As mentioned in [20, 22, 24], one can prove the following lemma and remarks which will be used later.
Lemma 3.1
Assume that
\(b\in C^{1}([0,+\infty))\)
satisfies (1.4) and (1.5) with
\(-\infty\leq\kappa<+\infty\). Let
\((u,v)\)
be a solution to problem (1.1)–(1.3). Then there exist
\(R_{0}>0\), \(\delta>1\), and
\(M_{0}>0\), depending only on
n
and
b, such that for any
\(R>R_{0}\),
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb {R}^{n}}u(x,t)\eta_{R}\bigl( \vert x \vert \bigr) \,\mathrm{d}x&\ge-M_{0}R^{-2} \int_{B_{\delta R}\setminus B_{R}} u(x,t)\eta_{R}\bigl( \vert x \vert \bigr) \,\mathrm{d}x \\ &\quad {} + \int_{\mathbb {R}^{n}}\bigl( \vert x \vert +1\bigr)^{\lambda_{1}}v^{p}(x,t) \eta_{R}\bigl( \vert x \vert \bigr)\,\mathrm{d}x,\quad t>0 \end{aligned}$$
(3.1)
and
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb {R}^{n}}v(x,t)\eta_{R}\bigl( \vert x \vert \bigr) \,\mathrm{d}x&\ge-M_{0}R^{-2} \int_{B_{\delta R}\setminus B_{R}} v(x,t)\eta_{R}\bigl( \vert x \vert \bigr) \,\mathrm{d}x \\ &\quad {} + \int_{\mathbb {R}^{n}}\bigl( \vert x \vert +1\bigr)^{\lambda_{2}}u^{q}(x,t) \eta_{R}\bigl( \vert x \vert \bigr)\,\mathrm{d}x, \quad t>0 \end{aligned}$$
(3.2)
in the distribution sense, where
$$\eta_{R}(s)= \textstyle\begin{cases} h(s),&0\le s\le R, \\ \frac{1}{2}h(s) (1+\cos\frac{(s-R)\pi}{(\delta-1)R} ), &R< s< \delta R, \\ 0,&s\ge\delta R \end{cases} $$
with
$$h(s)=\exp \biggl\{ \int_{0}^{s} \tilde{s}b(\tilde{s})\, \mathrm{d}\tilde{s} \biggr\} ,\quad r\ge0, $$
while
\(B_{r}\)
denotes the open ball in
\(\mathbb {R}^{n}\)
with radius
r
and centered at the origin.
Remark 3.1
If \(\kappa=+\infty\), then Lemma 3.1 holds for any fixed \(R>0\), but \(\delta>1\) and \(M_{0}>0\) depend also on R.
Let us seek the self-similar supersolutions to system (1.1) and (1.2) of the following form:
$$ \begin{aligned} &u(x,t)=(t+t_{0})^{-\mu} \mathcal{U}\bigl((t+t_{0})^{-1/2}\bigl( \vert x \vert +1 \bigr)\bigr), \\ &v(x,t)=(t+t_{0})^{-\nu}\mathcal{V}\bigl((t+t_{0})^{-1/2} \bigl( \vert x \vert +1\bigr)\bigr), \\ &\quad x\in\mathbb {R}^{n}, t\ge0 \end{aligned} $$
(3.3)
with
$$\mu=\frac{(2+\lambda_{1})+p(2+\lambda_{2})}{2(pq-1)},\qquad \nu=\frac{q(2+\lambda_{1})+(2+\lambda_{2})}{2(pq-1)}, $$
and \(t_{0}>0\) to be determined later. If \(\mathcal{U}, \mathcal{V}\in C^{1}([0,+\infty))\) solve
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n-1}{r} \mathcal{U}'(r) +(t+t_{0})^{1/2} \bigl((t+t_{0})^{1/2} r-1\bigr)b\bigl((t+t_{0})^{1/2} r-1\bigr)\mathcal{U}'(r) +\frac{1}{2}r\mathcal{U}'(r) \\ &\quad {}+\mu\mathcal{U}(r)+r^{\lambda_{1}}\mathcal{U}^{p}(r)\leq0, \quad r>(t+t_{0})^{-1/2}, \end{aligned}$$
(3.4)
$$\begin{aligned} &\mathcal{V}''(r)+\frac{n-1}{r} \mathcal{V}'(r) +(t+t_{0})^{1/2} \bigl((t+t_{0})^{1/2} r-1\bigr)b\bigl((t+t_{0})^{1/2}r-1 \bigr)\mathcal{V}'(r) +\frac{1}{2}r\mathcal{V}'(r) \\ &\quad {}+\nu\mathcal{V}(r)+r^{\lambda_{2}}\mathcal{V}^{q}(r)\leq0, \quad r>(t+t_{0})^{-1/2}, \end{aligned}$$
(3.5)
for fixed \(t>0\), respectively. Then \((u,v)\) given by (3.3) is a supersolution to system (1.1) and (1.2).
