In this section, we give the Opial-type integral inequalities for the left and right of the operator using the inequalities obtained by Andrić et al. [15], which is the generalization of an inequality of Agarwal and Pang [4].
The following result is obtained by using Theorem 2.1 and the left operator.
Theorem 3.1
Let
\(\psi: [0,\infty )\rightarrow\mathbb{R}\)
be a differentiable function such that, for
\(q_{1}>1\), \(\psi (t^{1/q_{1}} )\)
is a convex function and
\(\psi (0 )=0\). Also, let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CFR} _{\ \ \, a_{1}}D^{\alpha}\)
be defined by (2.6). If
\(\frac{1}{p_{1}}+\frac {1}{q_{1}}=1\), then the following inequalities hold:
$$\begin{aligned}& \int^{b_{1}}_{a_{1}} \bigl\vert \bigl({}^{CFR}_{\ \ \, a_{1}}D^{\alpha} g \bigr) (t ) \bigr\vert ^{1-q_{1}}\psi^{\prime} \bigl( \bigl\vert \bigl({}^{CFR}_{\ \ \, a_{1}}D^{\alpha} g \bigr) (t ) \bigr\vert \bigr) \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \\& \quad \leq\frac{q_{1}}{C^{q_{1}}}\psi \biggl(C \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{1/q_{1}} \biggr) \\& \quad \leq\frac{q_{1}}{C^{q_{1}} (b_{1}-a_{1} )} \int^{b_{1}}_{a_{1}} \psi \bigl( (b_{1}-a_{1} )^{1/q_{1}}C \bigl\vert g' (t ) \bigr\vert \bigr)\,dt, \end{aligned}$$
(3.1)
where
$$ C=\frac{M (\alpha )}{1-\alpha} \biggl(\frac{1-\exp (p_{1}\lambda (b_{1}-a_{1} ) )}{-p_{1}\lambda} \biggr)^{1/p_{1}}. $$
(3.2)
If
\(\psi (t^{1/q_{1}} )\)
is a concave function, then reverse inequalities hold.
Proof
For \(t \in [a_{1},b_{1} ]\), let
$$\begin{aligned}& v (t )= \bigl({}^{CFR}_{\ \ \, a_{1}}D^{\alpha} g \bigr) (t )= \frac{M(\alpha)}{1-\alpha}\frac{d}{dt} \int_{a_{1}} ^{t} g(s)\exp \bigl(\lambda (t-s ) \bigr) \,ds \\& \hphantom{v (t )}=\frac{M (\alpha )}{1-\alpha}\frac{d}{dt} \bigl(g(t)*\exp (\lambda t ) \bigr) \\& \hphantom{v (t )}=\frac{M (\alpha )}{1-\alpha} \biggl(\frac{dg}{dt}(t)*\exp (\lambda t ) \biggr) \\& \hphantom{v (t )}=\frac{M (\alpha )}{1-\alpha} \int_{a_{1}}^{t} g'(s)\exp \bigl(\lambda (t-s ) \bigr)\,ds, \\& K_{1}(t,s)=\textstyle\begin{cases} \frac{M (\alpha )}{1-\alpha}\exp (\lambda (t-s ) ), & a_{1}\leq s\leq t; \\ 0 ,& t\leq s\leq b_{1}, \end{cases}\displaystyle \end{aligned}$$
(3.3)
and
$$\phi (t )= \biggl( \int^{t}_{a_{1}} \bigl(K_{1} (t,s ) \bigr)^{p_{1}} \,ds \biggr)^{1/p_{1}}=\frac{M (\alpha )}{1-\alpha} \biggl( \frac{1-\exp (p_{1}\lambda (t-a_{1} ) )}{-p_{1}\lambda } \biggr)^{1/p_{1}}. $$
From \(\lambda<0\), the function ϕ is increasing on \([a_{1},b_{1} ]\). Thus, we can write
$$\max_{t\in [a_{1},b_{1} ]}\phi (t )=\frac{M (\alpha )}{1-\alpha} \biggl( \frac{1-\exp (p_{1}\lambda (b_{1}-a_{1} ) )}{-p_{1}\lambda} \biggr)^{1/p_{1}}=C. $$
Then \((\int^{t}_{a_{1}} (K_{1} (t,s ) )^{p_{1}} \,ds )^{1/p_{1}}\leq C\). Also, if it is taken as \(u=g'\) and v as in (3.3), then from Theorem 2.1 it gives us (3.1) in Theorem 3.1. This completes the proof. □
When \(\psi (t )=t^{p_{1}+q_{1}}\) in Theorem 3.1, the following corollary is obtained.
