In this section, we analyze the existence and uniqueness of the developed stabilized scheme with the lowest equal-order triples for the FE approximation of the Oseen viscoelastic problem.
Theorem 4.1
Let
\(\mathbf{f}\in\mathbf{H}^{-1}(\varOmega)\). If
\(1-2\lambda Md >0\). Then there exists a unique solution
\((\tau ^{h},\mathbf{u}^{h},p^{h})\in(S^{h}\times X^{h} \times Q^{h})\)
of (3.6).
Proof
Equation (3.6) is equivalent to
$$\begin{aligned} &\mathscr{L}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\sigma^{h},\mathbf {v}^{h},q^{h}\bigr) \bigr) \\ &\quad =F\bigl(\sigma^{h},\mathbf{v}^{h},q^{h} \bigr) \quad \forall\bigl(\sigma ^{h},\mathbf {v}^{h},q^{h} \bigr)\in S^{h}\times X^{h} \times Q^{h}, \end{aligned}$$
(4.1)
where \(F: S^{h}\times X^{h}\longrightarrow\mathbb{R} \) is the functional defined by
$$ F\bigl(\sigma^{h},\mathbf{v}^{h},q^{h}\bigr)=2 \alpha\bigl(\mathbf{f},\mathbf{v}^{h}\bigr). $$
By simple calculation the functional F can be bounded as
$$\begin{aligned} \bigl\vert F\bigl(\sigma^{h},\mathbf{v}^{h},q^{h} \bigr) \bigr\vert &\leq2\alpha\|\mathbf{f} \|_{-1} \bigl\Vert \mathbf{v}^{h} \bigr\Vert _{1} \\ & \leq2\alpha\|\mathbf{f} \|_{-1} \bigl|\!\bigl|\!\bigl|\bigl( \sigma^{h}, \mathbf{v}^{h},q^{h} \bigr) \bigr|\!\bigr|\!\bigr|_{(S^{h}\times X^{h}\times Q^{h})}, \end{aligned}$$
(4.2)
where \(|\!|\!|(\sigma^{h}, \mathbf{v}^{h},q^{h})|\!|\!|_{(S^{h}\times X^{h}\times Q^{h})}=(\|\sigma^{h}\|^{2}_{0}+\| \mathbf{v}^{h}\|^{2}_{1}+\| q^{h}\|^{2}_{0})^{\frac{1}{2}}\).
We prove that the bilinear form \(\mathscr{L}((\cdot,\cdot,\cdot ),(\cdot,\cdot,\cdot))\) is continuous in \((S^{h}\times X^{h}\times Q^{h} )\). By using (3.11) we have
$$\begin{aligned} B^{h}\bigl(\mathbf{b}, \tau^{h},\sigma^{h} \bigr)&=\bigl((\mathbf{b}\cdot\nabla )\tau ^{h},\sigma^{h} \bigr)_{h}+\bigl\langle \tau^{h+} -\tau^{h-},\sigma ^{h+}\bigr\rangle _{h,\mathbf{b}} \\ & \leq C \bigl[ \Vert \mathbf{b} \Vert _{\infty } \bigl\Vert \nabla \tau^{h} \bigr\Vert _{0,h} \bigl\Vert \sigma^{h} \bigr\Vert _{0} + \Vert \mathbf{b} \Vert _{\infty} \bigl\Vert \tau^{h} \bigr\Vert _{0,\varGamma^{h}} \bigl\Vert \sigma^{h} \bigr\Vert _{0,\varGamma^{h}} \bigr] \\ & \leq C \bigl[ M \bigl\Vert \nabla\tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0}+ \Vert \mathbf{b} \Vert _{\infty}\bigl(h^{-1/2} \bigl\Vert \tau^{h} \bigr\Vert _{0}\bigr) \bigl(h^{-1/2} \bigl\Vert \sigma^{h} \bigr\Vert _{0}\bigr) \bigr] \\ & \leq C \bigl[ M \bigl(h^{-1} \bigl\Vert \tau^{h} \bigr\Vert _{0}\bigr) \bigl\Vert \sigma^{h} \bigr\Vert _{0}+Mh^{-1} \bigl\Vert \tau ^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0} \bigr] \\ & \leq CM h^{-1} \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0}. \end{aligned}$$
(4.3)
It is easy to get
$$\begin{aligned} \lambda\bigl(g_{a}\bigl(\tau^{h},\nabla\mathbf{b}\bigr), \sigma^{h}\bigr) &\leq2d\lambda \Vert \nabla\mathbf{b} \Vert _{\infty} \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0} \\ & \leq2dM \lambda \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0}. \end{aligned}$$
(4.4)
By combining all the bounded terms we have
