- Research
- Open access
- Published:
Bifurcations of a two-dimensional discrete-time predator–prey model
Advances in Difference Equations volume 2019, Article number: 56 (2019)
Abstract
We study the local dynamics and bifurcations of a two-dimensional discrete-time predator–prey model in the closed first quadrant \(\mathbb{R}_{+}^{2}\). It is proved that the model has two boundary equilibria: \(O(0,0)\), \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) and a unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) under some restriction to the parameter. We study the local dynamics along their topological types by imposing the method of linearization. It is proved that a fold bifurcation occurs about the boundary equilibria: \(O(0,0)\), \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) and a period-doubling bifurcation in a small neighborhood of the unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1} \alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\). It is also proved that the model undergoes a Neimark–Sacker bifurcation in a small neighborhood of the unique positive equilibrium \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) and meanwhile a stable invariant closed curve appears. From the viewpoint of biology, the stable closed curve corresponds to the periodic or quasi-periodic oscillations between predator and prey populations. Numerical simulations are presented to verify not only the theoretical results but also to exhibit the complex dynamical behavior such as the period-2, -4, -11, -13, -15 and -22 orbits. Further, we compute the maximum Lyapunov exponents and the fractal dimension numerically to justify the chaotic behaviors of the discrete-time model. Finally, the feedback control method is applied to stabilize chaos existing in the discrete-time model.
1 Introduction
Different models have been invoked to understand the mechanism of competition between populations of two-species. In 1931, Volterra proposed a famous prey–predator model which is represented by the following system of ordinary differential equations [1]:
where X denotes the number of prey and Y denotes the number of predator. Moreover, a, b, c, d are positive parameters. It has been shown that the number of prey grows exponentially in the absence of predators, while the number of predators decreases exponentially in the absence of a prey population. The terms \(bXY\) and \(dXY\) explain the prey–predators encounters which are conducive to predators and lethal to prey. It is noted that model (1) then takes the following form, if one consider some harvesting effect [2]:
and as a result the reasonable harvesting effect is favorable to prey population. There are also some other prey–predator models which are more fascinating and effective for a number of interacting species greater than two or which assume a parasitic infection of the populations [3, 4].
It is a well-known fact that discrete-time models described by difference equations are more beneficial and reliable than continuous-time models whenever there are non-overlapping generations in the populations. Moreover, these models also provide efficient computational results for numerical simulations and provide a rich dynamics as compared to the continuous ones [5,6,7,8,9,10]. In the last few years, many interesting papers have appeared in the literature that discuss the stability, bifurcation and chaos phenomena in discrete-time models (see [11,12,13,14,15,16,17,18,19,20] and the references cited therein).
This paper deals with the study of stability, bifurcations and chaos control of the following discrete-time predator–prey model [21]:
It is noted that after using the following re-scaling transformations:
the discrete-time model (3) then takes the form
where \(\alpha _{1}=r>0\) and \(\alpha _{2}=d>0\).
The rest of the paper is organized as follows: Sect. 2 deals with the study of the existence of equilibria and local stability along their different topological types of the discrete-time model (4). In Sect. 3, we study the existence of bifurcations about equilibria of the model (4). Section 4 deals with a bifurcation analysis about the unique positive equilibrium of the model (4). In Sect. 5, numerical simulations are presented to verify the theoretical results. This also includes the study of fractal dimensions which characterize the strange attractors of the model (4). In Sect. 6, we study the chaos control by the feedback control method to stabilize chaos at unstable trajectories. A conclusion is given in Sect. 7.
2 Existence of equilibria and local stability of the discrete-time model (4)
Lemma 1
System (4) has at least two boundary equilibria and one unique positive equilibrium in \(\mathbb{R}_{+}^{2}\). More precisely,
-
(i)
for all parametric values \(\alpha _{1}\) and \(\alpha _{2}\), system (4) has the boundary equilibrium \(O(0,0)\);
-
(ii)
if \(\alpha _{1}>1\) then system (4) has the boundary equilibrium \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\);
-
(iii)
system (4) has a unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) if \(\alpha _{1}>\frac{\alpha _{2}}{ \alpha _{2}-1}\) and \(\alpha _{2}>1\).
