Let ρ: \(\mathbb{Z}\rightarrow\mathbb{(}0,+\infty)\), \(\rho _{i}=\rho(i)\) for \(i\in\mathbb{Z}\) be a positive weight function. Write
$$ l_{\rho}^{2}= \biggl\{ u=(u_{i})_{i\in\mathbb{Z}}:u_{i} \in\mathbb{R},\sum_{i\in\mathbb{Z}} \rho_{i} \vert u_{i} \vert ^{2}< \infty \biggr\} $$
with inner product \((u,v)_{\rho}=\sum_{i\in\mathbb{Z}}\rho_{i}u_{i}v_{i}\) and norm \(\Vert v\Vert_{\rho}^{2}=(v,v)_{\rho}\) for \(u=(u_{i})_{i\in \mathbb{Z}}\), \(v=(v_{i})_{i\in\mathbb{Z}}\in l_{\rho}^{2}\).
Consider the system (1), which can be written in the following vector form:
$$ \textstyle\begin{cases} \ddot{u}+\gamma A\dot{u}+\alpha\dot{u}+Au+\lambda u+f(u,t)=g(t)+cu\circ \dot{W}(t),\quad t>\tau, \\ u(\tau)=u_{\tau}, \qquad \dot{u}(\tau)=u_{1\tau},\quad \tau\in\mathbb{R},\end{cases} $$
(2)
where \(A\dot{u}=((A\dot{u})_{i})_{i\in\mathbb{Z}}\), \(Au=(Au_{i})_{i\in \mathbb{Z}}\), \(\lambda u=(\lambda_{i}u_{i})_{i\in\mathbb{Z}}\), \(f(u,t)=(f_{i}(u_{i},t))_{i\in\mathbb{Z}}\), \(g(t)=(g_{i}(t))_{i\in \mathbb{Z}}\), \(u\circ\dot{W}(t)=(u_{i}\circ\dot{W}(t))_{i\in\mathbb{Z}}\). The operator A has a decomposition \(A=\overline{D}D=D\overline{D}\), where D is a bounded linear operator defined by
$$ (Du)_{i}=\sum_{l=-m_{0}}^{m_{0}}d_{l}u_{i+l}, \quad \vert d_{l} \vert \leq c_{0}\ (\mathrm{constant}),\forall u=(u_{i})_{i\in\mathbb{Z}}, m_{0} \in\mathbb{N}, $$
D̅ is the adjoint of D in \(l^{2}=l_{\rho(i)\equiv 1,\forall i\in\mathbb{Z}}^{2}\).
Let \(i\in\mathbb{Z}\), \(G_{i}(s,t)=\int_{0}^{s}f_{i}(r,t)\,dr\), \(\overline {G}(u,t)=\sum_{i\in\mathbb{Z}}\rho_{i}G_{i}(u_{i},t)\) and we make the following assumptions on \(\rho_{i}\), \(f_{i}\), \(g_{i}\), \(\lambda_{i}\):
-
(A1)
\(0<\bar{\rho}\leq\rho_{i}=\rho(i)\leq a_{0}<+\infty\), \(c_{1}\rho(i)\leq\rho(i\pm1)\leq c_{2}\rho(i)\), \(|\rho(i\pm 1)-\rho (i)|\leq c_{3}\rho(i)\), \(\forall i\in\mathbb{Z}\), for some positive constants ρ̄, \(a_{0}\), \(c_{1}\), \(c_{2}\), \(c_{3}\).
-
(A2)
\(\forall i\in\mathbb{Z}\), t, \(s\in\mathbb{R}\), \(f_{i}\), \(f_{i,s}^{\prime}\in C(\mathbb{R}\times\mathbb{R}, \mathbb{R})\), and there exist positive constants \(a_{1}\), \(a_{2}\), \(a_{3}\), \(a_{4}\), \(\underline {\lambda}\), \(\bar{\lambda}>0\) and functions \(\beta_{i}\in C^{1}(\mathbb {R}, \mathbb{R})\) such that
$$ \textstyle\begin{cases} f_{i}(0,t)=0,\qquad \vert f_{i,s}^{\prime}(s,t) \vert \leq a_{1} \vert s \vert (1+ \vert s \vert ^{p-1}),\quad p>1, \\ a_{2}f_{i}(s,t)s\geq G_{i}(s,t)\geq a_{3} \vert s \vert ^{p+2}-\beta _{i}^{2}(t), \\ G_{i,t}^{\prime}(s,t)\leq a_{4}G_{i}(s,t),\quad 0\leq a_{4}\leq\frac {\varepsilon }{2a_{2}}, \\ \underline{\lambda}\leq\lambda_{i}\leq\bar{\lambda}< +\infty.\end{cases} $$
-
(A3)
\(\forall t\in\mathbb{R}\), \(\beta(t)= ( \beta _{i}(t) ) _{i\in\mathbb{Z}}, \beta^{\prime}(t)= ( \beta _{i}^{\prime}(t) ) _{i\in\mathbb{Z}}, g(t)= ( g_{i}(t) ) _{i\in\mathbb{Z}}\in{\mathbf{G}}\), where
$$ {\mathbf{G}}= \biggl\{ g\in C_{b} \bigl( \mathbb{R},l_{\rho}^{2} \bigr) : \forall\eta>0,\exists I(\eta)\in\mathbb{N}\text{ such that } { \sup}_{t\in\mathbb{R}}\sum_{ \vert i \vert >I(\eta)}\rho _{i}g_{i}^{2}(t)< \eta \biggr\} , $$
and \(C_{b}(\mathbb{R},l_{\rho}^{2})\) is the space of all continuous bounded functions from \(\mathbb{R}\) into \(l_{\rho}^{2}\).
- (A4):
-
\(c_{3}\) in (A1) satisfies
$$ 0\leq c_{3}\leq\min \biggl\{ \frac{\varepsilon}{2c_{0}c_{4}},\frac {\alpha}{2c_{0}c_{4}c_{2}^{m_{0}}(2m_{0}+1)^{2}(\delta+\gamma)}, \frac {2}{c_{0}c_{4}} \biggr\} , $$
where
$$\begin{aligned} &c_{4} =c_{2}^{m_{0}-1}+c_{2}^{m_{0}-2}+ \cdots+c_{2}+1, \\ &0 < \varepsilon= \textstyle\begin{cases} \frac{\alpha\underline{\lambda}}{2\alpha^{2}+3\underline{\lambda}}, & \gamma=0, \\ \min \{ \frac{1}{\gamma},\frac{\alpha\underline{\lambda }}{2\alpha ^{2}+3\underline{\lambda}} \}, & \gamma\neq0.\end{cases}\displaystyle \end{aligned}$$
For any u, \(v\in l_{\rho}^{2}\), define new inner products on \(l_{\rho }^{2}\) by
$$\begin{aligned} &(u,v)_{\lambda,\rho}=\sum_{i\in\mathbb{Z}} \rho_{i}\lambda _{i}u_{i}v_{i}, \qquad \Vert u \Vert _{\lambda,\rho}^{2}=\sum _{i\in\mathbb{Z}}\rho_{i}\lambda_{i}u_{i}^{2}, \\ &(u,v)_{\delta,\lambda,\rho}=\delta(Du,Dv)_{\rho}+(u,v)_{\lambda ,\rho },\\ & \Vert u \Vert _{\delta,\lambda,\rho}^{2}=\delta \Vert Du \Vert _{\rho}^{2}+ \Vert u \Vert _{\lambda,\rho}^{2},\quad \delta =1-\varepsilon \gamma\in{}[0,1], \end{aligned}$$
then the norms \(\Vert \cdot \Vert _{\rho}\), \(\Vert \cdot \Vert _{\lambda,\rho}\) and \(\Vert \cdot \Vert _{\delta,\lambda,\rho}\) are equivalent to each other because
$$ \underline{\lambda} \Vert u \Vert _{\rho}^{2}\leq \Vert u \Vert _{\lambda ,\rho}^{2}\leq \Vert u \Vert _{\delta,\lambda,\rho }^{2}\leq\frac{\delta \bar{\lambda}c_{0}^{2}c_{2}^{m_{0}}(2m_{0}+1)^{2}}{\underline{\lambda}} \Vert u \Vert _{\rho}^{2}. $$
Let \(l_{\delta,\lambda,\rho}^{2}= ( l_{\rho}^{2},(\cdot,\cdot )_{\delta,\lambda,\rho}, \Vert \cdot \Vert _{\delta ,\lambda,\rho} ) \), \(H=l_{\delta,\lambda,\rho}^{2}\times l_{\rho}^{2}\), then H is a separable Hilbert space.
Let \((\varOmega,\mathcal{F},\mathbb{P})\) be defined in Sect. 1. Define a family of mappings \((\theta_{t})_{t\in\mathbb{R}}\) on Ω: \(\theta_{t}\omega (\cdot)=\omega(\cdot+t)-\omega(t)\) for \(\omega\in\varOmega\), then \((\varOmega,\mathcal{F},\mathbb{P},(\theta_{t})_{t\in\mathbb{R}})\) is an ergodic metric dynamical system [4]. Let us consider the Ornstein–Uhlenbeck stationary process \(z(\theta_{t}\omega)=-\alpha\int_{-\infty}^{0}e^{\alpha s}(\theta_{t}\omega)(s)\,ds\) for \(t\in\mathbb{R}\) and \(\omega\in \varOmega\), which solves the Itô stochastic equation \(dz(\theta_{t}\omega )+\alpha z(\theta_{t}\omega)\,dt=dW(t,\omega)\), where \(W(t,\omega)=\omega (t)\). It is well known that the random variable \(|z(\omega)|\) is tempered and there exists \(\varOmega_{0}\subseteq\varOmega\) with \(\mathbb{P}(\varOmega_{0})=1\), such that for every \(\omega\in\varOmega_{0}\), \(t\mapsto z(\theta_{t}\omega)\) is continuous in t and
$$ \lim_{t\rightarrow\pm\infty}\frac{ \vert z(\theta _{t}\omega) \vert }{t}=\lim _{t \rightarrow\pm\infty}\frac{\int_{0}^{t}z(\theta _{s}\omega)\,ds}{t}=0. $$
(3)
For convenience, we still write \(\varOmega_{0}\) as Ω.
Introduce a variable transformation\(v=u_{t}+\varepsilon u-cuz(\theta _{t}\omega)\), then the problem (2) is equivalent to the following random system:
(4)
where
(5)
(6)
It follows from assumptions (A1)–(A4) and theory of ordinary differential equations that, for every \(\omega\in\varOmega\), \(\tau\in\mathbb{R}\) and , the problem (4) has a unique solution \(\varphi (\cdot,\tau,\omega,\varphi_{\tau})\in C([\tau,\tau+T),H)\) for any \(T>0\), where \(\varphi(\tau,\tau,\omega,\varphi_{\tau})=\varphi _{\tau } \) and \(\varphi(t,\tau,\omega,\varphi_{\tau})\) is continuous in \(\varphi_{\tau}\in H\), which defines a continuous cocycle Φ: \(\mathbb{R}^{+}\times\mathbb{R}\times\varOmega\times H\rightarrow H\) by
$$ (t,\tau,\omega,\varphi_{\tau})\rightarrow\varPhi(t,\tau,\omega ,\varphi _{\tau})=\varPhi(t,\tau,\omega)\varphi_{\tau}=\varphi \bigl(t+ \tau,\tau ,\theta_{-\tau}\omega,\varphi_{\tau}( \theta_{-\tau}\omega) \bigr) $$
over \(\mathbb{R}\) and \((\varOmega,\mathcal{F},\mathbb{P},(\theta _{t})_{t\in \mathbb{R}})\) with state space H.
2.1 Random exponential attractor
In this subsection, we present the definition and existence conditions of a random exponential attractor for the continuous cocycle \(\{\varPhi(t,\tau ,\omega)\}_{t\geq0,\omega\in\varOmega,\tau\in\mathbb{R}}\) in H. Let \(\mathcal{D}(H)\) be the collection of all the tempered families of nonempty subsets of H [3]. A family \(D=\{D(\tau,\omega)\subset H\} _{\tau \in\mathbb{R},\omega\in\varOmega}\) of nonempty subsets of H is said to be tempered with respective to \((\theta_{t})_{t\in\mathbb{R}}\) if, for every \(\epsilon>0, \tau\in\mathbb{R}\), and a.e. \(\omega\in\varOmega\), \(\lim_{t\rightarrow\infty}e^{-\epsilon|t|}\Vert D(\tau+t,\theta _{t}\omega)\Vert_{H}=0\), where \(\Vert D(\tau,\omega)\Vert _{H}=\sup_{\varphi\in D(\tau,\omega)}\Vert\varphi\Vert_{H}\).