Lemma 3.2
Assume that
\(b\in C^{1}([0,+\infty))\)
satisfies (1.4) and (1.5) with
\(-n<\kappa\leq+\infty\). Let
\(pq>(pq)_{c}\)
with
\((pq)_{c}\)
defined in (1.12) and
$$ \mathcal{U}(r)=\mathcal{V}(r)=\sigma\mathrm{e}^{-\omega(r)}, \quad r\ge0, $$
(3.6)
with
\(\omega\in C^{1,1}([0,+\infty))\)
satisfies
\(\omega(0)=0\)
and
$$ \omega'(r)= \textstyle\begin{cases} \omega_{1}r, & 0\leq r\leq l^{2}, \\ (\omega_{2}+(\omega_{1}-\omega_{2})\frac{l^{2(n+\kappa _{2})}}{r^{n+\kappa_{2}}} )r, & l^{2}< r< l, \\ (\omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}} )r, & r\geq l, \end{cases} $$
where
\(0< l<1\)
will be determined,
$$\omega_{1}=\frac{2(pq-1)\mu}{(n+\kappa_{1})(pq+(pq)_{c}-2)},\qquad \omega_{2}= \frac{2(pq-1)\mu}{(n+\kappa_{2})(pq+(pq)_{c}-2)} $$
with
\(\kappa_{1}\), \(\kappa_{2}\)
satisfying
$$\kappa_{1}< \kappa_{0},\qquad -n< \kappa_{1}< \frac{2((2+\lambda_{1})+p(2+\lambda_{2}))}{pq+(pq)_{c}-2}-n < \kappa_{2}< \kappa. $$
Then there exist
\(\sigma>0\), \(0< l<1\), and
\(t_{0}>0\)
such that
\((u,v)\)
given by (3.3) and (3.6) is a supersolution to (1.1)–(1.3).
Proof
In the case that \(0< r< l^{2}\) and \(t>0\),
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n-1}{r}\mathcal {U}'(r)+(t+t_{0})^{1/2}\bigl((t+t_{0})^{1/2} r-1\bigr)b\bigl((t+t_{0})^{1/2} r-1\bigr)\mathcal {U}'(r) \\ &\qquad {}+\frac{1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\ &\quad = \biggl(-n\omega_{1} -\omega_{1}(t+t_{0})^{1/2}r \bigl((t+t_{0})^{1/2}r-1\bigr)b\bigl((t+t_{0})^{1/2} r-1\bigr) +\mu+\omega_{1} \biggl(\omega_{1}- \frac{1}{2} \biggr)r^{2} \biggr) \\ &\qquad {}\times\mathcal{U}(r) \\ &\quad \leq \bigl(-(n+\kappa_{0})\omega_{1}+\mu + \omega_{1}^{2}l \bigr)\mathcal{U}(r) \\ &\quad \leq \biggl(-(\kappa_{0}-\kappa_{1}) \omega_{1} -\frac{(pq-(pq)_{c})\mu}{pq+(pq)_{c}-2}+\omega_{1}^{2}l \biggr)\mathcal{U}(r), \end{aligned}$$
where \(\kappa_{0}=\inf\{s(s+1)b(s):s>0\}\). We can take \(0< l_{1}<1\) such that, for any \(0< l< l_{1}\),
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n-1}{r}\mathcal {U}'(r)+(t+t_{0})^{1/2}\bigl((t+t_{0})^{1/2} r-1\bigr)b\bigl((t+t_{0})^{1/2} r-1\bigr)\mathcal {U}'(r) \\ &\qquad {}+\frac{1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\ &\quad \le-\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)}\mathcal{U}(r),\quad 0< r< l^{2}, t>0. \end{aligned}$$
(3.7)
From the definition of the function ω, one gets