Now will study the local dynamics of (4) about \(O(0,0)\), \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) and \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\). The Jacobian matrix \(J_{(\widehat{x},\widehat{y})}\) of the discrete-time model (4) about equilibrium \((\widehat{x}, \widehat{y})\) is given by
Its characteristic equation is
where
Lemma 2
For equilibrium O, the following statements hold:
-
(i)
O is a sink if \(0<\alpha _{1}<1\);
-
(ii)
O is never a source;
-
(iii)
O is a saddle if \(\alpha _{1}>1\);
-
(iv)
O is non-hyperbolic if \(\alpha _{1}=1\).
Lemma 3
For \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\), the following statements hold:
-
(i)
\(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) is a sink if \(\alpha _{1}\in (1,3)\) and \(0<\alpha _{2}<\frac{\alpha _{1}}{\alpha _{1}-1}\);
-
(ii)
\(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) is a source if \(\alpha _{1}>3\) and \(\alpha _{2}> \frac{\alpha _{1}}{\alpha _{1}-1}\);
-
(iii)
\(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) is a saddle if \(\alpha _{1}>3\) and \(0<\alpha _{2}<\frac{\alpha _{1}}{\alpha _{1}-1}\);
-
(iv)
\(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) is non-hyperbolic if \(\alpha _{2}=\frac{\alpha _{1}}{\alpha _{1}-1}\).
Hereafter we will investigate the local dynamics of the discrete-time model (4) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) by using Lemma 2.2 of [22]. The Jacobian matrix \(J_{B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\) of the linearized system of the discrete-time model (4) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is
where
Moreover, the eigenvalues of \(J_{B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) are given by
where
Hereafter if \(\Delta \gtreqless 0\), we will study the topological classification about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1} \alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4) as follows:
Lemma 4
For \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\), the following statements hold:
-
(i)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is a locally asymptotically stable focus if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}< 0 \quad \textit{and}\quad 0< \alpha _{1}< \frac{\alpha _{2}}{\alpha _{2}-2}; $$ -
(ii)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is an unstable focus if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}< 0 \quad \textit{and}\quad \alpha _{1}>\frac{\alpha _{2}}{\alpha _{2}-2}; $$ -
(iii)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is non-hyperbolic if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}< 0 \quad \textit{and}\quad \alpha _{1}=\frac{\alpha _{2}}{\alpha _{2}-2}. $$
Lemma 5
For \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\), the following statements hold:
-
(i)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is locally asymptotically node if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}\ge 0 \quad \textit{and}\quad 0< \alpha _{1}< \frac{3\alpha _{2}}{3-\alpha _{2}}; $$ -
(ii)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is unstable node if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}\ge 0 \quad \textit{and}\quad \alpha _{1}>\frac{3\alpha _{2}}{3-\alpha _{2}}; $$ -
(iii)
\(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is non-hyperbolic if
$$ \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}\ge 0 \quad \textit{and}\quad \alpha _{1}=\frac{3\alpha _{2}}{3-\alpha _{2}}. $$
3 Existence of bifurcations about equilibria of the discrete-time model (4)
In this section based on theoretical studies in Sect. 2, we will study the existence of bifurcations about equilibria. The existence of corresponding bifurcations about the equilibria \(O(0,0)\), \(A (\frac{ \alpha _{1}-1}{\alpha _{1}},0 )\) and \(B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) can be summarized as follows:
-
(i)
From Lemma 2, we can see that when \(\alpha _{1}=1\), one of the eigenvalues about the equilibrium \(O(0,0)\) is 1. So a fold bifurcation may occur when the parameter varies in the small neighborhood of \(\alpha _{1}=1\).