Definition 2.1
([3])
A family \(\{\mathcal{A}(\tau,\omega)\}_{\tau\in\mathbb{R},\omega\in\varOmega}\) of subsets of H is called a random exponential attractor in \(\mathcal{D}(H)\) for a continuous cocycle \(\{\varPhi(t,\tau,\omega)\}_{t\geq0,\tau\in\mathbb {R},\omega\in\varOmega}\) on H over \(\mathbb{R}\) and \((\varOmega,\mathcal {F},\mathbb{P},(\theta_{t})_{t\in\mathbb{R}})\) if, for any \(\tau\in \mathbb{R}\) and \(\omega\in\varOmega\), (i) \(\mathcal{A}(\tau,\omega)\) is compact subset in H and measurable in ω; (ii) \(\varPhi(t,\tau-t,\theta _{-t}\omega )\mathcal{A}(\tau-t,\theta_{-t}\omega)\subseteq\mathcal{A}(\tau ,\omega ) \) for all \(t\geq0\); (iii) there exists a random variable \(\zeta _{\omega } \)
\((<\infty)\) such that \(\sup_{\tau\in\mathbb{R}}\dim_{f}\mathcal {A}(\tau,\omega)\leq\zeta_{\omega}<\infty\), where \(\dim_{f}\mathcal {A}(\tau,\omega)=\lim\sup_{\varepsilon\rightarrow0^{+}}\frac{\ln N_{\varepsilon}(\mathcal{A}(\tau,\omega))}{-\ln\varepsilon}\) is the fractal dimension of \(\mathcal{A}(\tau,\omega)\) and \(N_{\varepsilon}( \mathcal{A}(\tau,\omega))\) is the minimal number of balls with radius ε covering \(\mathcal{A}(\tau,\omega)\) in H; (iv) there exists a constant \(\tilde{a}>0\) such that, for any \(D\in\mathcal{D}(H)\), there exist random variables \(t_{D}(\tau,\omega)\geq0\), \(Q(\tau ,\omega ,D)>0\) satisfying \(\mathrm{d}_{h}(\varPhi(t,\tau-t,\theta_{-t}\omega )D(\tau -t,\theta_{-t}\omega),\mathcal{A}(\tau,\omega))\leq Q(\tau,\omega ,D)e^{-\widetilde{a}t}\) for all \(t\geq t_{D}(\tau,\omega)\), where \({d}_{h}\) denotes the Hausdorff semidistance between two subsets.
Based on Theorem 2.8 in [13] and Theorems 2.1–2.4 in [3], by making some slightly revision in the proof, we have the following theorem.
Theorem 2.1
Consider the continuous cocycle
\(\{\varPhi(t,\tau,\omega)\}_{t\geq0,\tau\in\mathbb{R},\omega\in \varOmega}\). Assume that:
-
(B1)
There exist a family of uniformly (with respect to
\(\tau\in\mathbb{R}\)) tempered closed measurable set
\(D_{0}=\{D_{0}(\omega)\}_{\tau\in\mathbb{R},\omega\in\varOmega}\in \mathcal{D}(H)\)
satisfying that, for any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\)
and
\(D(\tau,\omega)\in\mathcal{D}(H)\), there exists a
\(t_{D}(\tau,\omega)\geq0\)
such that
\(\varPhi(t,\tau-t,\omega)D(\tau-t,\theta_{-t}\omega)\subseteq D_{0}(\omega)\)
for all
\(t\geq t_{D}(\tau,\omega)\). Particularly, there exists a
\(t_{D_{0}}(\omega)\geq0\) (independent of
τ) such that
\(\varPhi(t,\tau-t,\omega )D_{0}(\theta_{-t}\omega)\subseteq D_{0}(\omega)\)
for all
\(t\geq t_{D_{0}}(\omega)\). For any
\(\omega\in\varOmega\), \(\tau\in\mathbb{R}\), set
$$ \mathcal{X}(\tau,\omega)=\bigcup_{t\geq t_{D_{0}}(\omega)}{ \varPhi(t, \tau-t,\theta_{-t}\omega)}D_{0}( \theta_{-t} \omega)\subseteq D_{0}(\omega). $$
-
(B2)
There exist some positive numbers
\(\hat{\lambda}>0\), \(\hat{\delta}>0\), k
\((\in\mathbb{N})\) (independent of
\((\tau,\omega)\), but
δ̂, k
maybe depend on
λ̂) and random variables
\(C_{0}(\omega)\), \(C_{1}(\omega)\geq0\)
such that for any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\)
and any
u, \(v\in\mathcal{X}(\tau,\omega)\subset H\), we have
$$\begin{aligned} & \bigl\Vert \varPhi (t,\tau,\omega )u-\varPhi (t,\tau,\omega )v \bigr\Vert _{H}\leq e^{\int_{0}^{t}C_{0}(\theta_{s}\omega )\,ds} \Vert u-v \Vert _{H},\quad \forall t\in \biggl[0,\frac{8\ln2}{\hat {\lambda}} \biggr], \\ &\sum_{ \vert i \vert >k}\rho_{i} \biggl(\varPhi \biggl(\frac{8\ln2}{\hat {\lambda}},\tau,\omega \biggr)u-\varPhi \biggl(\frac{8\ln2}{\hat{\lambda}}, \tau,\omega \biggr)v \biggr)_{i}^{2} \\ &\quad\leq \biggl(e^{-8\ln 2+\int_{0}^{\frac{8\ln2}{\hat{\lambda}}}C_{1}(\theta_{s}\omega )\,ds}+\frac{\hat{\delta}}{2}e^{\int_{0}^{\frac{8\ln2}{\hat{\lambda}}}C_{0}(\theta _{s}\omega)\,ds} \biggr)^{2} \Vert u-v \Vert _{H}^{2} \end{aligned}$$
and
$$ \textstyle\begin{cases} 0\leq\mathbf{E[}C_{1}(\omega)]\leq\frac{\hat{\lambda}}{16},\quad 0\leq \mathbf{E}[C_{0}^{2}(\omega)]< \infty, \\ 0< \hat{\delta}\leq\min \{ \frac{1}{16},e^{-\frac{128\ln ^{2}2}{\hat{\lambda}^{2}\ln\frac{3}{2}} ( \mathbf{E[}C_{0}^{2}(\omega)]+\hat{\lambda}\mathbf{E[}C_{0}(\omega)] ) } \},\end{cases} $$
where
E
denotes the expectation.
-
(B3)
$$\textstyle\begin{cases} \lim_{t\rightarrow0^{+}}\sup_{u\in\mathcal{X}(\tau,\omega)} \Vert \varPhi (t,\tau,\omega)u-u \Vert _{H}=0, \\ \lim_{t\rightarrow0^{+}}\sup_{u\in\mathcal{X}(\tau-t,\theta _{-t}\omega )} \Vert \varPhi(0,\tau-t,\theta_{-t}\omega)u-u \Vert _{H}=0.\end{cases} $$
Then
\(\{\varPhi(t,\tau,\omega)\}_{t\geq0,\tau\in\mathbb{R},\omega\in\varOmega}\)
has a random exponential attractor
\(\{\mathcal{A}(\tau,\omega)\}_{\tau\in\mathbb{R},\omega\in\varOmega}\)
such that, for every
\(\tau\in\mathbb{R}\), \(\omega\in \varOmega\)
and
\(t\geq0\),
-
(i)
\(\mathcal{A}(\tau,\omega)\)
\((\subseteq\{\overline{\mathcal{X}(\tau,\omega)}\})\)
is a compact set of
H
and measurable in
ω;
-
(ii)
\(\varPhi(t,\tau,\omega)\mathcal{A}(\tau,\omega)\subseteq \mathcal{A}(\tau+t,\theta_{t}\omega)\);
-
(iii)
\(\dim_{f}\mathcal{A}(\tau,\omega)\leq\frac{4(2k+1)\ln(\frac{2\sqrt{2(2k+1)}}{\hat{\delta} }+1)}{\ln\frac{4}{3}}<\infty\);
-
(iv)
for every set
\(D\in\mathcal{D}(H)\), there exist a random variable
\(T_{\omega,D}\geq0\)
and a tempered random variable
\(b_{\omega,D}>0\)
such that
$$ \mathrm{d}_{h} \bigl( \varPhi(t,\tau,\omega)D(\tau,\omega), \mathcal{A}(t+\tau,\theta_{t}\omega) \bigr) \leq b_{\omega,D}e^{-\frac{\hat {\lambda}\ln\frac{4}{3}}{32\ln2}t},\quad t\geq T_{\omega,D}; $$
-
(v)
for any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\), \(\lim_{t\rightarrow0}\mathrm{d}_{h}(\mathcal{A}(\tau+t,\theta _{t}\omega),\mathcal{A}(\tau,\omega))=0\).
Remark 2.1
The condition (B2) in Theorem 2.1 above is different from the corresponding condition in the well-known publication [3].
In the following, we will prove the existence of a random exponential attractor for Φ based on Theorem 2.1.
2.2 Estimations of bound and tail of solutions
Write \(\Vert g \Vert _{\rho}=\sup_{r\in\mathbb{R}} \Vert g(r) \Vert _{\rho}\), \(\Vert \beta \Vert _{\rho}=\sup_{r\in\mathbb{R}} \Vert \beta(r) \Vert _{\rho}\) and
$$ M_{0}^{2}(\omega)=c_{5}K_{0}(\omega) , \quad K_{0}(\omega )= \int_{-\infty}^{0}e^{\mu s+a_{7}\int_{s}^{0}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2})\,dl}\,ds, $$
(7)
where
$$ \textstyle\begin{cases} a_{7}=\max \{ \frac{2a_{6}}{\underline{\lambda}}+\frac {2\varepsilon}{\sqrt{\underline{\lambda}}}+2,\frac{1}{\sqrt{\underline{\lambda }}}+\frac{8a_{5}^{2}}{\alpha\underline{\lambda}},\frac{a_{1}+1}{a_{3}} \} , \\ a_{5}= \vert \gamma \vert c_{0}^{2}c_{2}^{m_{0}}(2m_{0}+1)^{2},\qquad a_{6}=\frac{p-1}{p^{\frac{p}{p-1}}}, \\ c_{5}=\frac{8}{\alpha} \Vert g \Vert _{\rho}^{2}+2\Vert \beta \Vert _{\rho}^{2},\qquad \mu =\min\{\varepsilon,\frac{\varepsilon}{2a_{2}},1\}.\end{cases} $$
In the following part of this section, we always assume that conditions (A1)–(A4) and
$$ a_{7} \biggl( \frac{ \vert c \vert }{\sqrt{\pi\alpha}}+\frac{ \vert c \vert ^{2}}{2\alpha} \biggr) \leq \frac{\mu}{2} $$
(8)
hold.
