2.1 The model
Let \((\varOmega, {\mathcal {F}}, {\mathbb {Q}})\) be a complete probability space and r be the instantaneous riskless rate. Jump processes are given to describe the discontinuous changes of prices. We will give the following assumptions underlying our model for vulnerable option. One can see references [10] and [11] for the detailed description.
Assumption 1
Suppose that \(S_{t}\) denotes the price of the underlying asset of the option. The dynamics of \(S_{t}\) are presented as follows:
$$ \frac{dS_{t}}{S_{t-}}= \bigl(r-k_{S}{\lambda_{S}^{*}} \bigr)\,dt+\sigma_{S} \,dW_{t}^{(1)}+ \bigl({ \mathrm{e}}^{Z_{t-}^{(1)}}-1 \bigr)\,dM_{t}^{(1)}, $$
(2.1)
where \(W_{t}^{(1)}\) is a standard Brownian motion on \((\varOmega, {\mathcal {F}}, {\mathbb {Q}})\), and \({\sigma_{S}}\) denotes the volatility. \({M_{t}^{(1)}}\) represents a Poisson process, which models the jumps of the underlying asset price. \(\lambda_{S}^{*}\) denotes the jump intensity of \(M_{t}^{(1)}\). \(M_{t}^{(1)}\) and \(\lambda_{S}^{*}\) both consist of two parts,
$$\begin{aligned} &M_{t}^{(1)}=N_{t}^{(1)}+N_{t}, \\ &\lambda_{S}^{*}=\lambda_{S}+\lambda, \end{aligned}$$
where \({N_{t}^{(1)}}\) models the individual impact on the asset price, and \({N_{t}}\) models common shocks that also have influence on the counterparty’s asset. \({N_{t}}\) and \({N_{t}^{(1)}}\) are both Poisson processes with intensities λ and \({\lambda_{S}}\), respectively. We assume that they are independent. \({Z_{t}^{(1)}}\) denotes the underlying asset’s jump amplitude when the jump happens. We suppose that \({Z_{s}^{(1)}}\) and \({Z_{t}^{(1)}}\) are independent and have the same distribution when \({s\neq t}\). \({k_{S}={\mathbb{E}}{[{\mathrm{e}}^{Z_{t}^{(1)}}]}-1}\) represents the average jump percentage of the price. We always assume that \(k_{S}\) is finite and \({Z_{t}^{(1)}}\) is a normal random variable with expectation \({\mu_{1}}\) and variation \({\sigma^{2}_{1}}\). Then \({k_{S}={\mathrm{e}}^{\mu_{1}+\frac{1}{2}\sigma _{1}^{2}}-1}\).
Assumption 2
Suppose that \(V_{t}\) denotes the value of the option writer’s asset. The dynamics of \(V_{t}\) are presented as follows:
$$ {\frac{dV_{t}}{V_{t-}}}={ \bigl(r-k_{V}{\lambda _{V}^{*}} \bigr)\,dt+{\sigma_{V}}\,dW_{t}^{(2)}+ \bigl({ \mathrm{e}}^{Z_{t-}^{(2)}}-1 \bigr)\,dM_{t}^{(2)}}, $$
(2.2)
where \({W_{t}^{(2)}}\) denotes a standard Brownian motion on \((\varOmega, {\mathcal {F}}, {\mathbb {Q}})\), and \({\sigma_{V}}\) represents the volatility of the counterparty’s asset. We assume that ρ denotes the correlation coefficient of \({W_{t}^{(1)}}\) and \({W_{t}^{(2)}}\). \({M_{t}^{(2)}}\) represents a Poisson process, which models the jumps of the asset price \(V_{t}\). \({\lambda_{V}^{*}}\) denotes the intensity of \({M_{t}^{(2)}}\). \({M_{t}^{(2)}}\) and \({\lambda_{V}^{*}}\) both consist of two parts,
$$\begin{aligned} &{M_{t}^{(2)}}={N_{t}^{(2)}+N_{t}}, \\ &{\lambda_{V}^{*}}={\lambda_{V}+\lambda}, \end{aligned}$$
where \({N_{t}^{(2)}}\) is a Poisson process independent of \({N_{t}^{(1)}}\) and \({N_{t}}\). \({N_{t}^{(2)}}\) modeling the individual impact on the asset price has the intensity \(\lambda_{V}\). \({Z_{t}^{(2)}}\) denotes the jump amplitude of the underlying asset when the jump happens. Suppose that \({Z_{t}^{(2)}}\) is distributed normally by \({N_{1}(\mu_{2}, \sigma_{2}^{2})}\), and \({Z_{t}^{(2)}}\) and \({Z_{s}^{(2)}}\) are independently and identically distributed when \({t\neq s}\), where \(N_{1}(\cdot,\cdot)\) denotes the one-dimensional normal distribution function. \({k_{V}={\mathbb{E}}{[{\mathrm{e}}^{Z_{t}^{(2)}}]}-1={\mathrm{e}}^{\mu_{2}+\frac{1}{2}\sigma_{2}^{2}}-1}\) denotes the mean percentage jump when the jump arrives. Furthermore, we assume that \({(W_{t}^{(1)}, W_{t}^{(2)})}\), \({N_{t}, Z_{t}^{(1)},N_{t}^{(1)}, Z_{t}^{(2)}}\), and \({N_{t}^{(2)}}\) are independent.
In our model, we consider the related credit risk not only in the continuous section but also in the point process section. Regarding the continuous section, \({W_{t}^{(1)}}\) and \({W_{t}^{(2)}}\) have the correlation coefficient ρ. Regarding the point process section, relevance is reflected in the common market factors \({N_{t}}\).
Assumption 3
Default happens only at the maturity of the option T when the threshold value \(D^{*}+c_{T}\) is more than the value of the option writer’s asset \(V_{T}\), where \(D^{*}\) denotes the value of the option writer’s other liabilities, and \(c_{T}=(S_{T}-K)^{+}\). \(S_{T}\) denotes the underlying asset’s price at the maturity, and K denotes the excise price of the option.