-
(ii)
From Lemma 3, we can easily see that if \(\alpha _{2}=\frac{\alpha _{1}}{\alpha _{1}-1}\) holds then one of the eigenvalues about \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) is 1. So a fold bifurcation occurs when the parameter varies in a small neighborhood of \(\alpha _{2}=\frac{\alpha _{1}}{\alpha _{1}-1}\). And we denote the parameters satisfying \(\alpha _{2}=\frac{\alpha _{1}}{ \alpha _{1}-1}\) as
$$ F_{A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )}= \biggl\{ (\alpha _{1},\alpha _{2}): \alpha _{2}=\frac{\alpha _{1}}{\alpha _{1}-1}, \alpha _{1}, \alpha _{2} >0 \biggr\} . $$ -
(iii)
From Lemma 4, we see that if \(\alpha _{1}=\frac{ \alpha _{2}}{\alpha _{2}-2}\) holds then the eigenvalues of \(J_{B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1} \alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) are a pair of complex conjugate with modulus 1. So a Neimark–Sacker bifurcation exists by the variation of parameter in a small neighborhood of \(\alpha _{1}=\frac{\alpha _{2}}{\alpha _{2}-2}\). Precisely we represent the parameters satisfying \(\alpha _{1}=\frac{\alpha _{2}}{\alpha _{2}-2}\) as
$$\begin{aligned}& N_{B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )}\\& \quad = \biggl\{ (\alpha _{1}, \alpha _{2}): \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}< 0 \text{ and } \alpha _{1}=\frac{\alpha _{2}}{\alpha _{2}-2} \biggr\} . \end{aligned}$$ -
(iv)
From Lemma 5, we see that if \(\alpha _{1}=\frac{3 \alpha _{2}}{3-\alpha _{2}}\) holds we see that one of the eigenvalues of \(J_{B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is −1 and other is neither 1 nor −1. So a period-doubling bifurcation exists by the variation of parameter in a small neighborhood of \(\alpha _{1}=\frac{3\alpha _{2}}{3-\alpha _{2}}\). More precisely we can also represent the parameters satisfying \(\alpha _{1}=\frac{3\alpha _{2}}{3-\alpha _{2}}\) as
$$\begin{aligned}& P_{B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )} \\& \quad = \biggl\{ (\alpha _{1}, \alpha _{2}): \biggl(\frac{2\alpha _{2}-\alpha _{1}}{\alpha _{2}} \biggr)^{2}- \frac{4 \alpha _{1} (\alpha _{2}-2 )}{\alpha _{2}}\ge 0 \text{ and } \alpha _{1}=\frac{3\alpha _{2}}{3-\alpha _{2}} \biggr\} . \end{aligned}$$
4 Bifurcations analysis
This section deals with the study of Neimark–Sacker bifurcation and period-doubling bifurcation, respectively, about the unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}} )\).
4.1 Neimark–Sacker bifurcation about \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\)
Here we study the Neimark–Sacker bifurcation of the discrete-time model (4) about \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\). Consider the parameter \(\alpha _{1}\) in a neighborhood of \(\alpha _{1}^{\ast }\), i.e., \(\alpha _{1}=\alpha _{1}^{\ast }+\epsilon \), where \(\epsilon \ll 1\), then the discrete-time model (4) becomes
The characteristic equation of \(J_{B (\frac{1}{\alpha _{2}},\frac{ (\alpha _{1}^{*}+\epsilon )\alpha _{2}-\alpha _{1}^{*}- \epsilon -\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{ \alpha _{2}},\frac{ (\alpha _{1}^{*}+\epsilon )\alpha _{2}- \alpha _{1}^{*}-\epsilon -\alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (7) is
where
The roots of characteristic equation of \(J_{B (\frac{1}{\alpha _{2}},\frac{ (\alpha _{1}^{*}+\epsilon )\alpha _{2}-\alpha _{1}^{*}-\epsilon -\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{ \alpha _{2}},\frac{ (\alpha _{1}^{*}+\epsilon )\alpha _{2}- \alpha _{1}^{*}-\epsilon -\alpha _{2}}{\alpha _{2}} )\) are
and
Additionally, we required that when \(\epsilon =0\), \(\kappa _{1,2}^{m} \neq 1\), \(m=1,2,3,4\), which corresponds to \(p(0)\neq-2,0,1,2\), which is true by computation.