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\sigma^{h},\mathbf {v}^{h},q^{h} \bigr)\bigr) \\ &\quad \leq \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma ^{h} \bigr\Vert _{0}+2Md\lambda \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0} \\ &\qquad {} +2\alpha \bigl\Vert D\bigl(\mathbf{u}^{h}\bigr) \bigr\Vert _{0} \bigl\Vert \sigma^{h} \bigr\Vert _{0}+2\alpha \bigl\Vert \tau ^{h} \bigr\Vert _{0} \bigl\Vert D\bigl(\mathbf{v}^{h}\bigr) \bigr\Vert _{0} \\ &\qquad {} +4\alpha(1-\alpha) \bigl\Vert D\bigl(\mathbf {u}^{h} \bigr) \bigr\Vert _{0} \bigl\Vert D\bigl(\mathbf{v}^{h} \bigr) \bigr\Vert _{0} \\ &\qquad {} +2\alpha d \bigl\Vert q^{h} \bigr\Vert _{0} \bigl\Vert \nabla\mathbf{u}^{h} \bigr\Vert _{0}+2\alpha d \bigl\Vert p^{h} \bigr\Vert _{0} \bigl\Vert \nabla \mathbf{v}^{h} \bigr\Vert _{0} \\ &\qquad {} +2\alpha \bigl\Vert p^{h} \bigr\Vert _{0} \bigl\Vert q^{h} \bigr\Vert _{0} + C M h^{-1} \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert \sigma ^{h} \bigr\Vert _{0} \\ &\quad \leq C \bigl|\!\bigl|\!\bigl|\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr) \bigr|\!\bigr|\!\bigr|_{(S^{h}\times X^{h}\times Q^{h})} \bigl|\!\bigl|\!\bigl|\bigl(\sigma^{h}, \mathbf {v}^{h},q^{h}\bigr) \bigr|\!\bigr|\!\bigr|_{(S^{h}\times X^{h}\times Q^{h})}, \end{aligned}$$
(4.5)
which proves the continuity.
To prove the weak coercivity, suppose that there is a positive constant ϒ, independent of h, such that for all \((\tau^{h},\mathbf {u}^{h},p^{h})\in S^{h}\times X^{h}\times Q^{h} \),
$$ \sup_{(\sigma^{h},\mathbf{v}^{h},q^{h})\in S^{h}\times X^{h}\times Q^{h}} \frac{{\mathscr{L}}((\tau^{h},\mathbf{u}^{h},p^{h}),(\sigma ^{h},\mathbf{v}^{h},q^{h} ))}{|\!|\!|(\sigma^{h},\mathbf {v}^{h},q^{h} )|\!|\!|}\geq\varUpsilon \bigl|\!\bigl|\!\bigl|\bigl(\tau ^{h},\mathbf {u}^{h},p^{h} \bigr) \bigr|\!\bigr|\!\bigr|. $$
(4.6)
Firstly, for all \(p^{h}\in Q^{h}\subset Q\), let \(\mathbf{w}\in X \) be such that \((\nabla\cdot\mathbf{w}, p^{h})=\| p^{h}\|^{2}_{0}\) and \(\|\mathbf{w} \|_{1}\leq\varUpsilon\| p^{h}\|_{0}\). Assigning the value in FE approximation for normalization of \(\mathbf {w}^{h}\in X^{h}\) of w [29, 32, 34, 49], assume that
$$ \bigl\Vert \mathbf{w}^{h} \bigr\Vert _{1} \leq\varUpsilon_{0} \bigl\Vert p^{h} \bigr\Vert _{0}. $$
(4.7)
Thanks to [29],
$$ \int_{\varOmega}p^{h}\nabla\cdot\mathbf{w}^{h}\, d \varOmega\geq C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}-C_{2} \bigl\Vert (I-\varPi)p^{h} \bigr\Vert _{0} \bigl\Vert p^{h} \bigr\Vert _{0}. $$
(4.8)
By substituting \(\mathbf{v}^{h}=\mathbf{u}^{h}-\xi\mathbf{w}^{h}, q^{h}=p^{h}\), and \(\sigma^{h}=\tau^{h}\) into (4.1) with \(\xi\in \mathbb{R}\) we have
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\tau^{h},\mathbf {u}^{h}-\xi \mathbf{w}^{h},p^{h}\bigr)\bigr) \\ &\quad = {\mathscr{L}}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\tau ^{h},\mathbf{u}^{h},p^{h}\bigr) \bigr) +{\mathscr{L}}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(0,-\xi\mathbf{w}^{h},0\bigr)\bigr). \end{aligned}$$
(4.9)
The right-hand side of (4.9) can be bounded in the following way.