Assumption 4
When the financial crisis happens, the option holder receives \((1-w)\) times the intrinsic value of the option at its maturity. w denotes the percentage reduction of the option holder’s nominal claim. We assume that \(w=1-\frac{(1-\alpha)V_{T}}{D^{*}+c_{T}}\), where α denotes the deadweight costs of the financial crisis, and \(\frac{V_{T}}{D^{*}+c_{T}}\) denotes the value of the option writer’s assets which can be used to pay the claim represented as a percentage of the total claims at T.
Based on the methods used in [10] and [11], we get the approximate explicit valuation of the vulnerable options.
2.2 Valuation of European vulnerable options
Let \({C^{*}}\) denote the value of a vulnerable European calls, which can be presented as
$$ {C^{*}={\mathrm{e}}^{-rT}{\mathbb{E}}\biggl[ (S_{T}-K )^{+} \biggl(I_{ \{V_{T}\geq D^{*}+S_{T}-K \}}+\frac{(1-\alpha )V_{T}}{D^{*}+S_{T}-K}I_{ \{V_{T}< D^{*}+S_{T}-K \}} \biggr) \biggr]}. $$
The first part of this equation is the standard expression for the payoff on a European call option when there is no financial crisis, i.e., \(V_{T}\geq D^{*}+S_{T}-K\). The second part indicates that in case financial distress happens, i.e., \(V_{T}< D^{*}+S_{T}-K\), the entire assets of the option writer can be allocated to the option holder and other creditors of the option writer. The rate \(\frac{S_{T}-K}{D^{*}+S_{T}-K}\) represents the proportion of the amount that can be used to pay to the option holder.
Through the Itô formula, we have the following equalities:
$$\begin{aligned} &{\ln S_{T}=\ln S_{0}+ \biggl(r-\frac{1}{2}\sigma _{S}^{2}-k_{S}\lambda_{S}^{*} \biggr)T+\sigma_{S}W_{T}^{(1)}+\sum _{k=1}^{M_{T}^{(1)}}Z_{\tau_{k}^{(1)}}^{(1)}}, \\ &{\ln V_{T}=\ln V_{0}+ \biggl(r-\frac{1}{2}\sigma _{V}^{2}-k_{V}\lambda_{V}^{*} \biggr)T+\sigma_{V}W_{T}^{(2)}+\sum _{k=1}^{M_{T}^{(2)}}Z_{\tau_{k}^{(2)}}^{(2)}}, \end{aligned}$$
where \({\tau_{k}^{(i)}}\) represents the kth jump time of \({M_{t}^{(i)}}\), \({i=1,2}\), respectively. Suppose that \({Z_{t}^{(i)}}\) distributes normally by \({N_{1}(\mu_{i}, \sigma_{i}^{2})}\), \({i=1,2}\). Conditional on
$$ {\mathcal {G}_{T}^{(n,n_{1},n_{2})}= \bigl\{ N_{T}=n,N_{T}^{(1)}=n_{1},N_{T}^{(2)}=n_{2} \bigr\} }, $$
the total jump times of \({S_{t}}\) and \({V_{t}}\) are denoted by
$$\begin{aligned} &{m_{1}=n+n_{1}}, \\ &{m_{2}=n+n_{2}}. \end{aligned}$$
Obviously, \({(\ln\frac{S_{T}}{S_{0}},\ln\frac{V_{T}}{V_{0}})}\) is a bivariate normal random vector with the following numerical characteristics:
$$ \begin{aligned} &{M_{1}(m_{1})}= {\mathbb{E}}\biggl[\ln\frac{S_{T}}{S_{0}} \biggr]={ \biggl(r-\frac {1}{2} \sigma_{S}^{2}-k_{S}\lambda_{S}^{*} \biggr)T+m_{1}\mu_{1}}, \\ &{M_{2}(m_{2})}={\mathbb{E}}\biggl[\ln\frac{V_{T}}{V_{0}} \biggr]={ \biggl(r-\frac {1}{2}\sigma_{V}^{2}-k_{V} \lambda_{V}^{*} \biggr)T+m_{2}\mu_{2}}, \\ &{\operatorname{Cov} \biggl(\ln\frac{S_{T}}{S_{0}},\ln\frac {V_{T}}{V_{0}} \biggr)= \rho\sigma_{S} \sigma_{V}T}. \end{aligned} $$
(2.3)
Denote
$$ \begin{aligned} &{\ln S_{T,m_{1}}=\ln S_{0}+ \biggl(r-\frac{1}{2}\sigma _{S}^{2}-k_{S} \lambda_{S}^{*} \biggr)T+\sigma_{S}W_{T}^{(1)}+ \sum_{k=1}^{m_{1}}} {\xi_{k}^{(1)}}, \\ &{\ln V_{T,m_{2}}=\ln V_{0}+ \biggl(r-\frac{1}{2}\sigma _{V}^{2}-k_{V}\lambda_{V}^{*} \biggr)T+\sigma_{V}W_{T}^{(2)}+\sum _{k=1}^{m_{2}}\xi_{k}^{(2)}}, \end{aligned} $$
where \(\xi_{k}^{(i)}\) are independent and distribute normally by \({N(\mu _{i}, \sigma_{i}^{2})}\), \({i=1,2}\). The probability space can be decomposed: \({\varOmega=\bigcup_{n=0}^{\infty } \bigcup_{n_{1}=0}^{\infty} \bigcup_{n_{2}=0}^{\infty}\mathcal {G}_{T}^{(n,n_{1},n_{2})}}\) and \({\mathcal {G}_{T}^{(i,i_{1},i_{2})}\cap\mathcal {G}_{T}^{(j,j_{1},j_{2})}=\emptyset}\) for any \({i\neq j, i_{1}\neq j_{1}}\), and \({i_{2}\neq j_{2}}\).