Let \(u_{n}=x_{n}-x^{\ast }\), \(v_{n}=y_{n}-y^{\ast }\) then the equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4) transforms into \(O(0,0)\). By manipulation, one gets
where \(x^{*}=\frac{1}{\alpha _{2}}\), \(y^{*}=\frac{\alpha _{1}\alpha _{2}- \alpha _{1}-\alpha _{2}}{\alpha _{2}}\). Hereafter when \(\epsilon =0\), the normal form of system (8) is studied. Expanding (8) about \((u_{n},v_{n})=(0,0)\) by Taylor series, we get
where
Now, let
and the invertible matrix T defined by
Using the following translation:
(9) gives
where
and
In addition,
and
In order for (10) to undergo a Neimark–Sacker bifurcation, it is mandatory that the following discriminatory quantity, i.e., \(\chi \neq0\) (see [22,23,24,25,26,27,28,29,30,31,32]),
where
After calculating, we get
Based on this analysis and the Neimark–Sacker bifurcation theorem discussed in [30, 31], we arrive at the following theorem.
Theorem 1
If \(\chi \neq0\) then the discrete-time model (4) undergoes a Neimark–Sacker bifurcation about \(B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) as \((\alpha _{1}, \alpha _{2})\) go through \(N_{B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\). Additionally, an attracting (resp. repelling) closed curve bifurcates from \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) if \(\chi <0\) (resp. \(\chi >0\)).
Remark
According to bifurcation theory discussed in [30, 31], the bifurcation is called a supercritical Neimark–Sacker bifurcation if the discriminatory quantity \(\chi <0\). In the following section, numerical simulations guarantee that a supercritical Neimark–Sacker bifurcation occurs for the discrete-time model (4).
4.2 Period-doubling bifurcation about \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\)
This section deals with the study of period-doubling bifurcation of the discrete-time model (4) about the unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\). Consider \(\alpha _{1}^{*}\) as a bifurcation parameter, then the discrete-time model (4) becomes
where \(\alpha _{1}^{*}\ll 1\). Let \(u_{n}=x_{n}-x^{*}\), \(v_{n}=y_{n}-y^{*}\). Then we transformed \(B (x^{*},y^{*} )\), where \(x^{*}=\frac{1}{ \alpha _{2}}\), \(y^{*}=\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{ \alpha _{2}}\) of (15) into origin. By calculating we get
where
Now, construct an invertible matrix T
and use the translation
(16) gives
where
Hereafter we determine the center manifold \(W^{c}(0,0)\) of (17) about \((0,0 )\) in a small neighborhood of \(\alpha _{1}^{*}\). By center manifold theorem, there exists a center manifold \(W^{c}(0,0)\) that can be represented as follows:
where \(O ( (|X_{n}|+|\alpha _{1}^{*}| )^{3} )\) is a function with order at least three in their variables \((X_{n}, \alpha _{1}^{*} )\), and
Therefore, we consider the map (17) restricted to \(W^{c}(0,0)\) as follows:
where
In order for the map (20) to undergo a period-doubling bifurcation, we require that the following discriminatory quantities are non-zero:
After calculating we get
and
From the above analysis and Theorem in [30, 31], we have the following theorem.
Theorem 2
If \(\varLambda _{2}\neq0\), the map (15) undergoes a period-doubling bifurcation about the unique positive equilibrium \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) when \(\alpha _{1}^{*}\) varies in a small neighborhood of \(O(0,0)\). Moreover, if \(\varLambda _{2}>0\) (resp. \(\varLambda _{2}<0\)), then the period-2 points that bifurcate from \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) are stable (resp. unstable).