Lemma 2.1
For every
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\)
and
\(D\in\mathcal{D}(H)\), there exist
\(T_{D}(\tau,\omega)\geq0\)
and a tempered random variable
\(M_{0}(\omega)\) (independent of
τ), such that the solution
\(\varphi(r,\tau-t,\theta_{-\tau}\omega ,\varphi_{\tau-t}(\theta_{-\tau}\omega))\in H\) (\(r\geq\tau -t \)) of (4) with
\(\varphi_{\tau-t}(\theta_{-\tau }\omega)\in D(\tau-t,\theta_{-t}\omega)\)
satisfies
$$ \varphi \bigl(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t}( \theta _{-\tau}\omega) \bigr)\leq M_{0}(\omega), \quad\forall t \geq T(\tau,\omega,D). $$
Proof
From (3) and (8), it is easy to see that \(M_{0}(\omega)\) is a tempered random variable. Taking the inner product of (4) with \(\varphi(r)=\varphi(r,\tau-t,\theta _{-\tau }\omega,\varphi_{\tau-t}(\theta_{-\tau}\omega))\) in H, we have
$$ \frac{1}{2}\frac{d}{dt} \Vert \varphi \Vert _{H}^{2}+ \bigl(L(\varphi),\varphi \bigr)_{H}= \bigl(f(\varphi,\theta_{r-\tau}\omega),\varphi \bigr)_{H}. $$
(9)
The second term of (9) is
$$\begin{aligned} (L\varphi,\varphi)_{H} ={}&\varepsilon \Vert u \Vert _{\delta,\lambda,\rho }^{2}-\delta(Du,Dv)_{\rho}-(v,u)_{\lambda,\rho}+ \lambda(u,v)_{\rho }+(1-\gamma\varepsilon) (Au,v)_{\rho} \\ &{}-\varepsilon(\alpha-\varepsilon) (u,v)_{\rho}+(\alpha-\varepsilon ) (v,v)_{\rho}+\gamma(Av,v)_{\rho}. \end{aligned}$$
(10)
From [14], we have
$$\begin{aligned} &(Au,v)_{\rho}\geq(Du,Dv)_{\rho}-\frac{1}{2}c_{0}c_{3}c_{4} \Vert Du \Vert _{\rho}^{2}-\frac{1}{2}c_{0}c_{2}^{m_{0}}c_{3}c_{4}(2m_{0}+1)^{2} \Vert v \Vert _{\rho}^{2}, \end{aligned}$$
(11)
$$\begin{aligned} &(Av,v)_{\rho}\geq \biggl(1-\frac{1}{2}c_{0}c_{3}c_{4} \biggr) \Vert Dv \Vert _{\rho}^{2}-\frac{1}{2}c_{0}c_{2}^{m_{0}}c_{3}c_{4}(2m_{0}+1)^{2} \Vert v \Vert _{\rho }^{2}. \end{aligned}$$
(12)
By (A4), (10)–(12), we have
$$\begin{aligned} (L\varphi,\varphi)_{H} \geq{}&\frac{3\varepsilon}{4} \Vert u \Vert _{\delta ,\lambda,\rho}^{2}-\varepsilon(\alpha-\varepsilon) (u,v)_{\rho }+ \biggl(\frac{3\alpha}{4}-\varepsilon \biggr) \Vert v \Vert _{\rho}^{2} \\ &{}+ \biggl( \frac{\delta\varepsilon}{4}-\frac{\delta }{2}c_{0}c_{3}c_{4} \biggr) \Vert Du \Vert _{\rho}^{2} +\gamma \biggl( 1- \frac{1}{2}c_{0}c_{3}c_{4} \biggr) \Vert Dv \Vert _{\rho }^{2} \\ &{}+ \biggl( \frac{\alpha}{4}-\frac{\delta+\gamma}{2}c_{0}c_{2}^{m_{0}}c_{3}c_{4}(2m_{0}+1)^{2} \biggr) \Vert v \Vert _{\rho}^{2} \\ \geq{}&\frac{\varepsilon}{2} \Vert u \Vert _{\delta,\lambda ,\rho}^{2}+\frac{\varepsilon}{2} \Vert v \Vert _{\rho}^{2}+ \frac{\alpha }{4} \Vert v \Vert _{\rho}^{2}+ \frac{\varepsilon}{4} \Vert u \Vert _{\delta,\lambda ,\rho}^{2}+ \biggl( \frac{3\alpha}{4}-\varepsilon \biggr) \Vert v \Vert _{\rho}^{2} \\ &{}+ \biggl(\frac{\alpha}{2}-\frac{3\varepsilon}{2} \biggr) \Vert v \Vert _{\rho}^{2}-\frac{\varepsilon\alpha}{\sqrt{\underline{\lambda}}} \Vert u \Vert _{\delta ,\lambda,\rho} \Vert v \Vert _{\rho}. \end{aligned}$$
From (A4), \(4\frac{\varepsilon}{4} ( \frac{\alpha}{2}-\frac{3\varepsilon}{2} ) \geq\frac{\varepsilon^{2}\alpha ^{2}}{\underline{\lambda}}\), we have
$$ (L\varphi,\varphi)_{H}\geq\frac{\varepsilon}{2} \bigl\Vert \varphi (r) \bigr\Vert _{H}^{2}+\frac{\alpha}{4} \Vert v \Vert _{\rho}^{2}. $$
The right-hand side of (9) is
$$ \bigl(f(\varphi,\theta_{r-\tau}\omega),\varphi \bigr)_{H}=(czu,u)_{\delta ,\lambda ,\rho}+ \bigl(-czv+2\varepsilon czu-c^{2}z^{2}u+g(r)-\gamma cAzu-f(u,r),v \bigr)_{\rho }. $$
(13)
For each term of (13), we have
$$\begin{aligned} &(czu,u)_{\delta,\lambda,\rho}-(czv,v)_{\rho}\leq \vert c \vert \vert z \vert \bigl\vert \varphi (r) \bigr\Vert _{H}^{2},\qquad (g,v)_{\rho}\leq\frac{4}{\alpha} \Vert g \Vert _{\rho}^{2}+ \frac{\alpha}{8} \Vert v \Vert _{\rho}^{2}, \end{aligned}$$
(14)
$$\begin{aligned} &(2\varepsilon czu,v)_{\rho}- \bigl(c^{2}z^{2}u,v \bigr)_{\rho}\leq \biggl( \frac{ \vert c \vert \vert \varepsilon \vert \vert z \vert }{\sqrt{\underline {\lambda}}}+\frac{ \vert c \vert ^{2} \vert z \vert ^{2}}{2\sqrt{\underline{\lambda}}} \biggr) \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2}, \end{aligned}$$
(15)
$$\begin{aligned} &{-}(\gamma cAzu,v)_{\rho} \leq\frac{4 \vert \gamma cz \vert ^{2} \Vert Au \Vert _{\rho }^{2}}{\alpha}+\frac{\alpha}{8} \Vert v \Vert _{\rho}^{2} \\ &\phantom{-(\gamma cAzu,v)_{\rho}}\leq\frac{4 \vert \gamma cz \vert ^{2}c_{0}^{4}c_{2}^{2m_{0}}(2m_{0}+1)^{4}}{\alpha \underline{\lambda}} \Vert u \Vert _{\lambda,\rho}^{2}+ \frac {\alpha}{8} \Vert v \Vert _{\rho}^{2} \\ &\phantom{-(\gamma cAzu,v)_{\rho}}\leq\frac{4 \vert cz \vert ^{2}a_{5}^{2}}{\alpha\underline{\lambda }} \Vert \varphi \Vert _{H}^{2}+ \frac{\alpha}{8} \Vert v \Vert _{\rho}^{2}, \end{aligned}$$
(16)
$$\begin{aligned} &{-} \bigl(f(u,r),v \bigr)_{\rho}=- \bigl(f(u,r),\dot{u} \bigr)_{\rho}- \varepsilon \bigl(f(u,r),u \bigr)_{\rho }+cz \bigl(f(u,r),u \bigr)_{\rho}. \end{aligned}$$
(17)
By (A2) we have
$$\begin{aligned} & \bigl(f(u,r),\dot{u} \bigr)_{\rho} =\sum _{i\in\mathbb{Z}}\rho _{i}f_{i}(u_{i},r)\dot{u}_{i}=\frac{d}{dt} \biggl(\sum _{i\in\mathbb{Z}}\rho _{i}G_{i}(u_{i},r) \biggr)- \sum_{i\in\mathbb{Z}}\rho_{i}G'_{i,r}(u_{i},r) \\ &\phantom{ (f(u,r),\dot{u} )_{\rho}}\geq \frac{d}{dt}\overline{G}(u,r)-a_{4} \overline{G}(u,r)\geq \frac {d}{dt}\overline{G}(u,r)- \frac{\varepsilon}{2a_{2}} \overline{G}(u,r), \end{aligned}$$
(18)
$$\begin{aligned} &\varepsilon \bigl(f(u,r),u \bigr)_{\rho}=\varepsilon\sum _{i\in\mathbb{Z}} \rho _{i}f_{i}(u_{i},r)u_{i} \geq \frac{\varepsilon}{a_{2}}\sum_{i\in \mathbb{Z}} \rho_{i}G_{i}(u_{i},r)= \frac{\varepsilon}{a_{2}} \overline{G}(u,r). \end{aligned}$$
(19)
By the Young inequality, we obtain
$$ a_{1} \vert s \vert \leq \vert s \vert ^{p}+a_{1}^{\frac{p}{p-1}} \times \frac{p-1}{p^{\frac{p}{p-1}}}= \vert s \vert ^{p}+a_{6}, \quad p>1. $$
(20)
By (A4) and (20),
$$ \bigl\vert f_{i}^{\prime}(s,r) \bigr\vert \leq a_{1} \vert s \vert +a_{1} \vert s \vert ^{p}\leq a_{6}+(1+a_{1}) \vert s \vert ^{p}, $$
(21)
from (21), we get
$$ \bigl\vert f_{i}(s,r) \bigr\vert \leq a_{6} \vert s \vert +(1+a_{1}) \vert s \vert ^{p+1}. $$
(22)
From (22), we have
$$\begin{aligned} cz \bigl(f(u,r),u \bigr)_{\rho} ={}&cz\sum _{i\in\mathbb{Z}}\rho _{i}f_{i}(u_{i},r)u_{i} \leq \vert c \vert \vert z \vert \biggl\vert \sum _{i\in\mathbb{Z}}\rho _{i}f_{i}(u_{i},r)u_{i} \biggr\vert \\ \leq{}&a_{6} \vert c \vert \vert z \vert \Vert u \Vert _{\rho }^{2}+\frac{(a_{1}+1)}{a_{3}} \vert c \vert \vert z \vert \sum_{i\in\mathbb{Z}}\rho _{i} \bigl(G_{i}(u_{i},r)+\beta_{i}^{2}(r) \bigr) \\ \leq{}&a_{6} \vert c \vert \vert z \vert \Vert u \Vert _{\rho }^{2}+\frac{(a_{1}+1)}{a_{3}} \vert c \vert \vert z \vert \overline{G}(u,r) \\ &{}+\frac{(a_{1}+1)}{a_{3}} \bigl\vert c \Vert z \Vert \vert \beta \vert \bigr\vert _{\rho}^{2}. \end{aligned}$$
(23)
Thus, by all the above inequalities, we have
$$\begin{aligned} &\frac{d}{dt} \bigl[ \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2}+2\overline{G}(u,r)+2 \Vert \beta \Vert _{\rho}^{2} \bigr] +\mu \bigl[ \bigl\Vert \varphi (r) \bigr\Vert _{H}^{2}+2\overline{G}(u,r)+2 \Vert \beta \Vert _{\rho}^{2} \bigr] \\ &\quad\leq \biggl( 2 \vert c \vert \vert z \vert +\frac{2 \vert c \vert \vert \varepsilon \vert \vert z \vert }{\sqrt{\underline{\lambda}}}+ \frac{ \vert c \vert ^{2} \vert z \vert ^{2}}{\sqrt{\underline{\lambda }}}+\frac{8 \vert cz \vert ^{2}|a_{5}^{2}}{\alpha\underline{\lambda}}+\frac {2a_{6} \vert c \vert \vert z \vert }{{\underline{\lambda}}} \biggr) \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2} \\ &\qquad{}+\frac{2(a_{1}+1)}{a_{3}} \vert c \vert \vert z \vert \overline {G}(u,r)+ \frac{2(a_{1}+1)}{a_{3}} \vert c \vert \vert z \vert \beta \Vert _{\rho }^{2}+ \frac{8}{\alpha} \Vert g \Vert _{\rho}^{2}+2 \Vert \beta \Vert _{\rho}^{2}. \end{aligned}$$
Then, for \(r\geq\tau-t\), we have
$$ \frac{d}{dt}y(r)\leq(-\mu+a_{7} \bigl( \vert c \vert \bigl\vert z(\theta_{r-\tau }\omega ) \bigr\vert + \vert c \vert ^{2} \bigl\vert z(\theta_{r-\tau}\omega) \bigr\vert ^{2} \bigr)y(r)+c_{5}, $$
(24)
where
$$ y(r)= \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2}+2 \overline {G}(u,r)+2 \vert \beta \vert _{\rho}^{2}\geq \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2}. $$