Thus, \({C^{*}}\) can be rewritten as follows:
$$ \begin{aligned}[b] {C^{*}}={}&{\mathrm{e}}^{-rT}{\mathbb{E}}\biggl[ (S_{T}-K )^{+} \biggl(I_{ \{ V_{T}\geq D^{*}+S_{T}-K \}}+ \frac{(1-\alpha )V_{T}}{D^{*}+S_{T}-K}I_{ \{V_{T}< D^{*}+S_{T}-K \}} \biggr)I_{\{\omega\in\varOmega\}} \biggr] \\ ={}&{{\mathrm{e}}^{-rT}{\sum_{n=0}^{\infty}} \ { \sum_{n_{1}=0}^{\infty}}\ {\sum _{n_{2}=0}^{\infty}} {\mathbb{E}}\biggl[ (S_{T}-K )^{+} \biggl(I_{ \{V_{T}\geq D^{*}+S_{T}-K \}}} \\ &{}+\frac{(1-\alpha)V_{T}}{D^{*}+S_{T}-K}I_{ \{ V_{T}< D^{*}+S_{T}-K \}} \biggr)I_{ \{\omega\in\mathcal {G}_{T}^{(n,n_{1},n_{2})} \}} \biggr] \\ ={}&{{\sum_{n=0}^{\infty}}\ { \sum _{n_{1}=0}^{\infty}}\ {\sum_{n_{2}=0}^{\infty}} {\mathbb {Q}}\bigl(N_{T}=n, N_{T}^{(1)}=n_{1}, N_{T}^{(2)}=n_{2} \bigr)} \\ &{}\cdot{\mathrm{e}}^{-rT}{\mathbb{E}}\biggl[ (S_{T,m_{1}}-K )^{+} \biggl(I_{ \{V_{T,m_{2}}\geq D^{*}+S_{T,m_{1}}-K \}} \\ &{}+\frac{(1-\alpha )V_{T,m_{2}}}{D^{*}+S_{T,m_{1}}-K}I_{ \{ V_{T,m_{2}}< D^{*}+S_{T,m_{1}}-K \}} \biggr) \biggr] \\ ={}&{{\sum_{n=0}^{\infty}} { \sum _{m_{1}=n}^{\infty}} {\sum_{m_{2}=n}^{\infty}} \frac{(\lambda T)^{n}}{n!} \frac{(\lambda_{S} T)^{m_{1}-n}}{(m_{1}-n)!} \frac{(\lambda_{V} T)^{m_{2}-n}}{(m_{2}-n)!} {\mathrm{e}}^{-\lambda T-\lambda_{S} T-\lambda_{V} T}C_{m_{1},m_{2}}}, \end{aligned} $$
(2.4)
where
$$\begin{aligned} C_{m_{1},m_{2}}={}&{\mathrm{e}}^{-rT}{\mathbb{E}}\biggl[ (S_{T,m_{1}}-K )^{+} \biggl(I_{ \{V_{T,m_{2}}\geq D^{*}+S_{T,m_{1}}-K \}} \\ &{}+\frac{(1-\alpha )V_{T,m_{2}}}{D^{*}+S_{T,m_{1}}-K}I_{\{ V_{T,m_{2}}< D^{*}+S_{T,m_{1}}-K \}} \biggr) \biggr]. \end{aligned}$$
Now, we divide \({C_{m_{1},m_{2}}}\) into four parts for further calculation:
$$ C_{m_{1},m_{2}} ={\mathrm{e}}^{-rT} \bigl[C_{1}(m_{1},m_{2})+C_{2}(m_{1},m_{2})+C_{3}(m_{1},m_{2})+C_{4}(m_{1},m_{2}) \bigr], $$
(2.5)
where \(C_{1}(m_{1},m_{2}), C_{2}(m_{1},m_{2}), C_{3}(m_{1},m_{2})\), and \(C_{4}(m_{1},m_{2})\) are given by
$$ \begin{aligned} &C_{1}(m_{1},m_{2})= {\mathbb{E}}[S_{T,m_{1}}I_{\{S_{T,m_{1}}\geq K,V_{T,m_{2}}\geq D^{*}+S_{T,m_{1}}-K\}}], \\ &C_{2}(m_{1},m_{2})=-K{\mathbb{E}}[I_{\{S_{T,m_{1}}\geq K,V_{T,m_{2}}\geq D^{*}+S_{T,m_{1}}-K\}}], \\ &C_{3}(m_{1},m_{2})={\mathbb{E}}\biggl[ \frac{1-\alpha }{D^{*}+S_{T,m_{1}}-K}S_{T,m_{1}}V_{T,m_{2}}I_{\{S_{T,m_{1}}\geq K,V_{T,m_{2}}< D^{*}+S_{T,m_{1}}-K\}} \biggr], \\ &C_{4}(m_{1},m_{2})=-K{\mathbb{E}}\biggl[ \frac{1-\alpha }{D^{*}+S_{T,m_{1}}-K}V_{T,m_{2}}I_{\{S_{T,m_{1}}\geq K,V_{T,m_{2}}< D^{*}+S_{T,m_{1}}-K\}} \biggr]. \end{aligned} $$
By complicated calculation, we can get the closed form of \({C_{1}(m_{1},m_{2}),C_{2}(m_{1},m_{2})}\), \(C_{3}(m_{1},m_{2})\), and \(C_{4}(m_{1},m_{2})\) respectively:
$$\begin{aligned} &C_{1}(m_{1},m_{2})=S_{0}\exp \biggl\{ { \bigl(r-k_{S}\lambda _{S}^{*} \bigr)T+m_{1}\mu _{1}+\frac{1}{2}m_{1} \sigma_{1}^{2}} \biggr\} N_{2} \bigl(a_{1}(m_{1}),a_{2}(m_{1},m_{2}), \delta \bigr), \\ &C_{2}(m_{1},m_{2})=-KN_{2} \bigl(b_{1}(m_{1}),b_{2}(m_{1},m_{2}), \delta \bigr), \\ &{C_{3}(m_{1},m_{2})} = H \exp \biggl\{ \frac{ (g+U(m_{1})+mV(m_{2}) )^{2}}{2} \\ &\hphantom{{C_{3}(m_{1},m_{2})}=} {}+\frac{2\delta (g+U(m_{1})+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &\hphantom{{C_{3}(m_{1},m_{2})}=} {} \cdot N_{2} \bigl(c_{1}(m_{1},m_{2}),c_{2}(m_{1},m_{2}),- \delta \bigr), \\ & C_{4}(m_{1},m_{2}) \\ &\quad =-\tilde{H} \exp \biggl\{ \frac{ (g+mV(m_{2}) )^{2} +2\delta (g+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2}}{2} \biggr\} \\ &\qquad {} \cdot N_{2} \bigl(d_{1}(m_{1},m_{2}),d_{2}(m_{1},m_{2}),- \delta \bigr), \end{aligned}$$
