Abbas, S., Benchohra, M., N’Guerekata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)

MATH
Google Scholar

Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. **13**(2), 021013 (2018)

Article
Google Scholar

Jajarmi, A., Hajipour, M., Mohammadzadeh, E., Baleanu, D.: A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. J. Franklin Inst. **355**(9), 3938–3967 (2018)

Article
MathSciNet
MATH
Google Scholar

Jajarmi, A., Baleanu, D.: A new fractional analysis on the interaction of HIV with CD4 + T-cells. Chaos Solitons Fractals **113**, 221–229 (2018)

Article
MathSciNet
Google Scholar

Hesameddini, E., Shahbazi, M.: Hybrid Bernstein block–pulse functions for solving system of fractional integro-differential equations. Int. J. Comput. Math. **95**(11), 2287–2307 (2018)

Article
MathSciNet
Google Scholar

Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math. **111**, 197–218 (2018)

Article
MATH
Google Scholar

Zaky, M.A.: An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. **75**, 2243–2258 (2018)

Article
MathSciNet
Google Scholar

Zaky, M.A., Doha, E.H., Taha, T.M., Baleanu, D.: New recursive approximations for variable-order fractional operators with applications. Math. Model. Anal. **23**(2), 227–239 (2018)

Article
MathSciNet
Google Scholar

Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion-wave equation. Numer. Algorithms **71**(1), 151–180 (2016)

Article
MathSciNet
MATH
Google Scholar

Jajarmi, A., Baleanu, D.: Suboptimal control of fractional-order dynamic systems with delay argument. J. Vib. Control **24**(12), 2430–2446 (2018)

Article
MathSciNet
MATH
Google Scholar

Mittal, R.C., Nigam, R.: Solution of fractional integro-differential equations by Adomian decomposition method. Int. J. Adv. Appl. Math. Mech. **4**(2), 87–94 (2008)

Google Scholar

Yüzbaşı, Ş.: A numerical approximation for Volterra’s population growth model with fractional order. Appl. Math. Model. **37**, 3216–3227 (2013)

Article
MathSciNet
MATH
Google Scholar

Parand, K., Nikarya, M.: Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Appl. Math. Model. **38**, 4137–4147 (2014)

Article
MathSciNet
MATH
Google Scholar

Saaedi, H., Mohseni Moghadam, M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numer. Simul. **16**, 1216–1226 (2011)

Article
MathSciNet
MATH
Google Scholar

Sweilam, N.H., Khader, M.M.: A Chebyshev pseudo-spectral method for solving fractional-order integro-differential equations. ANZIAM J. **51**, 464–475 (2010)

Article
MathSciNet
MATH
Google Scholar

Maleknejad, K., Sahlan, M.N., Ostadi, A.: Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets. In: Proceedings of the World Congress on Engineering 2013, Vol. I, London, UK, 3–5 July 2013 (2013)

Google Scholar

Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. **2017** 27 (2017)

Article
MathSciNet
MATH
Google Scholar

Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals **40**, 521–529 (2009)

Article
MathSciNet
MATH
Google Scholar

Awawdeh, F., Rawashdeh, E.A., Jaradat, H.M.: Analytic solution of fractional integro-differential equations. An. Univ. Craiova, Ser. Mat. Inform. **38**(1), 1–10 (2011)

MathSciNet
MATH
Google Scholar

Elbeleze, A.A., Kılıçman, A., Taib, M.T.: Approximate solution of integro-differential equation of fractional (arbitrary) order. J. King Saud Univ., Sci. **28**, 61–68 (2016)

Article
Google Scholar

Elbeleze, A.A., Kılıçman, A., Taib, M.T.: Modified homotopy perturbation method for solving linear second-order Fredholm integro–differential equations. Filomat **30**(7), 1823–1831 (2016)

Article
MathSciNet
MATH
Google Scholar

Sayevand, K., Fardi, M., Moradi, E., Hemati Boroujeni, F.: Convergence analysis of homotopy perturbation method for Volterra integro-differential equations of fractional order. Alex. Eng. J. **52**, 807–812 (2013)

Article
Google Scholar

Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. **61**, 2330–2341 (2011)

Article
MathSciNet
MATH
Google Scholar

Yang, Y., Chen, Y., Huang, Y.: Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations. Acta Math. Sci. Ser. B Engl. Ed. **34**(3), 673–690 (2014)

Article
MathSciNet
MATH
Google Scholar

Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. **38**, 1434–1448 (2014)

Article
MathSciNet
MATH
Google Scholar

Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control **17**(13), 2050–2058 (2011)

Article
MathSciNet
MATH
Google Scholar

Saleh, M.H., Amer, S.M., Mohamed, M.A., Abdelrhman, N.S.: Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods. CUBO **15**(3), 89–103 (2013)

Article
MathSciNet
MATH
Google Scholar

Kumar, K., Pandey, R.K., Sharma, S.: Comparative study of three numerical schemes for fractional integro-differential equations. J. Comput. Appl. Math. **315**, 287–302 (2017)

Article
MathSciNet
MATH
Google Scholar

Nemati, S., Sedaghat, S., Mohammadi, I.: A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. **308**, 231–242 (2016)

Article
MathSciNet
MATH
Google Scholar

Maleki, M., Kajani, M.T.: Numerical approximations for Volterra’s population growth model with fractional order via a multi-domain pseudospectral method. Appl. Math. Model. **39**, 4300–4308 (2015)