5 Numerical simulations
In this section, some simulations are given to verify the obtained results. If \(\alpha _{2}=3.5\) then from non-hyperbolic condition \(\alpha _{1}=\frac{\alpha _{2}}{\alpha _{2}-2}\) of Lemma 4 one gets \(\alpha _{1}=2.33333\). From a theoretical point of view the equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) is a locally asymptotically stable focus if \(\alpha _{1}<2.33333\). To see this if \(\alpha _{1}=1.779<2.33333\), then it is clear from Fig. 1(a) that the equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) is a locally asymptotically stable focus. That means that all the orbits attract towards the unique positive equilibrium. Similarly for the other values of the parameter \(\alpha _{1}\), it is also observed that the equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4) is a locally asymptotical focus (see Figs. 1(b)–1(l)). But when \(\alpha _{1}\) goes through 2.33333, equilibrium \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4) is unstable focus. Meanwhile an attracting closed invariant curve bifurcates from \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4). In particular the existence of an attracting closed invariant curve implies that the discrete-time model (4) undergoes a supercritical Neimark–Sacker bifurcation about \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\). To see this if \(\alpha _{1}=2.34>2.33333\) then the eigenvalues of \(J_{B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )}\) about \(B (\frac{1}{ \alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) are
and a non-degenerate condition for the existence of Neimark–Sacker bifurcation of the discrete-time model (4), i.e., \(\frac{ \alpha _{2}-2}{2\alpha _{2}}=0.5341880341880343>0\) hold. Moreover, after some manipulations from Mathematica one gets
In view of (22) and (23) the value of the discriminatory quantity from (12) is \(\chi =-0.11221718590370466<0\). Therefore if \(\alpha _{1}=2.34>2.33333\) then the discrete-time model (4) undergoes a supercritical Neimark–Sacker bifurcation and in fact a stable invariant close curve appears, which is presented in Fig. 2(a). Similarly for other choices of bifurcation parameter the value of discriminatory quantity is less than 0 (see Table 1) and their corresponding attracting close invariant curves are depicted in Figs. 2(b)–2(o). In the context of biology, attracting closed invariant curve bifurcations from the supercritical Neimark–Sacker bifurcation imply that host and parasitoid populations will coexist under periodic or quasi-periodic oscillations with long time.
Hereafter we will provide the numerical simulation in order to verify the theoretical results obtained in Sect. 4.2 by fixing \(\alpha _{2}=1.53\) and varying \(1.5\le \alpha _{1}\le 18.5\). Fixing \(\alpha _{2}=1.53\), then from the non-hyperbolic condition (iii) of Lemma 5 one gets \(\alpha _{1}=3.1224489795918364\). From a theoretical point of view the unique positive equilibrium point \((0.6535947712418301, 0.08163300653594788)\) of (4) is stable if \(\alpha _{1}< 3.1224489795918364\); bifurcation occurs if \(\alpha _{1}=3.1224489795918364\), and there is a period-doubling bifurcation if \(\alpha _{1}>3.1224489795918364\).
From Figs. 3(a)–3(b), we see that the equilibrium point is stable if \(\alpha _{1}< 3.1224489795918364\), and loses its stability at the period-doubling bifurcation parameter value \(\alpha _{1}=3.1224489795918364\). The maximum Lyapunov exponents corresponding to Figs. 3(a)–3(b) are plotted in Fig. 3(c). Moreover, 3D bifurcation diagrams are also plotted in Figs. 4(a)–4(c). The phase portraits which are associated with Figs. 3(a)–3(b) are depicted in Figs. 5(a)–5(f), which indicates that the discrete-time model (4) exhibits a complex dynamics such as period-2, -4, -11, -13, -15 and -22 orbits.
5.1 Fractal dimension
The fractal dimension which characterized the strange attractors of the discrete-time system is defined by (see [33, 34])
where \(\kappa _{1}, \kappa _{2},\ldots , \kappa _{n}\) are Lyapunov exponents and j is the largest integer such that \(\sum_{i=1}^{j} \kappa _{j}\ge 0\) and \(\sum_{i=1}^{j+1}\kappa _{j}<0\). For our under consideration discrete-time model (4), the fractal dimension takes the following form:
If \(\alpha _{2}=1.53\) then after some manipulation two Lyapunov exponents are \(\kappa _{1}= 1.3153221370247266\) (resp. \(\kappa _{1}=1.2928270741698256\)) and \(\kappa _{2}=-0.3806816141489094\) (resp. \(\kappa _{2}=-0.40393818528093656\)) for \(\alpha _{1}=1.63\) (resp. \(\alpha _{1}=1.7\)). So the fractal dimension for the discrete-time model (4) is
The strange attractors for the above fixed parametric values are also plotted and presented in Figs. 6(a)–6(b), which illustrate that the discrete model (4) has a complex dynamical behavior as the parameter \(\alpha _{1}\) increases.