where \({N_{2}(\cdot,\cdot,\cdot)}\) denotes the two-dimensional normal distribution function. The calculation process can be found in the Appendix, and the above parameter values are given as follows:
$$\begin{aligned} &{a_{1}(m_{1})}={\frac{\ln\frac{S_{0}}{K}+(r+\frac {1}{2}\sigma_{S}^{2}-k_{S}\lambda_{S}^{*})T+m_{1}\mu_{1}+m_{1}\sigma _{1}^{2}}{\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}}}, \\ &{a_{2}(m_{1},m_{2})}=\frac{-b+mp+(\bar{\rho}-m)\sqrt {\sigma _{S}^{2}T+m_{1}\sigma_{1}^{2}}}{\sqrt{1-2\overline{\rho}m+m^{2}}}, \\ &{b_{1}(m_{1})}={\frac{\ln\frac{S_{0}}{K}+(r-\frac {1}{2}\sigma_{S}^{2}-k_{S}\lambda_{S}^{*})T+m_{1}\mu_{1}}{\sqrt {\sigma _{S}^{2}T+m_{1}\sigma_{1}^{2}}}}, \\ &{b_{2}(m_{1},m_{2})}=-\frac{b-mp}{\sqrt{1-2\overline {\rho }m+m^{2}}}, \\ &c_{1}(m_{1},m_{2})= b_{1}(m_{1})+ \Bigl(g+\sqrt{\sigma _{S}^{2}T+m_{1} \sigma_{1}^{2}} +m\sqrt{\sigma_{V}^{2}T+m_{2} \sigma_{2}^{2}} \Bigr) \\ &\hphantom{c_{1}(m_{1},m_{2})= }{}+\delta\sqrt{1-2\overline{\rho}m+m^{2}}\sqrt {\sigma _{V}^{2}T+m_{2}\sigma _{2}^{2}}, \\ &c_{2}(m_{1},m_{2})=-b_{2}(m_{1},m_{2})- \delta \Bigl(g+\sqrt {\sigma_{S}^{2}T+m_{1} \sigma_{1}^{2}} +m\sqrt{\sigma_{V}^{2}T+m_{2} \sigma_{2}^{2}} \Bigr) \\ &\hphantom{c_{2}(m_{1},m_{2})=}{}-\sqrt{1-2\overline{\rho}m+m^{2}}\sqrt{ \sigma_{V}^{2}T+m_{2}\sigma _{2}^{2}}, \\ &d_{1}(m_{1},m_{2}) = b_{1}(m_{1})+ \Bigl(g +m\sqrt{\sigma_{V}^{2}T+m_{2} \sigma_{2}^{2}} \Bigr) +\delta\sqrt{1-2\overline{ \rho}m+m^{2}}\sqrt{\sigma _{V}^{2}T+m_{2} \sigma _{2}^{2}}, \\ &d_{2}(m_{1},m_{2})=-b_{2}(m_{1},m_{2})- \delta \Bigl(g +m\sqrt{\sigma_{V}^{2}T+m_{2} \sigma_{2}^{2}} \Bigr) \\ &\hphantom{d_{2}(m_{1},m_{2})=}{} -\sqrt{1-2\overline{\rho}m+m^{2}}\sqrt{ \sigma_{V}^{2}T+m_{2}\sigma _{2}^{2}}, \\ &{\overline{\rho}(m_{1},m_{2})}={\frac{\sigma _{S}\sigma _{V}T}{\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}} \sqrt{\sigma _{V}^{2}T+m_{2}\sigma_{2}^{2}}}\rho}= \overline{\rho}, \\ &b=\frac{\ln (\frac{D^{\ast}-K+S_{0}\exp \{ M_{1}(m_{1})+\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}\cdot p \} }{V_{0}} )-M_{2}(m_{2})}{\sqrt{\sigma_{V}^{2}T+m_{2}\sigma_{2}^{2}}} \\ &m= \frac{\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}}{\sqrt {\sigma _{V}^{2}T+m_{2}\sigma_{2}^{2}}} \\ &\hphantom{m=}{}\cdot\frac{S_{0} \exp\{{(r-\frac{1}{2}\sigma_{S}^{2}-k_{S}\lambda_{S}^{*})T+m_{1}\mu_{1}} +\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}p\}}{D^{*}-K+S_{0}\exp\{ {(r-\frac{1}{2}\sigma_{S}^{2}-k_{S}\lambda_{S}^{*})T+m_{1}\mu_{1}} +\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}p\}}, \\ &\delta = \frac{\overline{\rho}-m}{\sqrt{1-2\overline {\rho }m+m^{2}}}, \\ &g=\frac{-S_{0}\sqrt{\sigma_{S}^{2}T+m_{1}\sigma _{1}^{2}}\exp \{M_{1}(m_{1})+\sqrt{\sigma_{S}^{2}T+m_{1}\sigma _{1}^{2}}q \}}{D^{*}-K+S_{0}\exp \{M_{1}(m_{1}) +\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}q \}}, \\ &H=\frac{(1-\alpha)S_{0}V_{0}\exp (M_{1}(m_{1})+M_{2}(m_{2}))\exp(-gq)}{D^{*}-K+S_{0}\exp (M_{1}(m_{1})+\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}q )}, \\ &\tilde{H} =\frac{(1-\alpha)KV_{0}\exp (M_{2}(m_{2}))\exp (-gq)}{D^{*}-K+S_{0}\exp (M_{1}(m_{1})+\sqrt{\sigma _{S}^{2}T+m_{1}\sigma_{1}^{2}}q )}, \\ &\eta=\sqrt{1-2\overline{\rho}m+m^{2}}, \\ &U(m_{1})=\sqrt{\sigma_{S}^{2}T+m_{1} \sigma_{1}^{2}}, \\ &V(m_{2})=\sqrt{\sigma_{V}^{2}T+m_{2} \sigma_{2}^{2}}, \end{aligned}$$
(2.6)