By the Gronwall inequality applied to (24) on \([\tau-t,r]\), we obtain
$$\begin{aligned} \bigl\Vert \varphi(r) \bigr\Vert _{H}^{2} \leq{}&e^{\int_{\tau -t}^{r}(-\mu +a_{7}( \vert c \vert \vert z(\theta_{l-\tau}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau}\omega ) \vert ^{2})\,dl}y(\tau-t) \\ &{}+c_{5} \int_{\tau-t}^{r}e^{\int_{s}^{r}(-\mu+a_{7}( \vert c \vert \vert z(\theta_{l-\tau }\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau}\omega ) \vert ^{2})\,dl}\,ds, \end{aligned}$$
(25)
and let \(r=\tau\), it follows that
$$ \bigl\Vert \varphi(\tau) \bigr\Vert _{H}^{2}\leq e^{\int_{-t}^{0} ( -\mu +a_{7}( \vert c \vert \vert z(\theta_{l }\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l }\omega ) \vert ^{2} ) \,dl}y(\tau-t)+\frac{1}{2}M_{0}^{2}( \omega). $$
(26)
By \(\varphi_{\tau-t}(\theta_{-\tau}\omega)\in D(\tau-t,\theta _{-t}\omega)\in\mathcal{D}(H)\) and (8), we have
$$\lim_{t\rightarrow +\infty}e^{\int_{-t}^{0} ( -\mu+a_{7}( \vert c \vert \vert z(\theta_{l }\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l }\omega) \vert ^{2} ) \,dl}y(\tau-t)=0. $$
Thus, the proof is completed. □
Let
$$ D_{0}= \bigl\{ D_{0}(\omega)= \bigl\{ \varphi\in H: \Vert \varphi \Vert _{H}\leq M_{0}(\omega) \bigr\} \bigr\} \in D(H), $$
then \(D_{0}\) is a tempered family. By Lemma 2.1, there exists \(T_{D_{0}}(\omega)>0\) (independent of τ) such that, for any \(\omega \in\varOmega\), \(\tau\in R\),
$$ \varphi \bigl( r,\tau-t,\theta_{-\tau}\omega,D_{0}(\theta _{-t}\omega ) \bigr) \in{D_{0}(\omega}),\quad \forall r\geq \tau-t, t\geq T_{D_{0}}(\omega)\geq0. $$
Choosing a smooth increasing function \(\eta\in C^{1}(\mathbb {R}^{+},\mathbb{R})\) satisfies
$$ \textstyle\begin{cases} \eta(s)=0, & s\in{}[0,1); \\ 0\leq\eta(s)\leq1, & s\in{}[1,2); \\ \eta(s)=1, & s\in{}[2,+\infty); \\ \vert \eta^{\prime}(s) \vert \leq C_{0}, & \forall s\in\mathbb {R}^{+},C_{0}>0.\end{cases} $$
Lemma 2.2
For every
\(\tau\in\mathbb{R}\), \(t\geq0\), \(\omega\in\varOmega\), \(I\in\mathbb{N}\)
and
\(\nu>0\), there exists
\(T_{\nu}(\omega)>0\) (independent of
τ) such that the solution
\(\varphi (r)=\varphi(r,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t}(\theta _{-\tau}\omega)\) (\(r\geq\tau-t\)) of (4) with
\(\varphi_{\tau-t}(\theta_{-\tau}\omega)\in D_{0}(\theta _{-t}\omega)\)
satisfies
$$ \sum_{ \vert i \vert \geq2I} \bigl\vert \varphi_{i}( \tau,\tau-t,\theta _{-\tau}\omega ,\varphi_{\tau-t}) \bigr\vert _{H}^{2}\leq\nu+ \biggl( \frac {c_{6}}{I}+\gamma _{I} \biggr) K_{2}(\omega),\quad t>T_{\nu}( \omega), I \in\mathbb{N}, $$
(27)
where
$$ \textstyle\begin{cases} \vert \varphi_{i} \vert _{H}^{2}=\rho_{i}[\delta (Du)_{i}^{2}+\lambda _{i}u_{i}^{2}+v_{i}^{2}],\qquad c_{6}=\frac{c_{5}}{2}; \\ \gamma_{I}=\sup_{r\in\mathbb{R}}\sum_{i\geq I}\rho_{i}(\frac {8}{\alpha}g_{i}^{2}(r)+4\beta_{i}^{2}(r)+4\beta_{i}^{\prime2}(r)); \\ K_{2}(\omega)=K_{0}(\omega)(1+K_{1}(\omega)); \\ K_{1}(\omega)=\int_{-\infty}^{0}\xi_{1}(\theta_{s}\omega)e^{\mu s+a_{7}\int_{s}^{0}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2})\,dl}\,ds; \\ \xi_{1}(\omega)=2c_{7} ( \underline{\lambda}+\varepsilon+2 \vert c z (\omega) \vert ) +2c_{8}(\delta+\gamma_{0}); \\ c_{7}=\frac{\delta m_{0}C_{0}c_{0}^{2}(2m_{0}+1)^{2}c_{2}^{m_{0}}}{\underline{\lambda}},\qquad c_{8}=m_{0}C_{0}c_{0}c_{2}^{\frac{m_{0}}{2}}(1+(2m_{0}+1)^{2}). \end{cases} $$
(28)
Proof
Let \(I\in\mathbb{N}\) be a suitable large integer, and set \(x_{i}=\eta(\frac{|i|}{I})u_{i}\), \(y_{i}=\eta(\frac {|i|}{I})v_{i}\), \(w= ( x,y ) =(x_{i},y_{i})_{i\in\mathbb{Z}}^{T}\). Taking the inner product \((\cdot,\cdot)_{H}\) of (4) with w, we have
$$ (\dot{\varphi},w)_{H}+(L\varphi,w)_{H}= \bigl(F( \varphi),w \bigr)_{H}. $$
(29)
By some computations, it follows that
$$\begin{aligned} &(\dot{\varphi},w)_{H}\geq\frac{1}{2}\frac{d}{dt}\sum _{i\in\mathbb {Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \vert \varphi_{i} \vert _{H}^{2}-\frac{c_{7}}{I} \bigl(\underline{\lambda}+\varepsilon+ \bigl\vert cz( \theta_{r-\tau}\omega ) \bigr\vert \bigr) \Vert \varphi \Vert _{H}^{2}, \end{aligned}$$
(30)
$$\begin{aligned} &( L\varphi,w ) _{H}\geq\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \biggl( \frac{\varepsilon}{2} \vert \varphi _{i} \vert _{H}^{2}+\frac{\alpha}{4}\rho_{i} v_{i}^{2} \biggr) - \frac{c_{8}(\delta +\gamma)}{I} \Vert \varphi \Vert _{H}^{2}, \end{aligned}$$
(31)
$$\begin{aligned} & \bigl( cz(\theta_{r-\tau}\omega)u,x \bigr) _{\delta,\lambda,\rho }- \bigl( cz( \theta_{r-\tau}\omega)v,y \bigr) _{\rho} \\ &\quad\leq \vert c \vert \bigl\vert z(\theta _{r-\tau}\omega) \bigr\vert \biggl( \sum_{i\in\mathbb{Z}}\eta \biggl( \frac { \vert i \vert }{I} \biggr) \vert \varphi_{i} \vert _{H}^{2}+\frac{c_{7}}{I} \Vert \varphi \Vert _{H}^{2} \biggr), \end{aligned}$$
(32)
$$\begin{aligned} & \bigl( 2\varepsilon cz(\theta_{r-\tau}\omega)u,y \bigr) _{\rho} \leq \frac{\varepsilon \vert c \vert \vert z(\theta_{r-\tau}\omega) \vert }{\sqrt{\underline{\lambda } }}\sum_{i\in\mathbb{Z}} \eta \biggl( \frac{ \vert i \vert }{I} \biggr) \vert \varphi _{i} \vert _{H}^{2}, \end{aligned}$$
(33)
$$\begin{aligned} & \bigl( -c^{2}z^{2}(\theta_{r-\tau}\omega)u,y \bigr) _{\rho}\leq \frac{c^{2}z^{2}(\theta_{r-\tau}\omega)}{2\sqrt{\underline{\lambda} }}\sum _{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \vert \varphi _{i} \vert _{H}^{2}, \end{aligned}$$
(34)
$$\begin{aligned} & \bigl( -\gamma cAz(\theta_{r-\tau}\omega)u,y \bigr) _{\rho} \leq \frac{4 \vert cz \vert ^{2}a^{2}_{5}}{\underline{\lambda}\alpha}\sum_{i\in \mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \vert \varphi_{i} \vert _{H}^{2} \\ &\phantom{ ( -\gamma cAz(\theta_{r-\tau}\omega)u,y ) _{\rho}\leq}{}+\frac{\alpha}{8}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho _{i} v_{i}^{2}, \end{aligned}$$
(35)
$$\begin{aligned} &(g,y)_{\rho}\leq\frac{4}{\alpha}\sum_{i\in\mathbb{Z}} \eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i} g_{i}^{2}+ \frac{\alpha}{8}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i} v_{i}^{2}, \end{aligned}$$
(36)
$$\begin{aligned} & \bigl(f(u,r),y \bigr)_{\rho} \\ &\quad\geq\frac{d}{dt}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i}G_{i}(u_{i},r)+ \frac{\varepsilon}{2a_{2}}\sum_{i\in\mathbb {Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho _{i}G_{i}(u_{i},r) \\ &\qquad{}-a_{6} \vert c \vert \vert z \vert \sum _{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i}u_{i}^{2} -\frac{a_{1}+1}{a_{3}} \vert c \vert \vert z \vert \sum_{i\in\mathbb {Z}} \eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i}G_{i}(u_{i},r) \\ &\qquad{}-\frac{a_{1}+1}{a_{3}} \vert c \vert \vert z \vert \sum _{i\in \mathbb{Z}} \eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i}\beta _{i}^{2}(r). \end{aligned}$$
(37)
Thus, by putting (30)–(37) into (29), we obtain, for \(r\geq\tau-t\),
$$\begin{aligned} &\frac{d}{dt}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \bigl[ \bigl\vert \varphi_{i}(r) \bigr\vert ^{2}_{H}+2\rho_{i}G_{i}(u_{i},r)+2 \rho _{i}\beta _{i}^{2}(r) \bigr] \\ &\quad\leq ( -\mu+a_{7} \bigl( \vert c \vert \bigl\vert z( \theta_{r-\tau}\omega ) \bigr\vert + \vert c \vert ^{2} \bigl\vert z(\theta _{r-\tau}\omega) \bigr\vert ^{2} \bigr) \\ &\qquad{}\times\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \bigl[ \bigl\vert \varphi_{i}(r) \bigr\vert ^{2}_{H}+2\rho _{i}G_{i}(u_{i},r)+2 \rho_{i} \beta_{i}^{2}(r) \bigr] \\ &\qquad{}+\frac{\xi_{1}(\theta_{r-\tau}\omega)}{I} \bigl\Vert \varphi (r) \bigr\Vert _{H}^{2}+ \sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \rho_{i} \biggl[\frac{8}{\alpha}g_{i}^{2}(r)+4 \beta_{i}^{2}(r)+4 \beta_{i}^{\prime2}(r) \biggr]. \end{aligned}$$
(38)
By applying the Gronwall inequality to (38) on \([\tau-t,\tau ]\), we have