First term of (4.9). Thanks to (3.2), (3.7), and (4.4), we have
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tau^{h}, \mathbf{u}^{h},p^{h} \bigr),\bigl(\tau^{h},\mathbf {u}^{h},p^{h}\bigr) \bigr) \\ &\quad \geq \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0}+ \lambda \bigl(g_{a}\bigl(\tau ^{h},\nabla\mathbf{b}\bigr), \tau^{h}\bigr)+4\alpha(1-\alpha) \bigl\Vert D\bigl(\mathbf {u}^{h}\bigr) \bigr\Vert ^{2}_{0} \\ &\qquad {} +2\alpha \bigl\Vert (I-\varPi)p^{h} \bigr\Vert ^{2}_{0}+(\lambda /2)\bigl\langle \bigl\langle \tau^{h+}- \tau^{h-}\bigr\rangle \bigr\rangle ^{2}_{h,\mathbf{b}} \\ &\quad \geq \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0}-2 \lambda Md \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0}+4 \alpha(1-\alpha) \bigl\Vert D\bigl(\mathbf {u}^{h}\bigr) \bigr\Vert ^{2}_{0} \\ & \qquad {} +2\alpha \bigl\Vert (I-\varPi)p^{h} \bigr\Vert ^{2}_{0}+(\lambda /2)\bigl\langle \bigl\langle \tau^{h+}- \tau^{h-}\bigr\rangle \bigr\rangle ^{2}_{h,\mathbf{b}} \\ &\quad \geq(1-2\lambda Md) \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0}+4\alpha(1-\alpha) \bigl\Vert D\bigl( \mathbf{u}^{h}\bigr) \bigr\Vert ^{2}_{0} \\ &\qquad {} +2\alpha \bigl\Vert (I-\varPi)p^{h} \bigr\Vert ^{2}_{0}+(\lambda /2)\bigl\langle \bigl\langle \tau^{h+}- \tau^{h-}\bigr\rangle \bigr\rangle ^{2}_{h,\mathbf{b}}. \end{aligned}$$
(4.10)
Second term of (4.9).
$$\begin{aligned} & {\mathscr{L}} \bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(0,-\xi\mathbf{w}^{h},0\bigr)\bigr) \\ &\quad = -4\alpha(1-\alpha) \xi\bigl( D\bigl(\mathbf{u}^{h}\bigr), D \bigl(\mathbf {w}^{h}\bigr)\bigr)-2\alpha\xi\bigl(\tau^{h},D \bigl(\mathbf{w}^{h}\bigr)\bigr) + 2\alpha\xi\bigl(p^{h}, \nabla\cdot\mathbf{w}^{h}\bigr). \end{aligned}$$
(4.11)
To estimate the right-hand side of equation (4.11), using (3.8), (4.7), (4.8), and Young’s inequality, we have
$$\begin{aligned}& \begin{aligned} 4\alpha(1-\alpha) \xi\bigl( D\bigl(\mathbf{u}^{h} \bigr), D\bigl(\mathbf{w}^{h}\bigr)\bigr)& \leq4\alpha(1-\alpha) \xi \bigl\Vert D\bigl(\mathbf{u}^{h}\bigr) \bigr\Vert _{0} \bigl\Vert D\bigl(\mathbf{w}^{h}\bigr) \bigr\Vert _{0} \\ & \leq4\alpha(1-\alpha) \xi \bigl\Vert D\bigl(\mathbf{u}^{h}\bigr) \bigr\Vert _{0} \varUpsilon_{0} \bigl\Vert p^{h} \bigr\Vert _{0} \\ & \leq\frac{4\alpha(1-\alpha)^{2} \xi\varUpsilon ^{2}_{0}}{C_{1}} \bigl\Vert D\bigl(\mathbf{u}^{h}\bigr) \bigr\Vert ^{2}_{0}+ 4\alpha\xi C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}, \end{aligned} \\& \begin{aligned} 