where p and q are two design parameters, around which we take the first Taylor expansions in the Appendix. From Equation (2.5) we can derive that
$$\begin{aligned} &{C_{m_{1},m_{2}}} \\ &\quad ={S_{0}\exp \biggl\{ {-k_{S}\lambda_{S}^{*}T+m_{1} \mu _{1}+\frac{1}{2}m_{1}\sigma_{1}^{2}} \biggr\} N_{2} \bigl(a_{1}(m_{1}),a_{2}(m_{1},m_{2}), \delta \bigr)} \\ &\qquad {}-K{\mathrm{e}}^{-rT}N_{2} \bigl(b_{1}(m_{1}),b_{2}(m_{1},m_{2}), \delta \bigr) \\ &\qquad {}+H{\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+U(m_{1})+mV(m_{2}) )^{2}}{2} \\ &\qquad {} +\frac{2\delta (g+U(m_{1})+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &\qquad {}\cdot N_{2} \bigl(c_{1}(m_{1},m_{2}),c_{2}(m_{1},m_{2}),- \delta \bigr) \\ &\qquad {}-\tilde{H} {\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+mV(m_{2}) )^{2} +2\delta (g+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &\qquad {}\cdot N_{2} \bigl(d_{1}(m_{1},m_{2}),d_{2}(m_{1},m_{2}),- \delta \bigr). \end{aligned}$$
(2.7)
Thus, we can obtain the analytical pricing formula of the vulnerable European call options
$$\begin{aligned} {C^{*}} =&{{\sum _{n=0}^{\infty}} { \sum_{m_{1}=n}^{\infty }} {\sum_{m_{2}=n}^{\infty} \frac{(\lambda T)^{n}}{n!} \frac {(\lambda _{S} T)^{m_{1}-n}}{(m_{1}-n)!} \frac{(\lambda_{V} T)^{m_{2}-n}}{(m_{2}-n)!} {\mathrm{e}}^{-\lambda T-\lambda_{S} T-\lambda_{V} T}}} \\ &{}\cdot \biggl\{ {S_{0}\exp \biggl\{ {-k_{S}\lambda _{S}^{*}T+m_{1}\mu _{1}+ \frac{1}{2}m_{1}\sigma_{1}^{2}} \biggr\} N_{2} \bigl(a_{1}(m_{1}),a_{2}(m_{1},m_{2}), \delta \bigr)} \\ &{}-K{\mathrm{e}}^{-rT}N_{2} \bigl(b_{1}(m_{1}),b_{2}(m_{1},m_{2}), \delta \bigr) \\ &{}+H{\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+U(m_{1})+mV(m_{2}) )^{2}}{2} \\ & {} +\frac{2\delta (g+U(m_{1})+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &{}\cdot N_{2} \bigl(c_{1}(m_{1},m_{2}),c_{2}(m_{1},m_{2}),- \delta \bigr) \\ &{}-\tilde{H} {\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+mV(m_{2}) )^{2} +2\delta (g+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &{}\cdot N_{2} \bigl(d_{1}(m_{1},m_{2}),d_{2}(m_{1},m_{2}),- \delta \bigr) \biggr\} . \end{aligned}$$
(2.8)
Similarly, the explicit form of vulnerable European put option is expressed as
$$\begin{aligned} {P^{*}} =&{{\sum_{n=0}^{\infty}} { \sum _{m_{1}=n}^{\infty}} {\sum_{m_{2}=n}^{\infty} \frac{(\lambda T)^{n}}{n!} \frac {(\lambda_{S} T)^{m_{1}-n}}{(m_{1}-n)!} \frac{(\lambda_{V} T)^{m_{2}-n}}{(m_{2}-n)!} {\mathrm{e}}^{-\lambda T-\lambda_{S} T-\lambda_{V} T}}} \\ &{}\cdot \biggl\{ -{S_{0}\exp \biggl\{ {-k_{S}\lambda _{S}^{*}T+m_{1}\mu _{1}+ \frac{1}{2}m_{1}\sigma_{1}^{2}} \biggr\} N_{2} \bigl(-a_{1}(m_{1}),a_{2}(m_{1},m_{2}),- \delta \bigr)} \\ &{}+K{\mathrm{e}}^{-rT}N_{2} \bigl(-b_{1}(m_{1}),b_{2}(m_{1},m_{2}),- \delta \bigr) \\ &{}-H{\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+U(m_{1})+mV(m_{2}) )^{2}}{2} \\ & {} +\frac{2\delta (g+U(m_{1})+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &{}\cdot N_{2} \bigl(-c_{1}(m_{1},m_{2}),c_{2}(m_{1},m_{2}), \delta \bigr) \\ &{}+\tilde{H} {\mathrm{e}}^{-rT} \exp \biggl\{ \frac{ (g+mV(m_{2}) )^{2} +2\delta (g+mV(m_{2}) )\eta V(m_{2})+ (\eta V(m_{2}) )^{2} }{2} \biggr\} \\ &{}\cdot N_{2} \bigl(-d_{1}(m_{1},m_{2}),d_{2}(m_{1},m_{2}), \delta \bigr) \biggr\} . \end{aligned}$$
2.3 Three specific examples
As our particular cases, we will give the following three examples: classical Black–Scholes model, Merton’s jump-diffusion model, and the model in [10].