6 Chaos control
In this section, we will study the chaos control by applying the state feedback control method [35, 36]. By adding a feedback control law as the control force \(u_{n}\) to the discrete-time model (4), the controlled model (4) takes the following form:
where the feedback gains are denoted by \(k_{1}\) and \(k_{2}\) and \((x^{*},y^{*})\) is the unique positive equilibrium point, i.e., \((x^{*},y^{*})=B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) of the discrete-time model (4). The Jacobian matrix \(J_{c}\) of the controlled system (27) is
where \(a_{11}=\frac{\alpha _{2}-\alpha _{1}}{\alpha _{2}}\), \(a_{12}=-\frac{1}{ \alpha _{2}}\), \(a_{21}=\alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}\), \(a _{22}=1\). The characteristic equation of \(J_{c}(x^{*},y^{*})\) about \((x^{*},y^{*})\) is
where
Let \(\kappa _{1}\) and \(\kappa _{2}\) be the roots of (29) then
The solutions of the equations \(\kappa _{1}=\pm 1\) and \(\kappa _{1} \kappa _{2}=1\) determine the lines of marginal stability. These conditions confirm that \(|\kappa _{1,2}|<1\). Suppose that \(\kappa _{1} \kappa _{2}=1\), then from (32) one gets
Now assuming that \(\kappa _{1}=1\) then from (31) and (32) one gets
Finally, assume that \(\kappa _{1}=-1\), then again from (31) and (32) one gets
Then the lines \(l_{1}\), \(l_{2}\) and \(l_{3}\) in the \((k_{1}, k_{2})\) plane determine a triangular region which gives \(|\kappa _{1,2}|<1\) (see Fig. 7(a)).
In order to check how the implementation of feedback control method works and how to control chaos at an unstable state, we have performed numerical simulations. Figures 7(b)–7(c) show that about the unique positive equilibrium the chaotic trajectories are stabilized.
7 Conclusion
This work deals with the study of local dynamics, bifurcations and chaos control of a discrete-time predator–prey model (4) in \(\mathbb{R}^{2}_{+}\). It is proved that the model has the boundary equilibria \(O(0,0)\), \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) and a unique positive equilibrium \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1} \alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\). We have investigated local stability along their topological types about \(O(0,0)\), \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\), \(B (\frac{1}{\alpha _{2}},\frac{\alpha _{1}\alpha _{2}-\alpha _{1}- \alpha _{2}}{\alpha _{2}} )\) by imposing the method of linearization and conclusions are presented in Table 2. We proved that about \(A (\frac{\alpha _{1}-1}{\alpha _{1}},0 )\) there exists a fold bifurcation when the parameters of the discrete model (4) are located in the following set:
We have also shown that about \(B (\frac{1}{\alpha _{2}},\frac{ \alpha _{1}\alpha _{2}-\alpha _{1}-\alpha _{2}}{\alpha _{2}} )\) the discrete-time model (4) undergoes both a Neimark–Sacker bifurcation and a period-doubling bifurcation when the parameters, respectively, are located in the following sets:
Numerical simulations have verified not only the theoretical results but also exhibited a complex dynamical behavior such as the period-2, -4, -11, -13, -15 and -22 orbits. Further, we have computed maximum Lyapunov exponents numerically. Finally, the feedback control method is applied to stabilize chaos existing in the discrete-time model (4).