2\alpha\xi\bigl(\tau^{h},D\bigl(\mathbf{w}^{h} \bigr)\bigr)& \leq2\alpha\xi \bigl\Vert \tau ^{h} \bigr\Vert _{0} \bigl\Vert D\bigl(\mathbf{w}^{h}\bigr) \bigr\Vert _{0} \\ & \leq2\alpha\xi\varUpsilon_{0} \bigl\Vert \tau^{h} \bigr\Vert _{0} \bigl\Vert p^{h} \bigr\Vert _{0} \\ & \leq2\alpha\xi\varUpsilon^{2}_{0}\frac{1}{C_{1}} \bigl\Vert \tau ^{h} \bigr\Vert ^{2}_{0}+{2 C_{1}\alpha\xi} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}, \end{aligned} \end{aligned}$$
and
$$\begin{aligned} 2\alpha\xi\bigl(p^{h},\nabla\cdot w^{h}\bigr)&\geq 2\alpha \xi\bigl(C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}-C_{2} \bigl\Vert (I-\varPi)p^{h} \bigr\Vert _{0} \bigl\Vert p^{h} \bigr\Vert _{0}\bigr) \\ & \geq2\alpha\xi C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}-2\alpha \xi C_{2} \bigl\Vert (I- \varPi)p^{h} \bigr\Vert _{0} \bigl\Vert p^{h} \bigr\Vert _{0} \\ & \geq2\alpha\xi C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}- 2\alpha \xi\frac{C_{2}^{2}}{C_{1}} \bigl\Vert (I- \varPi)p^{h} \bigr\Vert ^{2}_{0}-2\alpha \xi{C_{1}} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}. \end{aligned}$$
Substituting all the bounds into (4.11), we obtain
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(0,-\xi\mathbf{w}^{h},0\bigr)\bigr) \\ &\quad \geq- 2\alpha\xi\varUpsilon^{2}_{0}\frac{1}{ {C_{1}}} \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0} - \frac{4\alpha(1-\alpha)^{2} \xi\varUpsilon^{2}_{0}}{C_{1}} \bigl\Vert D\bigl(\mathbf {u}^{h}\bigr) \bigr\Vert ^{2}_{0} \\ & \qquad {} + 4\alpha\xi C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0}- 2\alpha\xi\frac{C_{2}^{2}}{C_{1}} \bigl\Vert (I-\varPi)p^{h} \bigr\Vert ^{2}_{0}. \end{aligned}$$
(4.12)
As a result, combining the bounded terms (4.10)–(4.12), it is easy to see that
$$\begin{aligned} &{\mathscr{L}} \bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\tau^{h},\mathbf {u}-\xi \mathbf{w}^{h},p^{h} \bigr)\bigr) \\ &\quad \geq\biggl(1-2 \lambda Md- 2\alpha\xi\varUpsilon^{2}_{0} \frac {1}{ {C_{1}}}\biggr) \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0} \\ &\qquad {} +\biggl( 4\alpha(1-\alpha) -\frac{4\alpha(1-\alpha)^{2} \xi\varUpsilon^{2}_{0}}{C_{1}}\biggr) \bigl\Vert D \bigl(\mathbf{u}^{h}\bigr) \bigr\Vert ^{2}_{0} \\ &\qquad {} + 4\alpha\xi C_{1} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0} +2\alpha\biggl( 1- \xi\frac{C_{2}^{2}}{C_{1}} \biggr) \bigl\Vert (I-\varPi)p^{h} \bigr\Vert ^{2}_{0} \\ &\quad \geq C_{3} \bigl\Vert \tau^{h} \bigr\Vert ^{2}_{0}+C_{4} \bigl\Vert D\bigl( \mathbf{u}^{h}\bigr) \bigr\Vert ^{2}_{0}+ C_{5} \bigl\Vert p^{h} \bigr\Vert ^{2}_{0} \\ &\quad \geq C^{*} \bigl|\!\bigl|\!\bigl|\bigl(\tau^{h}, \mathbf{u}^{h},p^{h}\bigr) \bigr|\!\bigr|\!\bigr|^{2}_{S^{h}\times X^{h}\times Q^{h}}. \end{aligned}$$