Example 1
(Classical Black–Scholes model)
When the counterparty risk and jump risk do not exist, we have \(D^{*}+S_{T}-K=0\), \(\lambda=\lambda_{S}=\lambda_{V}=0\), and \(n=n_{1}=n_{2}=0\). Then Equation (2.8) is the classical Black–Scholes equation. This time, we can get
$$\begin{aligned} &C_{1}(0,0) ={\mathbb{E}}[S_{T,0}I_{ \{S_{T,0}\geq K \}} ]=S_{0}{\mathbb{E}}\biggl[\frac{S_{T,0}}{S_{0}}I_{ \{\ln\frac{S_{T,0}}{S_{0}}\geq\ln \frac {K}{S_{0}} \}} \biggr] \\ &\hphantom{C_{1}(0,0)}=S_{0}{\mathbb{E}}\biggl[\frac{S_{T,0}}{S_{0}}I_{ \{\xi_{1}\geq\frac {\ln \frac{K}{S_{0}}-M_{1}(0)}{\sigma_{S}\sqrt{T}} \}} \biggr] \\ &\hphantom{C_{1}(0,0)}=S_{0} \int_{-b_{1}(0)}^{\infty} {\mathrm{e}}^{M_{1}(0)+\sigma _{S}\sqrt{T}x} \frac{1}{\sqrt{2\pi}}{\mathrm{e}}^{-\frac{x^{2}}{2}}\,dx \\ &\hphantom{C_{1}(0,0)}=S_{0} \int_{-b_{1}(0)}^{\infty} {\mathrm{e}}^{rT-\frac {1}{2}\sigma_{S}^{2}T+\sigma_{S}\sqrt{T}x} \frac{1}{\sqrt{2\pi }}{\mathrm{e}}^{-\frac{x^{2}}{2}}\,dx \\ &\hphantom{C_{1}(0,0)}=S_{0} {\mathrm{e}}^{rT} \int_{-b_{1}(0)}^{\infty} \frac {1}{\sqrt {2\pi}}{ \mathrm{e}}^{-\frac{(x-\sigma_{S}\sqrt{T})^{2}}{2}}\,dx \\ &\hphantom{C_{1}(0,0)}=S_{0} {\mathrm{e}}^{rT} \int_{-b_{1}(0)-\sigma_{S}\sqrt {T}}^{\infty}\frac{1}{\sqrt{2\pi}}{ \mathrm{e}}^{-\frac{u^{2}}{2}}\,du \\ &\hphantom{C_{1}(0,0)}=S_{0} {\mathrm{e}}^{rT}N_{1}(A_{1}), \\ &C_{2}(0,0) =-K{\mathbb{E}}[I_{ \{S_{T,0}\geq K \}} ]=-K{\mathbb{E}}[I_{ \{ \ln\frac{S_{T,0}}{S_{0}}\geq\ln\frac{K}{S_{0}} \}} ] \\ &\hphantom{C_{2}(0,0)}=-K{\mathbb{E}}[I_{ \{\xi_{1}\geq\frac{\ln\frac {K}{S_{0}}-M_{1}(0)}{\sigma_{S}\sqrt{T}} \}} ] \\ &\hphantom{C_{2}(0,0)}=-K \int_{-b_{1}(0)}^{\infty}\frac{1}{\sqrt{2\pi }}{ \mathrm{e}}^{-\frac{u^{2}}{2}}\,du \\ &\hphantom{C_{2}(0,0)}=-KN_{1}(B_{1}), \\ &C_{3}(0,0)=C_{4}(0,0)=0, \end{aligned}$$
where \(N_{1}(\cdot)\) denotes the standard normal distribution function.