Article
MathSciNet
Google Scholar

Turmetov, B., Abdullaev, J.: Analytic solutions of fractional integro-differential equations of Volterra type. Int. J. Mod. Phys. Conf. Ser. **890**, 012113 (2017)

Article
Google Scholar

Sahu, P.K., Saha Ray, S.: A novel Legendre wavelet Petrov–Galerkin method for fractional Volterra integro-differential equations. Comput. Math. Appl. (2016), in press. https://doi.org/10.1016/j.camwa.2016.04.042

Article
Google Scholar

Karimi Vanani, S., Aminataei, A.: Operational tau approximation for a general class of fractional integro-differential equations. Comput. Appl. Math. **30**(3), 655–674 (2011)

Article
MathSciNet
MATH
Google Scholar

Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms **65**, 723–743 (2014)

Article
MathSciNet
MATH
Google Scholar

Nazari Susahab, D., Shahmorad, S., Jahanshahi, M.: Efficient quadrature rules for solving nonlinear fractional integro-differential equations of the Hammerstein type. Appl. Math. Model. **39**, 5452–5458 (2015)

Article
MathSciNet
Google Scholar

Jiang, W., Tian, T.: Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method. Appl. Math. Model. **39**, 4871–4876 (2015)

Article
MathSciNet
Google Scholar

Zhu, L., Fan, Q.: Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW. Commun. Nonlinear Sci. Numer. Simul. **18**, 1203–1213 (2013)

Article
MathSciNet
MATH
Google Scholar

Nemati, S., Lima, P.M.: Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions. Appl. Math. Comput. **327**, 79–92 (2018)

Article
MathSciNet
Google Scholar

Fahim, A., Fariborzi Araghi, M.A., Rashidinia, J., Jalalvand, M.: Numerical solution of Volterra partial integro-differential equations based on sinc-collocation method. Adv. Differ. Equ. **2017** 362 (2017)

Article
MathSciNet
Google Scholar

Alkan, S.: A numerical method for solution of integro-differential equations of fractional order. Sakarya Üniv. Fen Bilim. Enst. Derg. **21**(2), 82–89 (2017)

Article
Google Scholar

Pedas, A., Tamme, E., Vikerpuur, M.: Spline collocation for fractional weakly singular integro-differential equations. Appl. Numer. Math. **110**, 204–214 (2016)

Article
MathSciNet
MATH
Google Scholar

Kobayashi, R., Konuma, M., Kumano, S.: FORTRAN program for a numerical solution of the nonsinglet Altarelli–Parisi equation. Comput. Phys. Commun. **86**, 264–278 (1995)

Article
MATH
Google Scholar

Schoeffel, L.: An elegant and fast method to solve QCD evolution equations. Application to the determination of the gluon content of the Pomeron. Nucl. Instrum. Methods Phys. Res., Sect. A **423**, 439–445 (1999)

Article
Google Scholar

Yüzbaşı, Ş.: Laguerre approach for solving pantograph-type Volterra integro-differential equations. Appl. Math. Comput. **232**, 1183–1199 (2014)

MathSciNet
MATH
Google Scholar

Baykus Savasaneril, N., Sezer, M.: Laguerre polynomial solution of high-order linear Fredholm integro-differential equations. New Trends Math. Sci. **4**(2), 273–284 (2016)

Article
MathSciNet
Google Scholar

Gürbüz, B., Sezer, M., Güler, C.: Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments. J. Appl. Math. **2014**, Article ID 682398 (2014)

Article
MathSciNet
Google Scholar

Al-Zubaidy, K.A.: A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method. Int. J. Sci. Technol. **8**(4), 51–55 (2013)

Google Scholar

Gürbüz, B., Sezer, M.: A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method. Int. J. Appl. Phys. Math. **7**(1), 49–58 (2017)

Article
Google Scholar

Gürbüz, B., Sezer, M.: A new computational method based on Laguerre polynomials for solving certain nonlinear partial integro differential equations. Acta Phys. Pol. A **132**(3), 561–563 (2017)

Article
Google Scholar

Gürbüz, B., Sezer, M.: Laguerre polynomial solutions of a class of delay partial functional differential equations. Acta Phys. Pol. A **132**(3), 558–560 (2017)

Article
Google Scholar

Mahdy, A.M.S., Shwayyea, R.T.: Numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre polynomials pseudo-spectral method. Int. J. Sci. Eng. Res. **7**(4), 1589–1596 (2016)

Google Scholar

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

MATH
Google Scholar

Herrman, R.: Fractional Calculus. World Scientific, Singapore (2014)

Book
Google Scholar

Bell, W.W.: Special Functions for Scientists and Engineers. Van Nostrand, London (1968)

MATH
Google Scholar

Khader, M.M., El Danaf, T.S., Hendy, A.S.: Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials. J. Fract. Calc. Appl. **3**(13), 1–14 (2012)

Google Scholar

Baleanu, D., Bhrawy, A.H., Taha, T.M.: A modified generalized Laguerre spectral method for fractional differential equations on the half line. Abstr. Appl. Anal. **2013** 413529 (2013)

MathSciNet
MATH
Google Scholar

Baleanu, D., Bhrawy, A.H., Taha, T.M.: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems. Abstr. Appl. Anal. **2013**, 546502 (2013)

MathSciNet
MATH
Google Scholar

Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

MATH
Google Scholar