by \(H(\zeta )(z)=s^{-1} \zeta (sz)\). Now
implies that
and for \(\zeta ,\eta \in \varGamma \)
Therefore H on Γ with Lipschitz constant L is a strictly contractive function. From (5.4), we have
So \(\Delta (H(f), f)\leq 1/ \vert s \vert \). Using Theorem 2.1, we conclude that, in the set
\(h: \mathcal{B} \longrightarrow \mathcal{B}\) is a unique fixed point of H.
Now, for every \(z \in \mathcal{B}\), we have
which implies that h is a \(\mathbb{C}\)-linear mapping on \(\mathcal{B}\). Also, we can show that h has the \(C^{*}\)-ternary derivation property,
So
for all \(p,q,r \in \mathcal{B}\). Also,
which implies that, on \(\mathcal{B}\), h is a ∗-derivation.
Now, in (5.2), we replace q by \(s^{n} q\), r by \(s^{n} r\) and divide by \(s^{2n}\). Letting \(n\to \infty \), we get
which implies that
for all \(p,q,r \in \mathcal{B}\). Putting \(f(p)-h(p)\) instead of q and r in (5.7) and (5.8), we obtain \(\mu_{ h(p)-f(p)}(t)=1\). Hence, on \(\mathcal{B}\), f is a ∗-derivation. □
References
Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience, New York (1960)
Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Agarwal, R.P., Saadati, R., Salamati, A.: Approximation of the multiplicatives on random multi-normed space. J. Inequal. Appl. 2017, 204 (2017)
Baderi, Z., Saadati, R.: Generalized stability of Euler–Lagrange quadratic functional equation in random normed spaces under arbitrary t-norms. Thai J. Math. 14, 585–590 (2016)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)
Lee, S., Saadati, R.: On stability of functional inequalities at random lattice ϕ-normed spaces. J. Comput. Anal. Appl. 15, 1403–1412 (2013)
Wang, Z., Saadati, R.: Approximation of additive functional equations in NA Lie \(C^{*}\)-algebras. Demonstr. Math. 51, 37–44 (2018)
Mohammad, M.V., Vaezpour, S.M., Saadati, R.: On nonlinear stability of operation preserving non-Archeimedean ρ-functional equations in latticetic random Banach lattice spaces. J. Math. Anal. 8, 113–123 (2017)
Park, C., Eshaghi Gordji, M., Saadati, R.: Random homomorphisms and random derivations in random normed algebras via fixed point method. J. Inequal. Appl. 2012, 194 (2012)
Bao, J., Liu, X., Wang, P.: Partially equi-integral \(\phi_{0}\)-stability of nonlinear differential systems. J. Math. Comput. Sci. 16, 472–480 (2016)
Ardabili, J.S., Samian, Z.P.: An asymptotic stability criteria of delay differential equations on time scales. J. Math. Comput. Sci. 15, 137–145 (2015)
Rostamy, D., Mottaghi, E.: Convergence analysis and approximation solution for the coupled fractional convection-diffusion equations. J. Math. Comput. Sci. 16, 193–204 (2016)
Mohammad, M.V., Vaezpour, S.M., Saadati, R.: Nonlinear stability of ρ-functional equations in latticetic random Banach lattice spaces. Mathematics 6(2), Article ID 22 (2018). https://doi.org/10.3390/math6020022
Park, C., Anastassiou, G.A., Saadati, R., Yun, S.: Functional inequalities in fuzzy normed spaces. J. Comput. Anal. Appl. 22, 601–612 (2017)
Ciepliński, K.: On a functional equation connected with bi-linear mappings and its Hyers–Ulam stability. J. Nonlinear Sci. Appl. 10, 5914–5921 (2017)
Choi, G., Jung, S., Lee, Y.: Approximation properties of solutions of a mean value type functional inequalities. J. Nonlinear Sci. Appl. 10, 4507–4514 (2017)
Kim, G.H., Lee, Y.W.: Superstability of Pexiderized functional equations arising from distance measures. J. Nonlinear Sci. Appl. 9, 413–423 (2016)
Alshybani, S., Vaezpour, S.M., Saadati, R.: Generalized Hyers–Ulam stability of mixed type additive-quadratic functional equation in random normed spaces. J. Math. Anal. 8(5), 12–26 (2017)
Park, C., Shin, D., Saadati, R., Lee, J.: A fixed point approach to the fuzzy stability of an AQCQ-functional equation. Filomat 30, 1833–1851 (2016)
Naeem, R., Anwar, M.: Jensen type functionals and exponential convexity. J. Math. Comput. Sci. 17, 429–436 (2017)
Park, C., Anastassiou, G.A., Saadati, R., Yun, S.: Functional inequalities in fuzzy normed spaces. J. Comput. Anal. Appl. 22, 601–612 (2017)
Bratteli, O., Kishimoto, A., Robinson, D.W.: Approximately inner derivations. Math. Scand. 103, 141–160 (2008)
Baker, J.A., Lawrence, J., Zorzitto, F.: The stability of the equation \(f(x+y)=f(x)f(y)\). Proc. Am. Math. Soc. 74, 242–246 (1979)
Cadariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1), Article ID 4 (2003)
Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)
Jang, S.Y.: Superstability of derivations on Banach ∗-algebras. Adv. Differ. Equ. 2017, 193 (2017)
Mihet, D., Radu, V.: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343, 567–572 (2008)
Zettl, Z.: A characterization of ternary rings of operators. Adv. Math. 48, 117–143 (1983)
Funding
No funding was received.
Author information
Authors and Affiliations
Contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Saadati, R., Park, C. Approximation of derivations and the superstability in random Banach ∗-algebras. Adv Differ Equ 2018, 418 (2018). https://doi.org/10.1186/s13662-018-1882-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1882-6
MSC
- 46S50
- 47H10
- 26E60
Keywords
- Derivation
- Quadratic derivation
- Superstability
- Fixed point method
- Random Banach ∗-algebra
- Random \(C^{*}\)-ternary algebra