$$\begin{aligned} &\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \bigl[ \bigl\vert \varphi_{i}(\tau) \bigr\vert _{H}^{2}+2\rho_{i}G_{i}(u_{i,\tau}, \tau )+2\rho_{i} \beta_{i}^{2}(\tau) \bigr] \\ &\quad\leq \bigl[ \Vert \varphi_{\tau-t} \Vert _{H}^{2}+2G(u_{\tau-t}, \tau -t)+2 \bigl\Vert \beta(\tau-t) \bigr\Vert _{\rho}^{2} \bigr] \\ &\qquad{}\times e^{\int_{-t}^{0} [ -\mu+a_{7}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2}) ] \,dl} \\ &\qquad{}+ \sup_{r\in\mathbb{R}}\sum_{i\geq I} \rho_{i} \biggl(\frac{8}{\alpha}g_{i}^{2}(r)+4 \beta_{i}^{2}(r) + 4\beta_{i}^{\prime 2}(r) \biggr) \\ &\qquad{} \times \int_{-t}^{0}e^{\int_{s}^{0} [ -\mu+a_{7}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2}) ] \,dl}\,ds \\ &\qquad{}+\frac{1}{I} \int_{\tau-t}^{\tau}\xi_{1}( \theta_{s-\tau}\omega ) \bigl\Vert \varphi(s) \bigr\Vert _{H}^{2} \\ &\qquad{}\times e^{\int_{s}^{\tau} [ -\mu+a_{7}( \vert c \vert \vert z(\theta _{l-\tau}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau }\omega) \vert ^{2}) ] \,dl}\,ds. \end{aligned}$$
(39)
Since \(\xi_{1}(\omega)\) is tempered and \(\xi_{1}(\theta_{t}\omega )\) is continuous in t, by Proposition 4.3.3 of [15], for the fixed number \(\mu>0\), there exists a tempered random variable \(\sigma(\omega)\) such that \(\xi_{1}(\theta_{t}\omega)\leq\sigma(\omega)e^{\frac{\mu }{3}|t|}\) for \(t\in\mathbb{R}\). Thus, by (25),
$$\begin{aligned} & \int_{\tau-t}^{\tau}\xi_{1}( \theta_{s-\tau}\omega) \bigl\Vert \varphi (s) \bigr\Vert _{H}^{2}e^{\int_{s}^{\tau} [ -\mu+a_{7}( \vert c \vert \vert z(\theta_{l-\tau }\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau}\omega ) \vert ^{2}) ] \,dl}\,ds \\ &\quad \leq y(\tau-t)e^{\int_{\tau-t}^{\tau}(-\mu+a_{7}( \vert c \vert \vert z(\theta_{l-\tau }\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau}\omega ) \vert ^{2})\,dl} \int_{\tau-t}^{\tau }\xi_{1}( \theta_{s-\tau}\omega)\,ds \\ &\qquad{}+\frac{1}{2}M_{0}^{2}(\omega) \int_{\tau-t}^{\tau}\xi_{1}(\theta _{s-\tau}\omega)e^{\int_{s}^{\tau} [ -\mu+a_{7}( \vert c \vert \vert z(\theta _{l-\tau}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau }\omega) \vert ^{2}) ] \,dl}\,ds. \end{aligned}$$
(40)
From (A4) and (22)
$$\begin{aligned} &y(\tau-t,\tau-t,\theta_{-t}\omega,\varphi_{\tau-t}) \\ &\quad= \bigl\Vert \varphi_{\tau-t}(\theta_{-\tau} \omega) \bigr\Vert _{H}^{2}+2 \sum_{i\in \mathbb{Z}} \rho_{i}f_{i}(u_{i,\tau-t}, \tau-t)u_{i,\tau-t}+2 \vert \beta \vert _{\rho}^{2} \\ &\quad\leq \bigl\Vert \varphi_{\tau-t}(\theta_{-t} \omega) \bigr\Vert _{H}^{2}+2a_{2} \bigl( a_{6} \Vert u_{\tau-t} \Vert _{\rho}^{2}+(1+a_{1}) \Vert u_{\tau-t} \Vert _{\rho}^{p+2} \bigr) +2 \vert \beta \vert _{\rho}^{2}, \end{aligned}$$
thus, (40) can be written as
$$\begin{aligned} & \int_{\tau-t}^{\tau}\xi_{1}( \theta_{s-\tau}\omega )y(s)e^{\int_{s}^{\tau} [ -\mu+a_{7}( \vert c \vert \vert z(\theta_{l-\tau}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l-\tau}\omega) \vert ^{2}) ] \,dl}\,ds \\ &\quad\leq\frac{\mu c_{9}}{3}\sigma(\omega) \bigl(M_{0}^{2}( \theta_{-t}\omega )+M_{0}^{p+2}( \theta_{-t}\omega)+1 \bigr)e^{-\frac{2\mu}{3}t+a_{7}\int_{-t}^{0}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2})\,dl} \\ &\qquad{}+\frac{1}{2}M_{0}^{2}(\omega) \int_{-\infty}^{0}\xi_{1}(\theta _{s}\omega)e^{\int_{s}^{0} [ -\mu+a_{7}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2}) ] \,dl}\,ds, \end{aligned}$$
where \(c_{9}=\max \{ 1+\frac{2a_{2}a_{6}}{\underline{\lambda }},\frac{2a_{2}(a_{1}+1)}{\underline{\lambda}^{\frac{p}{2}+1}},2 \Vert \beta \Vert _{\rho }^{2} \} \), and
$$\begin{aligned} & \int_{-\infty}^{0}\xi_{1}(\theta_{s} \omega)e^{\int_{s}^{0} [ -\mu +a_{7}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2}) ] \,dl}\,ds \\ &\quad\leq\sigma(\omega) \int_{-\infty}^{0}e^{\int_{s}^{0} [ -\frac {2\mu }{3}+a_{7}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2}) ] \,dl}\,ds< \infty. \end{aligned}$$
Thus, by (39) and \(I\geq1\), we have
$$\begin{aligned} &\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{I} \biggr) \bigl[ \bigl\vert \varphi_{i}(\tau) \bigr\vert _{H}^{2}+2\rho_{i}G_{i}(u_{i,\tau}, \tau )+2\rho_{i} \beta_{i}^{2}(\tau) \bigr] \\ &\quad\leq c_{9} \bigl(M_{0}^{2}( \theta_{-t}\omega)+M_{0}^{p+2}(\theta _{-t}\omega )+1 \bigr)e^{\int_{-t}^{0}(-\mu+a_{7}( \vert c \vert \vert z(\theta _{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta _{l}\omega) \vert ^{2})\,dl} \\ &\qquad{}+\frac{1}{I}\frac{3}{\mu}c_{9} \bigl(M_{0}^{2}( \theta_{-t}\omega )+M_{0}^{p+2}( \theta_{-t}\omega)+1 \bigr)e^{-\frac{2\mu}{3}t+a_{7}\int_{-t}^{0}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2})\,dl} \\ &\qquad{}+\frac{1}{2I}M_{0}^{2}(\omega) \int_{-\infty}^{0}\xi_{1}(\theta _{s}\omega)e^{\int_{s}^{0}(-\mu+a_{7}( \vert c \vert \vert z(\theta _{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2})\,dl}\,ds \\ &\qquad{}+\gamma_{I} \int_{-\infty }^{0}e^{\int_{s}^{0} [ -\mu+a_{7}( \vert c \vert \vert z(\theta _{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2}) ] \,dl}\,ds \\ &\quad\leq c_{9} \biggl( 1+\frac{3}{\mu} \biggr) \bigl(M_{0}^{2}(\theta_{-t}\omega )+M_{0}^{p+2}(\theta_{-t}\omega)+1 \bigr)e^{-\frac{2\mu}{3}t+a_{7}\int_{-t}^{0}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2})\,dl} \\ &\qquad{}+ \biggl( \frac{c_{6}}{I}+\gamma_{I} \biggr) K_{2}( \omega). \end{aligned}$$
(41)
By (3), we have
$$ \lim_{t\rightarrow+\infty} \biggl( \frac{2\mu}{3}-\frac{a_{7}}{t}\int_{-t}^{0} \bigl( \vert c \vert \bigl\vert z(\theta_{l}\omega) \bigr\vert + \vert c \vert ^{2} \bigl\vert z(\theta_{l}\omega ) \bigr\vert ^{2} \bigr) \,ds \biggr) \geq\frac{\mu}{6}>0. $$
Since \(M_{0}^{2}(\omega)+M_{0}^{p+2}(\omega)+1\) is tempered, we have
$$ \bigl(M_{0}^{2}(\theta_{-t}\omega)+M_{0}^{p+2}( \theta_{-t}\omega )+1 \bigr)e^{-\frac{2\mu}{3}t+a_{7}\int_{-t}^{0}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta _{l}\omega) \vert ^{2}))\,dl}\rightarrow0 $$
(42)
as \(t\rightarrow+\infty\). Hence, by (41)–(42), for any \(\nu>0\), \(I\in\mathbb{N}\), there exists \(T_{\nu}(\omega)>0\), such that
$$ \sum_{ \vert i \vert >2I} \bigl\vert \varphi_{i}( \tau,\tau-t,\theta _{-\tau}\omega ,\varphi_{\tau-t}) \bigr\vert _{H}^{2}\leq\nu+ \biggl( \frac {c_{6}}{I}+\gamma _{I} \biggr) K_{2}(\omega),\quad t\geq T_{\nu}( \omega), I\in\mathbb{N}. $$
This completes the proof. □
It follows directly from Lemmas 2.1 and 2.2 and Theorem 3.6 in [1], Theorem 3.3 in [10] that
Theorem 2.2
The cocycle
Φ
possesses a random attractor
\(R=\{R(\tau,\omega)\}_{\tau\in\mathbb{R},\omega \in \varOmega}\)
in
\(D(H)\)
with the properties: for every
\(\tau \in R\), \(\omega\in\varOmega\), (i) \(R(\tau,\omega )\subseteq D_{0}(\omega)\); (ii) \(R(\tau,\omega)\)
is compact in
H
and measurable in
ω; (iii) \(\varPhi (t,\tau,\omega,R(\tau,\omega))=R(t+\tau,\theta_{t}\omega)\), \(\forall t\geq0\); (iv) for every
\(B=\{B(\tau,\omega)\}_{\tau \in\mathbb{R},\omega\in\varOmega}\in D(H)\), \(\lim_{t\rightarrow +\infty}\)d\(_{h}(\varPhi(t,\tau-t,\theta_{-t}\omega)B(\tau -t,\theta_{-t}\omega),R(\tau,\omega))=0\).
2.3 Existence of random exponential attractor
In this subsection, we prove the existence of a random exponential attractor for Φ based on Theorem 2.1. Obviously, the family of tempered closed random subsets \(D_{0}=\{D_{0}(\omega)\}\}_{\tau\in\mathbb{R},\omega \in \varOmega}\) satisfies condition (B1) in Theorem 2.1.
Taking a small enough positive constant \(\nu_{0}>0\) such that
$$ \frac{32a_{1}^{2}\nu_{0}}{\alpha\underline{\lambda}^{2}\overline {\rho}}+\frac{a_{1}^{2}2^{p+4}\nu_{0}^{p}}{\alpha\underline{\lambda}^{p+1}\overline{\rho}^{p}}\leq\frac{\varepsilon}{2}. $$
(43)
For any \(\omega\in\varOmega\), set
$$\begin{aligned} T_{\nu_{0}}(\omega)&=\min \biggl\{ t:c_{9} \biggl( 1+ \frac{3}{\mu} \biggr) M(\theta_{-t}\omega)e^{-\frac{2\mu}{3}t+a_{7}\int _{-t}^{0}( \vert c \vert \vert z(\theta _{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2}))\,dl}\leq \nu_{0} \biggr\} \\ &< +\infty, \end{aligned}$$
where \(M(\omega)=M_{0}^{2}(\omega)+M_{0}^{p+2}(\omega)+1\).
For any \(\tau\in\mathbb{R}\), \(\omega\in\varOmega\), define a tempered bounded random subset \(\mathcal{X}_{1}(\tau,\omega)\) of H as
$$ \mathcal{X}_{1}(\tau,\omega)=\bigcup_{s\geq\max \{T_{D_{0}}(\omega ),T_{\nu_{0}}(\omega) \}} \varphi \bigl( \tau,\tau-s,\theta _{-\tau }\omega,D_{0}( \theta_{-s} \omega) \bigr)\subseteq D_{0}(\omega)\subset H. $$
(44)
Now let us show that \(\{\mathcal{X}_{1}(\tau,\omega)\}_{\tau\in \mathbb{R},\omega\in\varOmega}\) satisfies (B2) of Theorem 2.1.