(4.13)
From equation (4.7) we have
$$\begin{aligned} & \bigl\Vert \tau^{h} \bigr\Vert _{0}+ \bigl\Vert \mathbf{u}-\xi\mathbf{w}^{h} \bigr\Vert _{1}+ \bigl\Vert p^{h} \bigr\Vert _{0} \\ &\quad \leq \bigl\Vert \tau^{h} \bigr\Vert _{0}+ \Vert \mathbf {u} \Vert _{1} +\xi \bigl\Vert \mathbf{w}^{h} \bigr\Vert _{0}+ \bigl\Vert p^{h} \bigr\Vert _{0} \\ &\quad \leq \bigl\Vert \tau^{h} \bigr\Vert _{0}+ \Vert \mathbf {u} \Vert _{1} +\xi\varUpsilon_{0} \bigl\Vert p^{h} \bigr\Vert _{0}+ \bigl\Vert p^{h} \bigr\Vert _{0} \\ &\quad \leq C\bigl( \bigl\Vert \tau^{h} \bigr\Vert _{0}+ \Vert \mathbf{u} \Vert _{1} + \bigl\Vert p^{h} \bigr\Vert _{0}\bigr). \end{aligned}$$
(4.14)
Then it is easy to see that
$$\begin{aligned} &{\mathscr{L}} \bigl(\bigl(\tau^{h},\mathbf{u}^{h},p^{h} \bigr),\bigl(\tau^{h},\mathbf {u}-\xi\mathbf{w}^{h},p^{h} \bigr)\bigr) \\ &\quad \geq C^{**} \bigl|\!\bigl|\!\bigl|\bigl(\tau^{h}, \mathbf{u}^{h},p^{h}\bigr) \bigr|\!\bigr|\!\bigr|\bigl|\!\bigl|\!\bigl|\bigl( \tau^{h},\mathbf{u}^{h}-\xi\mathbf{w}^{h},p^{h} \bigr) \bigr|\!\bigr|\!\bigr|, \end{aligned}$$
(4.15)
which completes the proof of coercivity. □
Theorem 4.2
If
\(1-2\lambda Md>0\), \((\tau^{h},\mathbf{u}^{h},p^{h})\in(S^{h}\times X^{h} \times Q^{h})\)
satisfies equation (3.6), and
\((\tau,\mathbf{u} ,p )\in(S \times X \times Q)\)
satisfies (2.19), then we have the estimate
$$ \bigl\Vert \tau-\tau^{h} \bigr\Vert _{0}+ \bigl\Vert \mathbf{u}-\mathbf {u}^{h} \bigr\Vert _{1} + \bigl\Vert p-p^{h} \bigr\Vert _{0}\leq Ch. $$
(4.16)
Proof
Subtracting equation (3.6) from equation (2.19), for all \((\sigma^{h},\mathbf{v}^{h},q^{h})\in(S^{h}\times X^{h}\times Q^{h})\), we have
$$ {\mathscr{L}}\bigl(\bigl(\tau-\tau^{h},\mathbf{u}- \mathbf {u}^{h},p-p^{h}\bigr),\bigl(\sigma ^{h}, \mathbf{v}^{h},q^{h}\bigr)\bigr)= 2\alpha G \bigl(p,q^{h}\bigr). $$
(4.17)
By adding and subtracting the projection terms \((\tilde{\tau}^{h},\tilde {\mathbf{u}}^{h},\tilde{p}^{h})\) we get
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tilde{\tau}^{h}-\tau^{h},\tilde{ \mathbf {u}}^{h}-\mathbf {u}^{h},\tilde{p}^{h}-p^{h} \bigr),\bigl(\sigma^{h},\mathbf{v}^{h},q^{h}\bigr) \bigr) \\ &\quad = {\mathscr{L}}\bigl(\bigl(\tilde{\tau}^{h}-\tau,\tilde{\mathbf {u}}^{h}-\mathbf{u},\tilde{p}^{h}-p\bigr),\bigl( \sigma^{h},\mathbf{v}^{h},q^{h}\bigr)\bigr) +2 \alpha G\bigl(p,q^{h}\bigr). \end{aligned}$$