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n+\kappa_{2}-1}{r} \mathcal{U}'(r)+\frac {1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\ &\quad = \biggl(\bigl(\omega'(r)\bigr)^{2}- \omega''(r)-\frac{n+\kappa_{2}-1}{r}\omega'(r) -\frac{1}{2}r\omega'(r)+\mu \biggr)\mathcal{U}(r) \\ &\quad = \biggl( \biggl(\omega_{2}+(\omega_{1}- \omega_{2})\frac{l^{2(n+\kappa _{2})}}{r^{n+\kappa_{2}}} \biggr) \biggl(\omega_{2}+( \omega_{1}-\omega_{2})\frac{l^{2(n+\kappa _{2})}}{r^{n+\kappa_{2}}}-\frac{1}{2} \biggr)r^{2} -\frac{(pq-(pq)_{c})\mu}{pq+(pq)_{c}-2} \biggr)\mathcal{U}(r) \\ &\quad \leq \biggl(-\frac{(pq-(pq)_{c})\mu}{pq+(pq)_{c}-2}+\omega_{1}^{2}l \biggr)\mathcal{U}(r), \quad l^{2}< r< l, \end{aligned}$$
which implies that one can take \(0< l_{2}< l_{1}\) such that, for any \(0< l< l_{2}\),
$$\begin{aligned}& \mathcal{U}''(r)+\frac{n+\kappa_{2}-1}{r} \mathcal{U}'(r)+\frac {1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\& \quad \leq-\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)}\mathcal{U}(r),\quad l^{2}< r< l, t>0. \end{aligned}$$
(3.8)
Finally, for \(r>l\), it holds that
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n+\kappa_{2}-1}{r} \mathcal{U}'(r)+\frac {1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\ &\quad = \bigl(\omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}} \bigr) \biggl(\omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}}- \frac {1}{2} \biggr)r^{2}\mathcal{U}(r) \\ &\qquad {}+ \bigl(\mu-(n+\kappa_{2}) \bigl(\omega_{2}+( \omega_{1}-\omega _{2})l^{n+\kappa_{2}} \bigr) \bigr) \mathcal{U}(r) \\ &\quad \le \bigl(\omega_{2}+(\omega_{1}- \omega_{2})l^{n+\kappa_{2}} \bigr) \biggl(\omega_{2}+( \omega_{1}-\omega_{2})l^{n+\kappa_{2}}-\frac {1}{2} \biggr)r^{2}\mathcal{U}(r) + \bigl(\mu-(n+\kappa_{2}) \omega_{2} \bigr)\mathcal{U}(r) \\ &\quad = \bigl(\omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}} \bigr) \biggl(\omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}}- \frac {1}{2} \biggr)r^{2}\mathcal{U}(r) -\frac{(pq-(pq)_{c})\mu}{pq+(pq)_{c}-2} \mathcal{U}(r). \end{aligned}$$
The choice of \(\kappa_{1}\), \(\kappa_{2}\) leads to
$$ \lim_{l\to0^{+}} \bigl(\omega_{2}+(\omega_{1}- \omega_{2})l^{n+\kappa _{2}} \bigr)=\omega_{2}< \frac{1}{2}, $$
which yields that there exists \(0< l_{3}< l_{2}\) such that, for any \(0< l< l_{3}\),
$$ \omega_{2}+(\omega_{1}-\omega_{2})l^{n+\kappa_{2}}< \frac{1}{2}, $$
and thus
$$ \mathcal{U}''(r)+\frac{n+\kappa_{2}-1}{r} \mathcal{U}'(r)+\frac {1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \leq-\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)}\mathcal{U}(r),\quad r>l, t>0. $$
(3.9)
Fix \(0< l< l_{3}\), it follows from (1.4) that, for \(t_{0}>0\) sufficiently large,