Corollary 3.1
Let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CFR} _{a_{1}}D^{\alpha}\)
be defined by (2.6). Also let
\(\frac {1}{p_{1}}+\frac{1}{q_{1}}=1\). Then the following inequalities hold:
$$\begin{aligned} \int^{b_{1}}_{a_{1}} \bigl\vert \bigl({}^{CFR}_{\ \ \, a_{1}}D^{\alpha} g \bigr) (t ) \bigr\vert ^{p_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt &\leq\frac{q_{1} C^{p_{1}}}{p_{1}+q_{1}} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{ (p_{1}+q_{1} )/q_{1}} \\ &\leq\frac{q_{1} C^{p_{1}} (b_{1}-a_{1} )^{p_{1}/q_{1}}}{p_{1}+q_{1}} \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{p_{1}+q_{1}}\,dt, \end{aligned}$$
(3.4)
where
C
is defined as in (3.2).
Theorem 3.2
Let the function
\(\psi: [0,\infty )\rightarrow \mathbb{R}\)
be differentiable such that, for
\(q_{1}>1\), \(\psi (t^{1/q_{1}} )\)
is a convex function and
\(\psi (0 )=0\). Also, let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CFR} D^{\alpha }_{b_{1}}\)
be defined by (2.7). If
\(\frac{1}{p_{1}}+\frac{1}{q_{1}}=1\), then the following inequalities hold:
$$\begin{aligned}& \int^{b_{1}}_{a_{1}} \bigl\vert \bigl({}^{CFR} D^{\alpha}_{b_{1}} g \bigr) (t ) \bigr\vert ^{1-q_{1}} \psi^{\prime} \bigl( \bigl\vert \bigl({}^{CFR} D^{\alpha }_{b_{1}} g \bigr) (t ) \bigr\vert \bigr) \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \\& \quad \leq\frac{q_{1}}{C^{q_{1}}}\psi \biggl(C \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{1/q_{1}} \biggr) \\& \quad \leq\frac{q_{1}}{C^{q_{1}} (b_{1}-a_{1} )} \int^{b_{1}}_{a_{1}} \psi \bigl( (b_{1}-a_{1} )^{1/q_{1}}C \bigl\vert g' (t ) \bigr\vert \bigr)\,dt, \end{aligned}$$
(3.5)
where
C
is defined as in (3.2). If
\(\psi (t^{1/q_{1}} )\)
is a concave function, then reverse inequalities hold.
Proof
Using the same method as the proof of Theorem 3.1, inequalities follow from Theorem 2.2. □
When \(\psi (t )=t^{p_{1}+q_{1}}\) in Theorem 3.2, the following corollary is obtained.
Corollary 3.2
Let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CFR} D^{\alpha}_{b_{1}}\)
be defined by (2.7). Also let
\(\frac{1}{p_{1}}+\frac {1}{q_{1}}=1\). Then the following inequalities hold:
$$\begin{aligned} \int^{b_{1}}_{a_{1}} \bigl\vert \bigl({}^{CFR} D^{\alpha}_{b_{1}} g \bigr) (t ) \bigr\vert ^{p_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt &\leq \frac{q_{1} C^{p_{1}}}{p_{1}+q_{1}} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{ (p_{1}+q_{1} )/q_{1}} \\ &\leq\frac{q_{1} C^{p_{1}} (b_{1}-a_{1} )^{p_{1}/q_{1}}}{p_{1}+q_{1}} \int^{b_{1}}_{a_{1}} \bigl\vert g' (t ) \bigr\vert ^{p_{1}+q_{1}}\,dt, \end{aligned}$$
(3.6)
where
C
is defined as in (3.2).