For any \(\tau\in\mathbb{R}\), \(\omega\in\varOmega\), \(t\geq0\), and \(\varphi _{j,\tau-t}(\theta_{-\tau}\omega)\in\mathcal{X}_{1}(\tau-t,\theta _{-t}\omega)\subseteq D_{0}(\theta_{-t}\omega)\), \(j=1\), 2. Let \(\varphi _{j}(r)=\varphi(r,\tau-t,\theta_{-\tau}\omega,\varphi_{j,\tau -t}(\theta_{-\tau}\omega))=(u_{j}(r),v_{j}(r)), j=1,2\), \(\psi (r)=\varphi _{1}(r)-\varphi_{2}(r)=(\xi(r),\zeta(r))\), \(r\geq\tau-t\), then
$$ \textstyle\begin{cases} \dot{\psi}+L\psi=F(\varphi_{1},\theta_{r-\tau}\omega)-F(\varphi _{2},\theta_{r-\tau}\omega), \\ \psi_{\tau}(\omega)=(\xi_{\tau},\zeta_{\tau})=(u_{1\tau }-u_{2\tau },v_{1\tau}-v_{2\tau}),\quad r\geq\tau-t,\end{cases} $$
(45)
where
By Lemma 2.2 and (44), we have
$$ \bigl\Vert \varphi_{1}(r) \bigr\Vert _{H}\leq M_{0}(\theta_{r-\tau }\omega), \qquad\bigl\Vert \varphi_{2}(r) \bigr\Vert _{H}\leq M_{0}( \theta_{r-\tau}\omega ),\quad \forall r\geq \tau-t $$
(46)
and
$$ \sum_{ \vert i \vert \geq2I} \bigl\vert \varphi_{i} \bigl(r,\tau-t,\theta_{-\tau }\omega,\varphi _{\tau-t}( \theta_{-\tau}\omega) \bigr) \bigr\vert _{H}^{2} \leq\nu_{0}+ \biggl( \frac{c_{6}}{I}+\gamma_{I} \biggr) K_{2}(\theta_{r-\tau}\omega),\quad I\in \mathbb{N}, r\geq\tau-t. $$
(47)
Lemma 2.3
For every
\(\tau\in\mathbb{R}\), \(t\geq0\), \(\omega\in\varOmega\)
and
\(\varphi _{j,\tau-t}(\theta_{-\tau}\omega)\in\mathcal{X}_{1}(\tau-t,\theta _{-t}\omega)\), \(j=1\), 2, there exist random variables
\(C_{2}(\omega)>0\), \(C_{3}(\omega)>0\), such that
$$\begin{aligned} & \bigl\Vert \varphi(\tau,\tau-t,\theta_{-\tau}\omega)\varphi _{1,\tau -t}(\theta_{-\tau}\omega)-\varphi(\tau,\tau-t, \theta_{-\tau }\omega )\varphi_{2,\tau-t}(\theta_{-\tau} \omega) \bigr\Vert _{H} \\ &\quad\leq e^{\int_{-t}^{0}C_{2}(\theta_{s}\omega)\,ds} \bigl\Vert \varphi _{1,\tau -t}( \theta_{-\tau}\omega)-\varphi_{2,\tau-t}(\theta_{-\tau}\omega ) \bigr\Vert _{H} \end{aligned}$$
(48)
and
$$\begin{aligned} &\sum_{ \vert i \vert >4I} \bigl\vert \bigl(\varphi \bigl(r, \tau-t,\theta_{-\tau }\omega,\varphi_{1,\tau -t}(\theta_{-\tau} \omega) \bigr)-\varphi \bigl(r,\tau-t,\theta_{-\tau}\omega , \varphi_{2,\tau-t}(\theta_{-\tau}\omega) \bigr) \bigr)_{i} \bigr\vert _{H}^{2} \\ &\quad\leq \biggl( e^{-\frac{\varepsilon}{4}t+\int_{-t}^{0}C_{3}(\theta _{s}\omega)\,ds}+\frac{\hat{\delta}_{I}}{2}e^{\int_{-t}^{0}C_{2}(\theta _{s}\omega)\,ds} \biggr) ^{2} \bigl\Vert \psi(\tau-t) \bigr\Vert _{H}^{2},\quad \forall I\in\mathbb{N}, \end{aligned}$$
(49)
where
$$ \hat{\delta}_{I}=\frac{2}{\sqrt[4]{\varepsilon}}\sqrt{ \frac {1}{I}+\gamma _{I}+\frac{1}{I^{p}}+ \gamma_{I}^{p}}. $$
Proof
Taking the inner product \((\cdot,\cdot)_{H}\) of (45) with \(\psi(r)\), we find that
$$\begin{aligned} &\frac{d \Vert \psi(r) \Vert _{H}^{2}}{dt} \\ &\quad\leq \biggl( -\varepsilon+2 \biggl(1+\frac{\varepsilon}{\sqrt{\underline{\lambda}}} \biggr) \vert c \vert \bigl\vert z(\theta_{r-\tau }\omega) \bigr\vert + \biggl(\frac{8a_{5}^{2}}{\underline{\lambda}\alpha}+\frac {1}{\sqrt{\underline{\lambda}}} \biggr) \vert c \vert ^{2} \bigl\vert z(\theta_{r-\tau }\omega) \bigr\vert ^{2} \biggr) \bigl\Vert \psi(r) \bigr\Vert _{H}^{2} \\ &\qquad{}+ \frac{2}{\alpha} \bigl\Vert f(u_{2},r)-f(u_{1},r) \bigr\Vert _{\rho}^{2}. \end{aligned}$$
(50)
By (A2) and (46), we have
$$ \bigl\Vert f(u_{2},r)-f(u_{1},r) \bigr\Vert _{\rho}^{2}=\sum_{i\in \mathbb{Z}}\rho _{i} \bigl\vert f_{i}(u_{2,i},r)-f_{i}(u_{1,i},r) \bigr\vert ^{2}\leq\frac {C_{0}(\theta_{r-\tau }\omega)}{\underline{\lambda}} \bigl\Vert \psi(r) \bigr\Vert _{H}^{2}, $$
where
$$ c_{10}=a_{1}^{2} \biggl( \frac{16}{\underline{\lambda}}+ \frac {2^{2(p-1)}}{\underline{\lambda}^{p-1}} \biggr),\qquad C_{0}(\omega )=c_{10}M_{0}^{2}( \omega) \bigl(1+M_{0}^{2(p-1)}(\omega) \bigr). $$
(51)
Thus,
$$ \frac{d \Vert \psi(r) \Vert _{H}^{2}}{dt}\leq \bigl( -\varepsilon +2C_{1}( \theta_{r-\tau}\omega) \bigr) \bigl\Vert \psi(r) \bigr\Vert _{H}^{2}, $$
(52)
where
$$ C_{1}(\omega)= \biggl( 1+\frac{\varepsilon}{\sqrt{\underline{\lambda}}} \biggr) \vert c \vert \bigl\vert z( \omega) \bigr\vert + \biggl( \frac {4a_{5}^{2}}{\underline{\lambda}\alpha}+\frac{1}{2\sqrt{\underline{\lambda}}} \biggr) \vert c \vert ^{2} \bigl\vert z( \omega) \bigr\vert ^{2}+\frac{C_{0}(\omega )}{\alpha \underline{\lambda}}. $$
(53)
By applying the Gronwall inequality to (52) on \([\tau-t,\tau ]\), we have
$$ \bigl\Vert \psi(\tau) \bigr\Vert _{H}^{2}\leq e^{\int_{-t}^{0} ( -\varepsilon +2C_{1}(\theta_{s}\omega) ) \,ds} \bigl\Vert \psi(\tau-t) \bigr\Vert _{H}^{2} \leq e^{2\int_{-t}^{0}C_{1}(\theta_{s}\omega)\,ds} \bigl\Vert \psi(\tau -t) \bigr\Vert _{H}^{2}. $$
(54)
Let \(I\in\mathbb{N}\) and M be a suitable large integer, and set
$$\omega =(\omega_{i})_{i\in\mathbb{Z}}= \biggl( \eta \biggl( \frac{ \vert i \vert }{M} \biggr) \xi _{i}{, }\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \zeta _{i} \biggr) =(p_{i},q_{i}). $$
Taking the inner product \((\cdot,\cdot)_{H}\) of (45) with ω, we find that, for \(r\geq\tau-t\),
$$ (\dot{\psi},\omega)_{H}+ ( L\psi,\omega ) _{H}= \bigl( F \bigl(\varphi _{1}(r),\theta_{r-\tau}\omega \bigr)-F \bigl( \varphi_{2}(r),\theta_{r-\tau }\omega \bigr),\omega \bigr) _{H}. $$
(55)
Similar to (30)–(35), and by (A2), we obtain, for \(r\geq\tau-t\),
$$\begin{aligned} &2 \bigl(f(u_{2},r)-f(u_{1},r),q \bigr)_{\rho} \\ &\quad \leq\frac{\alpha}{4}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \rho_{i} \vert \zeta_{i} \vert ^{2}+\frac{16a_{1}^{2}}{\alpha }\sum _{i\in \mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \rho _{i} \bigl( \vert u_{1,i} \vert ^{2}+ \vert u_{2,i} \vert ^{2} \bigr) \vert \xi_{i} \vert ^{2} \\ &\qquad{}+\frac{16a_{1}^{2}}{\alpha}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac { \vert i \vert }{M} \biggr) \rho_{i} \bigl( \vert u_{1,i} \vert ^{2p}+ \vert u_{2,i} \vert ^{2p} \bigr) \vert \xi_{i} \vert ^{2}. \end{aligned}$$
By (47),
$$\begin{aligned} &\sum_{ \vert i \vert \geq 2I} \bigl[ \vert u_{1,i} \vert ^{2}+ \vert u_{2,i} \vert ^{2} \bigr] \leq \frac{2}{\underline{\lambda }\overline{\rho}}\nu_{0}+\frac{2}{\underline{\lambda}\overline{\rho }} \biggl(\frac{c_{6}}{I}+\gamma_{I} \biggr)K_{2}( \theta_{r-\tau}\omega), \\ &\sum_{ \vert i \vert \geq2I} \bigl[ \vert u_{1,i} \vert ^{2p}+ \vert u_{2,i} \vert ^{2p} \bigr] \leq \frac{2^{p}}{\underline{\lambda}^{p}\overline{\rho}^{p}}\nu_{0}^{p}+\frac{2^{p}}{\underline{\lambda}^{p}\overline{\rho}^{p}} \biggl( \frac{c_{6}}{I}+\gamma _{I} \biggr)^{p}K_{2}^{p}( \theta_{r-\tau}\omega). \end{aligned}$$
Then we have, for \(M\geq2I\),
$$\begin{aligned} &2 \bigl(f(u_{2},r)-f(u_{1},r),q \bigr)_{\rho} \\ &\quad\leq\frac{\alpha}{4}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \rho_{i} \vert \zeta_{i} \vert ^{2}+ \biggl( \frac {32a_{1}^{2}\nu_{0}}{\alpha \underline{\lambda}^{2}\overline{\rho}}+ \frac{a_{1}^{2}2^{p+4}\nu _{0}^{p}}{\alpha\underline{\lambda}^{p+1}\overline{\rho}^{p}} \biggr) \sum_{i\in \mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \vert \psi _{i} \vert _{H}^{2} \\ &\qquad{}+\frac{32a_{1}^{2}}{\alpha\underline{\lambda}\overline{\rho}} \biggl(\frac{c_{6}}{I}+\gamma_{I} \biggr)K_{2}(\theta_{r-\tau}\omega)\sum _{i\in \mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \rho_{i} \vert \xi _{i} \vert ^{2} \\ &\qquad{}+\frac{a_{1}^{2}2^{p+4}}{\alpha\underline{\lambda}^{p}\overline {\rho}^{p}} \biggl(\frac{c_{6}}{I}+\gamma_{I} \biggr)^{p}K_{2}^{p}(\theta _{r-\tau}\omega )\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \rho _{i} \vert \xi _{i} \vert ^{2}, \end{aligned}$$
(56)
where \(| \psi_{i}| _{H}^{2}=\rho_{i}[\delta(D\xi)_{i}^{2}+\lambda _{i}\xi_{i}^{2}+\zeta_{i}^{2}]\). Thus, by (43) and the above inequality, we have, for \(M\geq2I\),