$$ (t+t_{0})^{1/2}r\bigl((t+t_{0})^{1/2}r-1 \bigr)b\bigl((t+t_{0})^{1/2}r-1\bigr)\geq\frac{\kappa _{2}}{r}, \quad r>l^{2}, t>0. $$
(3.10)
It follows from (3.7)–(3.10) that
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n-1}{r}\mathcal {U}'(r)+(t+t_{0})^{1/2}\bigl((t+t_{0})^{1/2}r-1 \bigr)b\bigl((t+t_{0})^{1/2}r-1\bigr)\mathcal{U}'(r) \\ &\qquad {}+\frac{1}{2}r\mathcal{U}'(r)+\mu\mathcal{U}(r) \\ &\quad \le\mathcal{U}''(r)+\frac{n+\kappa_{2}-1}{r} \mathcal{U}'(r)+\frac {1}{2}r\mathcal{U}'(r)+\mu \mathcal{U}(r) \\ &\quad \le-\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)}\mathcal{U}(r),\quad r\in\bigl(0,l^{2} \bigr)\cup\bigl(l^{2},l\bigr)\cup(l,+\infty), t>0. \end{aligned}$$
(3.11)
Similarly, one can show that
$$\begin{aligned} &\mathcal{V}''(r)+\frac{n-1}{r}\mathcal {V}'(r)+(t+t_{0})^{1/2}\bigl((t+t_{0})^{1/2}r-1 \bigr)b\bigl((t+t_{0})^{1/2}r-1\bigr)\mathcal{V}'(r) \\ &\qquad {}+\frac{1}{2}r\mathcal{V}'(r)+\nu\mathcal{V}(r) \\ &\quad \le- \biggl(\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)} +\frac{((2+\lambda_{1})+p(2+\lambda_{2}))-(q(2+\lambda_{1})+(2+\lambda _{2}))}{2(pq-1)} \biggr)\mathcal{V}(r) \\ &\quad \le-\frac{(pq-(pq)_{c})\mu}{2(pq+(pq)_{c}-2)}\mathcal{V}(r),\quad r\in\bigl(0,l^{2} \bigr)\cup\bigl(l^{2},l\bigr)\cup(l,+\infty), t>0. \end{aligned}$$
(3.12)
Due to \(\lambda_{1}, \lambda_{2}\geq0\), \(p, q>1\), and the definition of the function ω,
$$ 0< K_{0}=\sup_{r>0} \bigl(r^{\lambda_{1}} \mathrm{e}^{-(p-1)\omega(r)} +r^{\lambda_{2}}\mathrm{e}^{-(q-1)\omega(r)} \bigr)< + \infty. $$
Choose \(\sigma>0\) sufficiently small such that
$$ \max\bigl\{ \sigma^{p-1}, \sigma^{q-1}\bigr\} \leq \frac{(pq-(pq)_{c})\mu}{2K_{0}(pq+(pq)_{c}-2)}. $$
Then (3.11) and (3.12) yield that
$$\begin{aligned} &\mathcal{U}''(r)+\frac{n-1}{r} \mathcal{U}'(r) +(t+t_{0})^{1/2} \bigl((t+t_{0})^{1/2}r-1\bigr)b\bigl((t+t_{0})^{1/2}r-1 \bigr)\mathcal{U}'(r) \\ &\quad {}+\frac{1}{2}r\mathcal{U}'(r) +\mu \mathcal{U}(r)+r^{\lambda_{1}}\mathcal{V}^{p}(r)\le0, \\ &\qquad r\in\bigl(0,l^{2}\bigr)\cup\bigl(l^{2},l\bigr) \cup(l,+\infty), t>0 \end{aligned}$$
and
$$\begin{aligned} &\mathcal{V}''(r)+\frac{n-1}{r} \mathcal{V}'(r) +(t+t_{0})^{1/2} \bigl((t+t_{0})^{1/2}r-1\bigr)b\bigl((t+t_{0})^{1/2}r-1 \bigr)\mathcal{V}'(r) \\ &\quad {}+\frac{1}{2} r\mathcal{V}'(r)+\nu \mathcal{V}(r)+r^{\lambda _{2}}\mathcal{U}^{q}(r)\le0, \\ &\qquad r\in\bigl(0,l^{2}\bigr)\cup\bigl(l^{2},l\bigr) \cup(l,+\infty), t>0. \end{aligned}$$
Therefore, \((u,v)\) given by (3.3) and (3.6) is a supersolution to system (1.1) and (1.2). □