The next result is obtained by using Theorem 2.1 and the left integral operator, see for more details [41].
Theorem 3.3
Let the function
\(\psi: [0,\infty )\rightarrow \mathbb{R}\)
be differentiable such that, for
\(q_{1}>1\), \(\psi (t^{1/q_{1}} )\)
is a convex function and
\(\psi (0 )=0\). Also, let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CF} _{\ a_{1}}I^{\alpha}\)
be defined by (2.8). If
\(\frac{1}{p_{1}}+\frac {1}{q_{1}}=1\), then the following inequalities hold:
$$\begin{aligned}& \int^{b_{1}}_{a_{1}} \biggl\vert \bigl({}^{CF}_{\ a_{1}}I^{\alpha} g \bigr) (t )-\frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert ^{1-q_{1}} \psi^{\prime} \biggl( \biggl\vert \bigl({}^{CF}_{\ a_{1}}I^{\alpha} g \bigr) (t )-\frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert \biggr) \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \\& \quad \leq\frac{q_{1}}{C_{1}^{{q}_{1}}}\psi \biggl(C_{1} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{1/q_{1}} \biggr) \\& \quad \leq\frac{q_{1}}{C_{1}^{{q_{1}}} (b_{1}-a_{1} )} \int^{b_{1}}_{a_{1}} \psi \bigl( (b_{1}-a_{1} )^{1/q_{1}}C_{1} \bigl\vert g (t ) \bigr\vert \bigr)\,dt, \end{aligned}$$
(3.7)
where
$$ C_{1}=\frac{\alpha}{B (\alpha )} (b_{1}-a_{1} )^{1/p_{1}}. $$
(3.8)
If
\(\psi (t^{1/q_{1}} )\)
is a concave function, then reverse inequalities hold.
Proof
For \(t \in [a_{1},b_{1} ]\), let
$$\begin{aligned}& v (t )= \bigl({}^{CF}_{\ a_{1}}I^{\alpha} g \bigr) (t )- \frac{1-\alpha}{B (\alpha )}g (t ), \\& K_{1}(t,s)= \textstyle\begin{cases} \frac{\alpha}{B (\alpha )} ,& a_{1}\leq s\leq t; \\ 0 ,& t\leq s\leq b_{1}, \end{cases}\displaystyle \end{aligned}$$
(3.9)
and
$$\phi (t )= \biggl( \int^{t}_{a_{1}} \bigl(K_{1} (t,s ) \bigr)^{p_{1}} \,ds \biggr)^{1/p_{1}}=\frac{\alpha}{B (\alpha )} (t-a_{1} )^{1/p_{1}}. $$
From \(\lambda<0\), the function ϕ is increasing on \([a_{1},b_{1} ]\). Thus, we can write
$$\max_{t\in [a_{1},b_{1} ]}\phi (t )=\frac{\alpha }{B (\alpha )} (b_{1}-a_{1} )^{1/p_{1}}=C_{1}. $$
Then \((\int^{t}_{a_{1}} (K_{1} (t,s ) )^{p_{1}} \,ds )^{1/p_{1}}\leq C_{1}\). Also, if it is taken as \(u=g\) and v as in (3.9), then from Theorem 2.1 it gives us (3.7) in Theorem 3.3. This completes the proof. □
When \(\psi (t )=t^{p_{1}+q_{1}}\) in Theorem 3.3, we obtain the following corollary.