$$\begin{aligned} &\frac{d}{dt}\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \bigl\vert \psi _{i}(r) \bigr\vert _{H}^{2}+\frac{\varepsilon}{2}\sum _{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \bigl\vert \psi_{i}(r) \bigr\vert _{H}^{2} \\ &\quad\leq \biggl( \biggl(2+\frac{2\varepsilon}{\sqrt{\underline{\lambda}}} \biggr) \vert c \vert \bigl\vert z(\theta_{r-\tau }\omega) \bigr\vert + \biggl(\frac{8a_{5}^{2}}{\underline{\lambda}\alpha}+ \frac{1}{\sqrt{\underline{\lambda}}} \biggr) \vert c \vert ^{2} \bigl\vert z(\theta_{r-\tau}\omega) \bigr\vert ^{2} \biggr) \sum _{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \bigl\vert \psi_{i}(r) \bigr\vert _{H}^{2} \\ &\qquad{}+c_{11} \biggl( \frac{1}{I}+\gamma_{I}+ \frac{1}{I^{p}}+\gamma _{I}^{p} \biggr) \cdot{} \bigl[ \xi_{1}(\theta_{r-\tau}\omega )+K_{2}^{p}( \theta_{r-\tau}\omega) \bigr] \\ &\qquad{}\times e^{2\int_{r}^{\tau -t}C_{2}(\theta_{s-\tau}\omega)\,ds} \bigl\Vert \psi(\tau-t) \bigr\Vert _{H}^{2}, \end{aligned}$$
(57)
where
$$ c_{11}=\max \biggl\{ \frac{1}{2},\frac{32a_{1}^{2}}{\alpha\underline {\lambda }^{2}\overline{\rho}}, \frac{32c_{6}a_{1}^{2}}{\alpha\underline {\lambda}^{2}\overline{\rho}},\frac{2^{2p+3}c_{6}a_{1}^{2}}{\alpha\underline{\lambda}^{p+1}\overline{\rho}^{p}},\frac{2^{2p+3}a_{1}^{2}}{\alpha \underline{\lambda}^{p+1}\overline{\rho}^{p}} \biggr\} . $$
By applying the Gronwall inequality to (57) on \([\tau-t,\tau ]\)
\((t\geq 0)\), we obtain
$$\begin{aligned} &\sum_{i\in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \bigl\vert \psi_{i}(\tau ) \bigr\vert _{H}^{2} \\ &\quad\leq \bigl\Vert \psi(\tau-t) \bigr\Vert _{E}^{2}e^{\int _{-t}^{0} [ -\frac{\varepsilon}{2}+2 (1+\frac{\varepsilon}{\sqrt{\underline{\lambda }}} ) \vert c \vert \vert z(\theta_{s}\omega) \vert + ( \frac {8a_{5}^{2}}{\underline{\lambda}\alpha}+\frac{1}{\sqrt{\underline{\lambda}}} ) \vert c \vert ^{2} \vert z(\theta _{s}\omega) \vert ^{2} ] \,ds} \\ &\qquad{}+ \biggl( \frac{1}{I}+\gamma_{I}+ \frac{1}{I^{p}}+ \gamma_{I}^{p} \biggr) \bigl\Vert \psi(\tau-t) \bigr\Vert _{H}^{2} \\ &\qquad{} \times e^{\int_{-t}^{0}2 [ C_{1}(\theta_{s}\omega )+ (1+\frac{\varepsilon}{\sqrt{\underline{\lambda}}} ) \vert c \vert \vert z(\theta _{s}\omega) \vert + ( \frac{4a_{5}^{2}}{\underline{\lambda}\alpha }+\frac{1}{2\sqrt{\underline{\lambda}}} ) \vert c \vert ^{2} \vert z(\theta _{s}\omega) \vert ^{2} ] \,ds} \\ &\qquad{} \times \int_{-t}^{0}c_{11} \bigl( \xi_{1}(\theta_{r}\omega )+K_{2}^{p}( \theta _{r}\omega) \bigr)e^{\frac{\varepsilon}{2}r}\,dr. \end{aligned}$$
(58)
Since \(\sqrt{x}\leq e^{x}\) for all \(x\geq0\), it follows that
$$\begin{aligned} & \int_{-t}^{0}c_{11} \bigl( \xi_{1}(\theta_{r}\omega)+K_{2}^{p}( \theta _{r}\omega) \bigr)e^{\frac{\varepsilon}{2}r}\,dr \\ &\quad\leq \biggl[ \int_{-t}^{0}c_{11}^{2} \bigl( \xi_{1}(\theta_{r}\omega )+K_{2}^{p}( \theta_{r}\omega) \bigr)^{2}\,dr \biggr] ^{\frac{1}{2}} \biggl[ \int_{-t}^{0}e^{\varepsilon r}\,dr \biggr] ^{\frac{1}{2}} \\ &\quad\leq\frac{1}{\sqrt{\varepsilon}}e^{\int_{-t}^{0}c_{11}^{2}(\xi _{1}(\theta_{r}\omega)+K_{2}^{p}(\theta_{r}\omega))^{2}\,dr}. \end{aligned}$$
By \(M\geq2I\) and (58),
$$\begin{aligned} &\sum_{ \vert i \vert >4I} \bigl\vert \psi_{i}( \tau) \bigr\vert _{H}^{2} \\ &\quad\leq\sum_{ \vert i \vert \in\mathbb{Z}}\eta \biggl( \frac{ \vert i \vert }{M} \biggr) \bigl\vert \psi_{i}(\tau) \bigr\vert _{H}^{2} \\ &\quad\leq \bigl( e^{\int_{-t}^{0}2(-\frac{\varepsilon}{4}+C_{3}(\theta_{s}\omega ))\,ds}+\hat{\delta}_{I}^{2}e^{2\int_{-t}^{0}C_{2}(\theta_{s}\omega)\,ds} \bigr) \bigl\Vert \psi(\tau-t) \bigr\Vert _{H}^{2}, \end{aligned}$$
where
$$\begin{aligned} &C_{2}(\omega)=C_{1}(\omega)+C_{3}( \omega)+c_{11}^{2} \bigl(\xi _{1}^{2}( \omega)+K_{2}^{2p}(\omega) \bigr), \end{aligned}$$
(59)
$$\begin{aligned} &C_{3}(\omega)= \biggl( 1+\frac{\varepsilon}{\sqrt{\underline{\lambda }}} \biggr) \vert c \vert \bigl\vert z(\omega) \bigr\vert + \biggl( \frac {4a_{5}^{2}}{\underline{\lambda}\alpha}+\frac{1}{2\sqrt{\underline{\lambda}}} \biggr) \vert c \vert ^{2} \bigl\vert z(\omega) \bigr\vert ^{2}, \end{aligned}$$
(60)
thus, (49) holds. By (54) and \(C_{2}(\omega)\geq C_{1}(\omega)\), it follows that (48) holds. The proof is completed. □
Lemma 2.4
Let the coefficient
c
of the random term in (2) satisfy
$$ \vert c \vert ^{2}< \min \biggl\{ \frac{\mu^{2}\pi\alpha }{64^{2}a_{7}^{2}}, \frac{\alpha\mu}{32a_{7}},\frac{\alpha^{2}}{64pa_{7}},\frac{\alpha^{3}}{32^{2}p^{2}a_{7}^{2}} \biggr\} ,\quad \mu= \min \biggl\{ \varepsilon,\frac{\varepsilon}{2a_{2}},1 \biggr\} , $$
(61)
then
$$ 0\leq\mathbf{E} \bigl[C_{3}(\omega) \bigr]\leq\frac{\varepsilon}{64}, \qquad 0 \leq \mathbf{E} \bigl[C_{2}(\omega) \bigr],\mathbf{E} \bigl[C_{2}^{2}( \omega) \bigr]< \infty. $$
(62)
Proof
From [13, 16], the Ornstein–Uhlenbeck stationary process \(z(\theta_{t}\omega)\) satisfies
$$\begin{aligned} &\mathbf{E} \bigl[ \bigl\vert z(\theta_{s}\omega) \bigr\vert ^{r} \bigr] =\frac {\varGamma(\frac{1+r}{2})}{\sqrt{\pi\alpha^{r}}} \quad(\forall r\geq0), \end{aligned}$$
(63)
$$\begin{aligned} &\textstyle\begin{cases} \mathbf{E}[e^{\zeta\int_{\tau}^{\tau+t} \vert z(\theta_{s}\omega ) \vert ^{2}\,ds}]\leq e^{\frac{\zeta}{\alpha}t},\quad 0\leq2\zeta\leq\alpha ^{2},\tau\in\mathbb{R},t\geq0, \\ \mathbf{E}[e^{\zeta\int_{\tau}^{\tau+t} \vert z(\theta_{s}\omega ) \vert \,ds}]\leq e^{\frac{\zeta}{\sqrt{\alpha}}t},\quad 0\leq\zeta^{2}\leq\alpha^{3},\tau \in \mathbb{R},t\geq0,\end{cases}\displaystyle \end{aligned}$$
(64)
where \(\varGamma(\cdot)\) is the Gamma function. It is easy to see that (61) implies (8). By (3), (59) and (60), we obtain
$$ \mathbf{E} \bigl[C_{3}(\omega) \bigr]\leq\frac{a_{7} \vert c \vert }{2\sqrt{\pi \alpha}}+ \frac{a_{7} \vert c \vert ^{2}}{4\alpha}\leq\frac{1}{16}\frac{\varepsilon}{4}. $$
(65)
By (7), (61) and (63)–(64),
$$\begin{aligned} \mathbf{E} \bigl[ M_{0}^{4p}(\omega) \bigr] &\leq c_{5}^{2p} \biggl( \int_{-\infty}^{0}e^{\frac{p\mu}{2p-1}s}\,ds \biggr) ^{2p-1} \int_{-\infty }^{0}e^{p\mu s}\mathbf{E}e^{2pa_{7}\int_{s}^{0}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z \vert ^{2}(\theta_{l}\omega))\,dl} \,ds \\ &\leq c_{5}^{2p} \biggl( \frac{2p-1}{p\mu} \biggr) ^{2p-1} \int_{-\infty }^{0}e^{p\mu s} \bigl( \mathbf{E}e^{4pa_{7} \vert c \vert \int _{s}^{0} \vert z(\theta _{l}\omega) \vert \,dl}+\mathbf{E}e^{4pa_{7} \vert c \vert ^{2}\int_{s}^{0} \vert z \vert ^{2}(\theta _{l}\omega)\,dl} \bigr) \,ds \\ &\leq\frac{c_{5}^{2p}}{p} \biggl( \frac{2p-1}{p\mu} \biggr) ^{2p-1} \biggl( \frac{1}{\mu-\frac{4 \vert c \vert a_{7}}{\sqrt{\alpha}}}+\frac{1}{\mu -\frac{4 \vert c \vert ^{2}a_{7}}{\alpha}} \biggr) =k_{1}. \end{aligned}$$
(66)
Then, by (51), (53) and (66),
$$\begin{aligned} \mathbf{E} \bigl[C_{1}^{2}(\omega) \bigr] \leq{}&3\mathbf{E} \biggl( \biggl(1+\frac {\varepsilon }{\sqrt{\underline{\lambda}}} \biggr)^{2} \vert c \vert ^{2} \bigl\vert z(\omega) \bigr\vert ^{2}+ \biggl( \frac{4a_{5}^{2}}{\underline{\lambda}\alpha}+\frac{1}{2\sqrt{\underline{\lambda}}} \biggr)^{4} \vert c \vert ^{4} \bigl\vert z(\omega) \bigr\vert ^{4} \biggr) \\ &{}+3\mathbf{E} \biggl(\frac{2c_{10}^{2}}{\alpha^{2}\underline{\lambda}^{2}} \bigl(M_{0}^{4}( \omega)+M_{0}^{4p}(\omega) \bigr) \biggr) \\ \leq{}&3 \biggl( \biggl(1+\frac{\varepsilon}{\sqrt{\underline{\lambda }}} \biggr)^{2} \frac{ \vert c \vert ^{2}}{2\alpha}+ \biggl(\frac{4a_{6}^{2}}{\underline {\lambda}\alpha}+\frac{1}{2\sqrt{\underline{\lambda}}} \biggr)^{4}\frac{\varGamma(\frac{5}{2}) \vert c \vert ^{4}}{\alpha ^{2}\sqrt{\pi}} \biggr) \\ &{}+3 \biggl(\frac{2c_{10}^{2}}{\alpha^{2}\underline{\lambda}^{2}} \bigl(M_{0}^{4}( \omega)+M_{0}^{4p}(\omega) \bigr) \biggr) =k_{2}. \end{aligned}$$
(67)
Similar to (66), we have
$$\begin{aligned} \mathbf{E} \bigl[K_{0}^{4p}(\omega) \bigr]&=\mathbf{E} \biggl( \int_{-\infty }^{0}e^{\mu s+a_{7}\int_{s}^{0}[ \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z \vert ^{2}(\theta_{l}\omega )]\,dl}\,ds \biggr) ^{4p} \\ &\leq \biggl( \frac{4p-1}{2p\mu} \biggr) ^{4p-1} \int_{-\infty }^{0}e^{2p\mu s} \bigl( \mathbf{E}e^{8a_{7}p \vert c \vert \int_{s}^{0} \vert z(\theta _{l}\omega) \vert \,dl}+\mathbf{E}e^{8a_{7}pc^{2}\int_{s}^{0} \vert z \vert ^{2}(\theta _{l}\omega)\,dl} \bigr) \,ds \\ &\leq\frac{1}{2p} \biggl( \frac{4p-1}{2p\mu} \biggr) ^{4p-1} \biggl( \frac {1}{\mu-\frac{4 \vert c \vert a_{7}}{\sqrt{\alpha}}}+\frac{1}{\mu-\frac {4 \vert c \vert ^{2}a_{7}}{\alpha}} \biggr) =k_{3}. \end{aligned}$$
(68)
From (28),