(4.18)
Using the weak coercivity bound (4.6), error orthogonality, and (4.18) we get
$$\begin{aligned} &\varUpsilon \bigl|\!\bigl|\!\bigl|\bigl(\tilde{\tau}^{h}-\tau^{h}, \tilde{\mathbf {u}}^{h}-\mathbf{u}^{h},\tilde{p}^{h}-p^{h}\bigr) \bigr|\!\bigr|\!\bigr|\\ &\quad \leq\sup_{(\sigma^{h},\mathbf{v}^{h},q^{h})\in S^{h}\times X^{h}\times Q^{h}} \frac{{\mathscr{L}}((\tilde{\tau}^{h}-\tau ^{h},\tilde{\mathbf{u}}^{h}-\mathbf{u}^{h},\tilde{p}^{h}-p^{h}),(\sigma ^{h},\mathbf{v}^{h},q^{h}))}{|\!|\!|(\sigma^{h},\mathbf{v}^{h},q^{h})|\!|\!|} \\ &\quad =\sup_{(\sigma^{h},\mathbf{v}^{h},q^{h})\in S^{h}\times X^{h}\times Q^{h}} \frac{{\mathscr{L}}((\tilde{\tau}^{h}-\tau,\tilde {\mathbf {u}}^{h}-\mathbf{u},\tilde{p}^{h}-p),(\sigma^{h},\mathbf {v}^{h},q^{h}))+2\alpha G(p,q^{h})}{|\!|\!|(\sigma^{h},\mathbf{v}^{h},q^{h} )|\!|\!|}. \end{aligned}$$
From (3.3) we have that
$$ 2\alpha G\bigl(p,q^{h}\bigr)\leq C 2\alpha G(p,p)^{1/2} \bigl\Vert q^{h} \bigr\Vert _{0}. $$
(4.19)
From (4.5) we have
$$\begin{aligned} &{\mathscr{L}}\bigl(\bigl(\tilde{\tau}^{h}-\tau,\tilde{ \mathbf{u}}^{h}-\mathbf {u},\tilde{p}^{h}-p\bigr),\bigl(\tilde{\tau}^{h}-\tau^{h},\tilde{\mathbf {u}}^{h}-{ \mathbf{u}}^{h},\tilde{p}^{h}-p^{h}\bigr)\bigr) \\ &\quad \leq C \bigl( \bigl\Vert \tilde{\tau}^{h}-\tau \bigr\Vert _{0}+ \bigl\Vert \tilde{\mathbf{u}}^{h}-{\mathbf{u}} \bigr\Vert _{1}+ \bigl\Vert \tilde{p}^{h} -p \bigr\Vert _{0}+ 2\alpha \bigl\Vert (I-\varPi)p \bigr\Vert _{0}\bigr) \\ &\qquad {}\times \bigl|\!\bigl|\!\bigl|\bigl(\sigma^{h},\mathbf{v}^{h},q^{h} \bigr) \bigr|\!\bigr|\!\bigr|. \end{aligned}$$
(4.20)
As a result,
$$\begin{aligned} &\varUpsilon \bigl|\!\bigl|\!\bigl|\bigl(\tilde{\tau}^{h}-\tau^{h}, \tilde{\mathbf {u}}^{h}-\mathbf{u}^{h},\tilde{p}^{h}-p^{h}\bigr) \bigr|\!\bigr|\!\bigr|\\ &\quad \leq \sup_{(\sigma^{h},\mathbf{v}^{h},q^{h})\in S^{h}\times X^{h}\times Q^{h}}\frac{C( \Vert \tilde{\tau}^{h}-\tau \Vert _{0}+ \Vert \tilde {\mathbf{u}}^{h}-{\mathbf{u}} \Vert _{1}+ \Vert \tilde{p}^{h} -p \Vert _{0}+ 2\alpha \Vert (I-\varPi)p \Vert _{0})|\!|\!|(\sigma^{h},\mathbf{v}^{h},q^{h})|\!|\!|}{|\!|\!|(\sigma ^{h},\mathbf {v}^{h},q^{h})|\!|\!|} \\ &\quad \leq\frac{C }{\varUpsilon}\bigl( \bigl\Vert \tilde{\tau}^{h}-\tau \bigr\Vert _{0}+ \bigl\Vert \tilde{\mathbf{u}}^{h}-{ \mathbf{u}} \bigr\Vert _{1}+ \bigl\Vert \tilde{p}^{h} -p \bigr\Vert _{0}+ \bigl\Vert (I-\varPi)p \bigr\Vert _{0} \bigr). \end{aligned}$$
To end the proof, we use the triangle inequality to obtain (4.16) □