Moreover, \(a_{1}(0)\) and \(b_{1}(0)\) reduce to \(A_{1}=\frac{\ln\frac {S_{0}}{K}+(r+\frac{1}{2}\sigma_{S}^{2})T}{\sigma_{S}\sqrt{T}}\) and \(B_{1}=A_{1}-\sigma_{S}\sqrt{T}\), respectively. Equation (2.8) can be rewritten as
$$ C^{*}=S_{0}N_{1}(A_{1})-K{ \mathrm{e}}^{-rT}N_{1}(B_{1}). $$
Example 2
(Merton’s jump-diffusion model)
Since there is no risk of default, we have \(D^{*}+S_{T}-K=0\). Thus,
$$\begin{aligned} &C_{1}(m_{1},m_{2}) ={\mathbb{E}}[S_{T,m_{1}}I_{ \{S_{T,m_{1}}\geq K \}} ]=S_{0}{\mathbb{E}}\biggl[ \frac{S_{T,m_{1}}}{S_{0}}I_{ \{\ln\frac {S_{T,m_{1}}}{S_{0}}\geq\ln\frac{K}{S_{0}} \}} \biggr] \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0}{\mathbb{E}}\bigl[{\mathrm{e}}^{M_{1}(m_{1})+\sqrt{\sigma _{S}^{2}T+m_{1}\sigma _{1}^{2}}\xi_{1}}I_{ \{\xi_{1}\geq\frac{\ln\frac {K}{S_{0}}-M_{1}(m_{1})}{\sigma_{S}\sqrt{T}} \}} \bigr] \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0} \int_{-b_{1}(m_{1})}^{\infty}{\mathrm{e}}^{M_{1}(m_{1})+\sqrt{\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}u} \frac {1}{\sqrt{2\pi}}{\mathrm{e}}^{-\frac{u^{2}}{2}}\,du \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0}{\mathrm{e}}^{rT-k_{S}\lambda_{S}^{*}T+m_{1}\mu_{1}+\frac {1}{2}m_{1}\sigma_{1}^{2}} \int_{-b_{1}(m_{1})}^{\infty }\frac{1}{\sqrt{2\pi}}{ \mathrm{e}}^{-\frac{ (u-\sqrt{\sigma _{S}^{2}T+m_{1}\sigma_{1}^{2}} )^{2}}{2}}\,du \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0}{\mathrm{e}}^{rT-k_{S}\lambda_{S}^{*}T+m_{1}\mu_{1}+\frac {1}{2}m_{1}\sigma_{1}^{2}} \int_{-b_{1}(m_{1})-\sqrt {\sigma_{S}^{2}T+m_{1}\sigma_{1}^{2}}}^{\infty}\frac{1}{\sqrt{2\pi}}{ \mathrm{e}}^{-\frac{x^{2}}{2}}\,dx \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0}{\mathrm{e}}^{rT-k_{S}\lambda_{S}^{*}T+m_{1}\mu_{1}+\frac {1}{2}m_{1}\sigma_{1}^{2}} \int_{-a_{1}(m_{1})}^{\infty }\frac{1}{\sqrt{2\pi}}{ \mathrm{e}}^{-\frac{x^{2}}{2}}\,dx \\ &\hphantom{C_{1}(m_{1},m_{2})}=S_{0}{\mathrm{e}}^{rT-k_{S}\lambda_{S}^{*}T+m_{1}\mu_{1}+\frac {1}{2}m_{1}\sigma_{1}^{2}}N_{1} \bigl(a_{1}(m_{1}) \bigr), \\ &C_{2}(m_{1},m_{2}) =-K{\mathbb{E}}[I_{ \{S_{T,m_{1}}\geq K \}} ]=-K{\mathbb{E}}[I_{ \{\ln\frac{S_{T,m_{1}}}{S_{0}}\geq\ln\frac{K}{S_{0}} \}} ] \\ &\hphantom{C_{2}(m_{1},m_{2})}=-K{\mathbb{E}}[I_{ \{\xi_{1}\geq\frac{\ln\frac {K}{S_{0}}-M_{1}(m_{1})}{\sigma_{S}\sqrt{T}} \}} ] \\ &\hphantom{C_{2}(m_{1},m_{2})}=-K \int_{-b_{1}(m_{1})}^{\infty}\frac{1}{\sqrt{2\pi }}{ \mathrm{e}}^{-\frac{u^{2}}{2}}\,du \\ &\hphantom{C_{2}(m_{1},m_{2})}=-KN_{1} \bigl(b_{1}(m_{1}) \bigr), \\ &C_{3}(0,0)=C_{4}(0,0)=0. \end{aligned}$$
Thus
$$ C_{m_{1},m_{2}}=S_{0}{\mathrm{e}}^{-k_{S}\lambda_{S}^{*}T+m_{1}\mu_{1}+ \frac{1}{2}m_{1}\sigma_{1}^{2}}N_{1} \bigl(a_{1}(m_{1}) \bigr)-K{\mathrm{e}}^{-rT}N_{1} \bigl(b_{1}(m_{1}) \bigr). $$
As \({C_{m_{1},m_{2}}}\) is irrelevant to \(m_{2}\),
$$\begin{aligned} {C^{*}} =&{{\sum_{n=0}^{\infty}}\ { \sum_{m_{1}=n}^{\infty }}\ {\sum _{m_{2}=n}^{\infty} \frac{(\lambda T)^{n}}{n!} \frac {(\lambda _{S} T)^{m_{1}-n}}{(m_{1}-n)!} \frac{(\lambda_{V} T)^{m_{2}-n}}{(m_{2}-n)!} {\mathrm{e}}^{-\lambda T-\lambda_{S} T-\lambda_{V} T}}}C_{m_{1},m_{2}} \\ =&{\sum_{n=0}^{\infty}}\ { \sum _{m_{1}=n}^{\infty }}\frac {(\lambda T)^{n}}{n!} \frac{(\lambda_{S} T)^{m_{1}-n}}{(m_{1}-n)!}{ \mathrm{e}}^{-\lambda T-\lambda_{S} T}C_{m_{1},m_{2}} \Biggl(\sum _{n_{2}=0}^{\infty }\frac{(\lambda_{V} T)^{n_{2}}}{n_{2}!}{\mathrm{e}}^{-\lambda_{V} T} \Biggr) \\ =&{\sum_{n=0}^{\infty}}\ {\sum _{m_{1}=n}^{\infty}} {\mathrm{e}}^{-\lambda T-\lambda_{S} T} \frac{(\lambda T)^{n}}{n!}\frac {(\lambda _{S} T)^{m_{1}-n}}{(m_{1}-n)!} \\ &{}\cdot \bigl(S_{0}{\mathrm{e}}^{-k_{S}\lambda_{S}^{*}T+m_{1}\mu _{1}+\frac {1}{2}m_{1}\sigma_{1}^{2}}N_{1} \bigl(a_{1}(m_{1}) \bigr)-K{\mathrm{e}}^{-rT}N_{1} \bigl(b_{1}(m_{1}) \bigr) \bigr), \end{aligned}$$