$$\begin{aligned} &\mathbf{E} \bigl[\xi_{1}^{4}(\omega) \bigr]\leq\mathbf{E} \bigl[ c_{12} \bigl(1+ \bigl\vert z(\omega ) \bigr\vert ^{4} \bigr) \bigr] \leq c_{12} \biggl( 1+ \frac{\varGamma ( \frac {5}{2} ) }{\alpha^{2}\sqrt{\pi}} \biggr) =k_{4}, \end{aligned}$$
(69)
$$\begin{aligned} &\mathbf{E} \bigl[\xi_{1}^{16p}(\omega) \bigr]\leq\mathbf{E} \bigl[ c_{13} \bigl(1+ \bigl\vert z(\omega ) \bigr\vert ^{16p} \bigr) \bigr] \leq c_{13} \biggl( 1+ \frac{\varGamma ( \frac {16p+1}{2} ) }{\alpha^{8p}\sqrt{\pi}} \biggr) =k_{5}. \end{aligned}$$
(70)
Thus, by (28) and (70),
$$\begin{aligned} \mathbf{E} \bigl[K_{1}^{8p}(\omega) \bigr]={}&\mathbf{E} \biggl( \int_{-\infty }^{0}\xi _{1}( \theta_{s}\omega)e^{\mu s+a_{7}\int_{s}^{0}( \vert c \vert \vert z(\theta_{l}\omega ) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega) \vert ^{2})\,dl}\,ds \biggr) ^{8p} \\ \leq{}& \biggl( \int_{-\infty}^{0}e^{\frac{4p}{8p-1}\mu s}\,ds \biggr) ^{8p-1}\mathbf{E} \int_{-\infty}^{0}\xi_{1}^{8p}( \theta_{s}\omega)e^{4p\mu s+8pa_{7}\int_{s}^{0}( \vert c \vert \vert z(\theta_{l}\omega) \vert + \vert c \vert ^{2} \vert z(\theta_{l}\omega ) \vert ^{2})\,dl}\,ds \\ \leq{}& \biggl( \frac{8p-1}{4p\mu} \biggr) ^{8p-1}\times \int_{-\infty }^{0}e^{4p\mu s} \bigl( \mathbf{E}e^{32pa_{7} \vert c \vert \int _{s}^{0} \vert z(\theta _{l}\omega) \vert \,dl}+\mathbf{E}e^{32pa_{7} \vert c \vert ^{2}\int _{s}^{0} \vert z(\theta _{l}\omega) \vert ^{2}\,dl} \bigr) \,ds \\ &{}+ \biggl( \frac{8p-1}{4p\mu} \biggr) ^{8p-1} \int_{-\infty}^{0}e^{4p\mu s}\mathbf{E} \xi_{1}^{16p}(\theta_{s}\omega)\,ds \\ \leq{}&\frac{1}{4p} \biggl( \frac{8p-1}{4p\mu} \biggr) ^{8p-1} \biggl( \frac {1}{\mu-\frac{8a_{7} \vert c \vert }{\sqrt{\alpha}}}+\frac{1}{\mu-\frac {8a_{7} \vert c \vert ^{2}}{\alpha}}+\frac{k_{5}}{\mu} \biggr) =k_{6}, \end{aligned}$$
(71)
$$\begin{aligned} \mathbf{E} \bigl[K_{2}^{4p}(\omega) \bigr] \leq{}&2^{4p-1} \bigl( \mathbf{E} \bigl[K_{0}^{4p}( \omega) \bigr]+ \mathbf{E} \bigl[K_{0}^{8p}(\omega) \bigr]+ \mathbf{E} \bigl[K_{1}^{8p}(\omega) \bigr] \bigr) =k_{7}. \end{aligned}$$
(72)
By (59), (67), (69) and (72), we have
$$ 0\leq\mathbf{E} \bigl[C_{2}^{2}(\omega) \bigr]\leq c_{14} ( 1+k_{2}+k_{4}+k_{7} ) < \infty. $$
Since \(0\leq\mathbf{E}[C_{2}(\omega)]\leq\frac{1}{2} [ 1+\mathbf {E}(C_{2}^{2}(\omega)) ] \), it follows that \(0\leq\mathbf{E} [ C_{2}(\omega) ] <\infty\). The proof is completed. □
Lemma 2.5
For any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\),
$$ \textstyle\begin{cases} \lim_{t\rightarrow0^{+}}\sup_{\varphi\in\mathcal{X}_{1}(\tau,\omega )} \Vert \varPhi(t,\tau,\omega)\varphi-\varphi \Vert _{H}=0, \\ \lim_{t\rightarrow0^{+}}\sup_{\varphi\in\mathcal{X}_{1}(\tau -t,\theta _{-t}\omega)} \Vert \varPhi(0,\tau-t,\theta_{-t}\omega)\varphi -\varphi \Vert _{H}=0.\end{cases} $$
Proof
By (5), (6) and (44), it follows that, for \(\varphi\in\mathcal{X}_{1}(\tau,\omega)\) and \(t\geq 0 \),
$$\begin{aligned} & \bigl\Vert F \bigl(\varphi(r),\theta_{r-\tau}\omega \bigr) \bigr\Vert _{H}^{2} \\ &\quad\leq \vert c \vert ^{2} \bigl\vert z(\theta_{r-\tau} \omega) \bigr\vert ^{2}M_{0}^{2}( \theta_{r-\tau }\omega)+\frac{5(2c\varepsilon z(\theta_{r-\tau}\omega)- \vert c \vert ^{2} \vert z(\theta _{r-\tau}\omega) \vert ^{2})^{2}}{\sqrt{\underline{\lambda }}}M_{0}^{2}( \theta _{r-\tau}\omega) \\ &\qquad{}+5 \vert c \vert ^{2} \bigl\vert z( \theta_{r-\tau} \omega) \bigr\vert ^{2}M_{0}^{2}( \theta_{r-\tau }\omega)+5 \vert c \vert ^{2}a_{5}^{2} \bigl\vert z(\theta_{r-\tau}\omega ) \bigr\vert ^{2}M_{0}^{2}( \theta _{r-\tau}\omega) \\ &\qquad{}+5a_{1}^{2} \bigl(1+M_{0}^{p-1}( \theta_{r-\tau}\omega ) \bigr)^{2}M_{0}^{4}( \theta _{r-\tau}\omega)+5 \Vert g \Vert _{\rho}^{2} \end{aligned}$$
(73)
and
$$\begin{aligned} \bigl\Vert L\varphi(r) \bigr\Vert _{H}^{2} \leq{}& \Vert \varepsilon u-v \Vert _{\delta ,\lambda,\rho}^{2}+5 \lambda^{2} \Vert u \Vert _{\rho }^{2}+5 \vert \varepsilon \vert (\alpha-\varepsilon)| \Vert u \Vert _{\rho}^{2} \\ &{}+5\delta \Vert Au \Vert _{\rho}^{2}+5(\alpha- \varepsilon)^{2} \Vert v \Vert _{\rho }^{2}+5 \gamma \Vert Av \Vert _{\rho}^{2} \\ \leq{}&c_{15}M_{0}^{2}(\theta_{r-\tau} \omega), \end{aligned}$$
(74)
therefore,
$$\begin{aligned} & \bigl\Vert \varPhi(t,\tau,\omega)\varphi-\varphi \bigr\Vert _{H}^{2} \\ &\quad\leq t \int_{\tau}^{\tau+t} \bigl\Vert F \bigl(\varphi(r), \theta_{r-\tau}\omega \bigr)-L\varphi(r) \bigr\Vert _{H}^{2} \,dr \\ &\quad\leq 2t \int_{0}^{t} \biggl[ \frac{5(2c\varepsilon z(\theta_{r}\omega )- \vert c \vert ^{2} \vert z(\theta_{r}\omega) \vert ^{2})^{2}}{\sqrt {\underline{\lambda}}}+c_{16} \vert c \vert ^{2} \bigl\vert z(\theta_{r}\omega) \bigr\vert ^{2} \biggr]M_{0}^{2}( \theta_{r}\omega)\,dr \\ &\qquad{}+2t \int_{0}^{t} \bigl[5a_{1}^{2} \bigl(1+M_{0}^{p-1}(\theta_{r}\omega ) \bigr)^{2}M_{0}^{4}(\theta_{r}\omega)+5 \Vert g \Vert _{\rho }^{2}+c_{15}M_{0}^{2}( \theta_{r}\omega) \bigr]\,dr \\ &\quad\rightarrow 0\quad\text{as }t\rightarrow0, \end{aligned}$$
(75)
where \(c_{16}=6+5a_{5}^{2}\), thus, \(\lim_{t\rightarrow0^{+}}\sup_{\varphi \in\mathcal{X}_{1}(\tau,\omega)} \Vert \varPhi(t,\tau,\omega)\varphi -\varphi \Vert _{H}=0\).
Similarly, \(\lim_{t\rightarrow0^{+}}\sup_{\varphi\in\mathcal {X}_{1}(\tau -t,\theta_{-t}\omega)} \Vert \varPhi(0,\tau-t,\theta_{-t}\omega )\varphi -\varphi \Vert _{H}=0\). The proof is completed. □
From Theorem 2.1 and Lemmas 2.3–2.5, we have the following result.
Theorem 2.3
Assume that (A1)–(A4) and (43), (61) hold. Then the continuous cocycle
\(\{\varPhi(t,\tau,\omega)\}_{t\geq0,\tau\in\mathbb{R},\omega\in \varOmega}\)
possesses a random exponential attractor
\(\{\mathcal{K}(\tau ,\omega)\}_{\tau\in\mathbb{R},\omega\in\varOmega}\)
with properties: for any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\),
-
(i)
\(\mathcal{R}(\tau,\omega)\subseteq\mathcal{K}(\tau,\omega )\subseteq\overline{\mathcal{X}_{1}(\tau,\omega)}\)
and
\(\mathcal{K}(\tau,\omega)\)
is a compact set of
H
and measurable in
ω.
-
(ii)
\(\varPhi(t,\tau,\omega)\mathcal{K}(\tau,\omega)\subseteq \mathcal{K}(t+\tau,\theta_{t}\omega)\)
for all
\(t\geq0\).
-
(iii)
There exists
\(I_{0}=\min\{I:0<\hat{\delta}_{I}\leq \widetilde{\gamma}\}+1\in N\), where
$$ \widetilde{\gamma}=\min \biggl\{ \frac{1}{16},e^{-\frac{2}{\ln\frac {3}{2}} ( \frac{32\ln2}{\boldsymbol{\varepsilon}} ) ^{2} ( \mathbf {E}[C_{2}^{2}(\omega)]+\frac{\varepsilon}{4}\mathbf{E}[C_{2}(\omega )] ) } \biggr\} , $$
such that
$$ \dim_{f}\mathcal{R}(\tau,\omega)\leq\dim_{f}\mathcal{K}( \tau ,\omega )\leq\frac{4(8I_{0}+1)\ln (\frac{2\sqrt{16I_{0}+2}}{\hat{\delta }_{I_{0}}}+1 )}{\ln\frac{4}{3}}< \infty. $$
-
(iv)
For every set
\(D\in\mathcal{D}(H)\), there exist a random variable
\(T_{\omega,D}\geq0\)
and a tempered random variable
\(b_{\omega,D}>0\)
such that
$$ \mathrm{d}_{h} \bigl( \varPhi(t,\tau,\omega)D(\tau,\omega), \mathcal{K}(t+\tau,\theta_{t}\omega) \bigr) \leq b_{\omega,D}e^{-\frac {\varepsilon \ln\frac{4}{3}}{128\ln2}t},\quad t\geq T_{\omega,D}. $$
-
(v)
For any
\(\tau\in\mathbb{R}\), \(\omega\in\varOmega\), \(\lim_{t\rightarrow0}\mathrm{d}_{h}(\mathcal{K}(\tau+t,\theta _{t}\omega),\mathcal{K}(\tau,\omega))=0\).
Proof
Taking \(t=\frac{32\ln2}{\boldsymbol{\varepsilon}}\) in (48) and (49). From (62),
$$ 0< e^{-\frac{2}{\ln\frac{3}{2}} ( \frac{32\ln2}{\boldsymbol{\varepsilon}} ) ^{2} ( \mathbf{E}[C_{2}^{2}(\omega)]+\frac{\varepsilon}{4} \mathbf{E}[C_{2}(\omega)] ) }< \infty. $$
(76)
By \(\lim_{I\rightarrow+\infty}\frac{1}{I}=\lim_{I\rightarrow+\infty} \frac{1}{I^{p+1}}=0\) and \(g(t)\), \(\beta(t)\), \(\beta^{\prime}(t)\in \mathbf{G}\), it follows that \(\lim_{I\rightarrow+\infty}\gamma _{I}=0\) and
$$ 0< \hat{\delta}_{I}=\frac{2}{\sqrt[4]{\varepsilon}}\sqrt{ \frac {1}{I}+\gamma _{I}+\frac{1}{I^{p+1}}+ \gamma_{I}^{p+1}}\rightarrow0\quad\text{as }I \rightarrow+\infty. $$
(77)
Hence there exists a finite integer \(I_{0}\in\mathbb{N}\), such that
$$ 0< \hat{\delta}_{I_{0}}\leq\min \biggl\{ \frac{1}{16},e^{-\frac{2}{\ln \frac{3}{2}} ( \frac{32\ln2}{\boldsymbol{\varepsilon}} ) ^{2} ( \mathbf{E}[C_{2}^{2}(\omega)]+\frac{\varepsilon}{4}\mathbf{E}[C_{2}(\omega )] ) } \biggr\} . $$
(78)
Finally, by Theorem 2.1, the statements in Theorem 2.3 hold. The proof is completed. □