Corollary 3.3
Let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CF} _{\ a_{1}}I^{\alpha}\)
be defined by (2.8). Also let
\(\frac {1}{p_{1}}+\frac{1}{q_{1}}=1\). Then the following inequalities hold:
$$\begin{aligned}& \int^{b_{1}}_{a_{1}} \biggl\vert \bigl({}^{CF}_{\ a_{1}}I^{\alpha} g \bigr) (t )-\frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert ^{p_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \\& \qquad \qquad \leq\frac{q_{1} C_{1}^{{p_{1}}}}{p_{1}+q_{1}} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{ (p_{1}+q_{1} )/q_{1}} \\& \qquad \qquad \leq\frac{q_{1} C_{1}^{{p_{1}}} (b_{1}-a_{1} )^{p_{1}/q_{1}}}{p_{1}+q_{1}} \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{p_{1}+q_{1}}\,dt, \end{aligned}$$
(3.10)
where
\(C_{1}\)
is defined as in (3.8).
Theorem 3.4
Let the function
\(\psi: [0,\infty )\rightarrow \mathbb{R}\)
be differentiable such that, for
\(q_{1}>1\), \(\psi (t^{1/q_{1}} )\)
is a convex function and
\(\psi (0 )=0\). Also, let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CF} I^{\alpha }_{b_{1}}\)
be defined by (2.9). If
\(\frac{1}{p_{1}}+\frac{1}{q_{1}}=1\), then the following inequalities hold:
$$\begin{aligned}& \int^{b_{1}}_{a_{1}} \biggl\vert \bigl({}^{CF} I^{\alpha}_{b_{1}} g \bigr) (t )-\frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert ^{1-q_{1}}\psi^{\prime} \biggl( \biggl\vert \bigl({}^{CF} I^{\alpha}_{b_{1}} g \bigr) (t )- \frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert \biggr) \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \\& \quad \leq\frac{q_{1}}{C_{1}^{{q}_{1}}}\psi \biggl(C_{1} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{1/q_{1}} \biggr) \\& \quad \leq\frac{q_{1}}{C_{1}^{{q}_{1}} (b_{1}-a_{1} )} \int^{b_{1}}_{a_{1}} \psi \bigl( (b_{1}-a_{1} )^{1/q_{1}}C_{1} \bigl\vert g (t ) \bigr\vert \bigr)\,dt, \end{aligned}$$
(3.11)
where
\(C_{1}\)
is defined as in (3.8). If
\(\psi (t^{1/q_{1}} )\)
is a concave function, then reverse inequalities hold.
Proof
Using the same method as the proof of Theorem 3.1, inequalities follow from Theorem 2.2. □
When \(\psi (t )=t^{p_{1}+q_{1}}\) in Theorem 3.4, we obtain the following corollary.
Corollary 3.4
Let
\(0<\alpha<1\), \(g\in H^{1}(a_{1},b_{1})\), and let
\({}^{CF} I^{\alpha}_{b_{1}}\)
be defined by (2.9). Also let
\(\frac{1}{p_{1}}+\frac {1}{q_{1}}=1\). Then the following inequalities hold:
$$\begin{aligned} &\int^{b_{1}}_{a_{1}} \biggl\vert \bigl({}^{CF} I^{\alpha}_{b_{1}} g \bigr) (t )-\frac{1-\alpha}{B (\alpha )}g (t ) \biggr\vert ^{p_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \\ &\quad \leq \frac{q_{1} C_{1}^{p_{1}}}{p_{1}+q_{1}} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{q_{1}}\,dt \biggr)^{ (p_{1}+q_{1} )/q_{1}} \\ &\quad \leq\frac{q_{1} C_{1}^{p_{1}} (b_{1}-a_{1} )^{p_{1}/q_{1}}}{p_{1}+q_{1}} \int^{b_{1}}_{a_{1}} \bigl\vert g (t ) \bigr\vert ^{p_{1}+q_{1}}\,dt, \end{aligned}$$
(3.12)
where
\(C_{1}\)
is defined as in (3.8).