where \(a_{1}(m_{1})\) and \(b_{1}(m_{1})\) can be found in (2.6). Noting that \((a+b)^{m}={\sum_{i=0}^{m}}C_{m}^{i}a^{i}b^{m-i}\), we can represent \(C^{*}\) as follows:
$$ C^{*}=\sum_{i=0}^{\infty}{ \mathrm{e}}^{-\lambda _{S}^{*}T}\frac{(\lambda_{S}^{*}T)^{i}}{i!} \bigl({S_{0}{ \mathrm{e}}^{-k_{S}\lambda_{S}^{*}T+i\mu_{1}+\frac{1}{2}i\sigma _{1}^{2}}N_{1} \bigl(a_{1}(i) \bigr)-K{ \mathrm{e}}^{-rT}N_{1} \bigl(b_{1}(i) \bigr)} \bigr). $$
Example 3
(Vulnerable non-jump Black–Scholes model in [10])
To simplify the formula, we can assume that the two design parameters p and q are equal. If there is no jump, that is, \(\lambda=\lambda _{S}=\lambda_{V}=0\), \(m_{1}=m_{2}=0\), \(C_{1}(0,0)\), \(C_{2}(0,0)\), \(C_{3}(0,0)\), and \(C_{4}(0,0)\) can be restated as follows:
$$\begin{aligned} &C_{1}(0,0)=S_{0}{\mathrm{e}}^{rT}N_{2} \biggl(b_{1}(0)+\sigma_{S}\sqrt {T},-\frac{b-mp}{\sqrt{1-2{\rho}m+m^{2}}}+ \delta\sigma_{S}\sqrt {T},\delta \biggr), \\ &C_{2}(0,0)=-KN_{2} \biggl(b_{1}(0),- \frac{b-mp}{\sqrt{1-2{\rho }m+m^{2}}},\delta \biggr), \\ &C_{3}(0,0)=\frac{(1-\alpha)S_{0}V_{0}\exp \{2rT+(\rho -m)\sigma _{S}\sigma_{V} T+(-2\rho m+m^{2})\frac{\sigma_{V}^{2}}{2}T-gp \} }{D^{*}-K+S_{0}\exp ((r-\frac{1}{2}\sigma_{S}^{2})T+\sigma _{S}\sqrt {T}p )} \\ &\hphantom{C_{3}(0,0)=}{}\times N_{2} \bigl(c_{1}(0,0),c_{2}(0,0),- \delta \bigr), \\ &C_{4}(0,0)=\frac{(1-\alpha)KV_{0}\exp \{rT+(-2\rho m+m^{2})\frac {\sigma_{V}^{2}}{2}T-gp \}}{D^{*}-K+S_{0}\exp ((r-\frac {1}{2}\sigma _{S}^{2})T+\sigma_{S}\sqrt{T}p )} N_{2} \bigl(d_{1}(0,0),d_{2}(0,0),- \delta \bigr), \end{aligned}$$
where the parameters are given by
$$\begin{aligned} &{b_{1}(0)}={\frac{\ln\frac{S_{0}}{K}+(r-\frac {1}{2}\sigma_{S}^{2})T}{\sigma_{S}\sqrt{T}}}, \\ &c_{1}(0,0)= b_{1}(0)+ \bigl(\sigma_{S}+( \rho-m)\sigma _{V} \bigr)\sqrt{T}, \\ &c_{2}(0,0)=\frac{b-mp}{\sqrt{1-2{\rho}m+m^{2}}}- \bigl(\delta\sigma_{S}- \sqrt{1-2\rho m+m^{2}}\sigma_{V} \bigr)\sqrt {T}, \\ &d_{1}(0,0)=b_{1}(0)+(\rho-m)\sigma_{V} \sqrt{T}, \\ &d_{2}(0,0)=\frac{b-mp}{\sqrt{1-2{\rho}m+m^{2}}}-\sqrt {1-2\rho m+m^{2}} \sigma_{V}\sqrt{T}, \\ &\delta=\frac{\rho-m}{\sqrt{1-2{\rho}m+m^{2}}}, \\ &b= \ln \biggl(\frac{D^{*}-K+S_{0}\exp (r-\frac {\sigma _{S}^{2}}{2}T+\sigma_{S}\sqrt{T}p )}{V_{0}} \biggr), \\ &m= \frac{\sigma_{S}}{\sigma_{V}} \biggl(\frac{S_{0}\exp (r-\frac{\sigma_{S}^{2}}{2}T+\sigma_{S}\sqrt{T}p )}{D^{*}-K+S_{0}\exp (r-\frac{\sigma_{S}^{2}}{2}T+\sigma_{S}\sqrt{T}p )} \biggr). \end{aligned}$$
Equation (2.8) can be rewritten as
$$\begin{aligned} C^{*} =&S_{0}N_{2} \biggl(b_{1}(0)+ \sigma_{S}\sqrt{T},-\frac {b-mp}{\sqrt {1-2{\rho}m+m^{2}}}+\delta\sigma_{S} \sqrt{T},\delta \biggr) \\ &{}-K{\mathrm{e}}^{-rT}N_{2} \biggl(b_{1}(0),- \frac{b-mp}{\sqrt{1-2{\rho }m+m^{2}}},\delta \biggr) \\ &{}+\frac{(1-\alpha)S_{0}V_{0}\exp \{rT+(\rho-m)\sigma_{S}\sigma_{V} T+(-2\rho m+m^{2})\frac{\sigma_{V}^{2}}{2}T-gp \}}{D^{*}-K+S_{0}\exp ((r-\frac{1}{2}\sigma_{S}^{2})T+\sigma_{S}\sqrt{T}p )} \\ &{}\times N_{2} \bigl(c_{1}(0,0),c_{2}(0,0),- \delta \bigr) \\ &{}+\frac{(1-\alpha)KV_{0}\exp \{(-2\rho m+m^{2})\frac{\sigma _{V}^{2}}{2}T-gp \}}{D^{*}-K+S_{0}\exp ((r-\frac{1}{2}\sigma _{S}^{2})T+\sigma_{S}\sqrt{T}p )} N_{2} \bigl(d_{1}(0,0),d_{2}(0,0),- \delta \bigr). \end{aligned}$$