References
Volterra, V.: Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars, Paris (1931)
Martelli, M.: Discrete Dynamical Systems and Chaos. Longman, New York (1992)
Landa, P.S.: Self oscillatory models of some natural and technical processes. In: Kreuzer, E., Schmidt, G. (eds.) Mathematical Research, vol. 72, p. 23
Freedman, H.I.: A model of predator–prey dynamics as modified by the action of a parasite. Math. Biosci. 99, 143–155 (1990)
May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)
Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)
Alebraheem, J., Hasan, Y.A.: Dynamics of a two predator-one prey system. Comput. Appl. Math. 33, 67–780 (2014)
Sinha, S., Misra, O., Dhar, J.: Modelling a predator–prey system with infected prey in polluted environment. Appl. Math. Model. 34(7), 1861–1872 (2010)
Chen, Y., Changming, S.: Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay. Chaos Solitons Fractals 38(4), 1104–1114 (2008)
Gakkhar, S., Singh, A.: Complex dynamics in a prey–predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 17(2), 914–929 (2012)
Yan, J., Li, C., Chen, X., Ren, L.: Dynamic complexities in 2-dimensional discrete-time predator–prey systems with Allee effect in the prey. Discrete Dyn. Nat. Soc. 2016, Article ID 4275372 (2016)
Zhao, J., Yan, Y.: Stability and bifurcation analysis of a discrete predator–prey system with modified Holling–Tanner functional response. Adv. Differ. Equ. 2018, 402 (2018)
Fang, Q., Li, X.: Complex dynamics of a discrete predator–prey system with a strong Allee effect on the prey and a ratio-dependent functional response. Adv. Differ. Equ. 2018, 320 (2018)
Kangalgi, F., Kartal, S.: Stability and bifurcation analysis in a host–parasitoid model with Hassell growth function. Adv. Differ. Equ. 2018, 240 (2018)
Li, L., Shen, J.: Bifurcations and dynamics of a predator–prey model with double Allee effects and time delays. Int. J. Bifurc. Chaos 28(11), 1–14 (2018)
Zhao, M., Li, C., Wang, J.: Complex dynamic behaviors of a discrete-time predator–prey system. J. Appl. Anal. Comput. 7(2), 478–500 (2017)
Cheng, L., Cao, H.: Bifurcation analysis of a discrete-time ratio-dependent predator–prey model with Allee effect. Commun. Nonlinear Sci. Numer. Simul. 38, 288–302 (2016)
Liu, W., Cai, D., Shi, J.: Dynamic behaviors of a discrete-time predator–prey bioeconomic system. Adv. Differ. Equ. 2018, 133 (2018)
Liu, X., Chu, Y., Liu, Y.: Bifurcation and chaos in a host–parasitoid model with a lower bound for the host. Adv. Differ. Equ. 2018, 31 (2018)
Sohel Rana, S.M.: Chaotic dynamics and control of discrete ratio-dependent predator–prey system. Discrete Dyn. Nat. Soc. 2017, Article ID 4537450 (2017)
Zhao, M., Du, Y.: Stability of a discrete-time predator–prey system with Allee effect. Nonlinear Analy. Diff. Equ. 4(5), 225–233 (2016)
Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Solitons Fractals 32(1), 80–94 (2007)
Khan, A.Q., Ma, J., Xiao, D.: Bifurcations of a two-dimensional discrete time plant-herbivore system. Commun. Nonlinear Sci. Numer. Simul. 39, 185–198 (2016)
Khan, A.Q., Ma, J., Xiao, D.: Global dynamics and bifurcation analysis of a host–parasitoid model with strong Allee effect. J. Biol. Dyn. 11(1), 121–146 (2017)
Khan, A.Q.: Stability and Neimark–Sacker bifurcation of a ratio-dependence predator–prey model. Math. Methods Appl. Sci. 40(11), 3833–4232 (2017)
Hu, Z., Teng, Z., Zhang, L.: Stability and bifurcation analysis of a discrete predator–prey model with non-monotonic functional response. Nonlinear Anal., Real World Appl. 12(4), 2356–2377 (2011)
Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predator–prey system. Chaos Solitons Fractals 27(1), 259–277 (2006)
Zhang, C.H., Yan, X.P., Cui, G.H.: Hopf bifurcations in a predator–prey system with a discrete delay and a distributed delay. Nonlinear Anal., Real World Appl. 11(5), 4141–4153 (2010)
Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983)
Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
Khan, A.Q.: Supercritical Neimark–Sacker bifurcation of a discrete-time Nicholson–Bailey model. Math. Methods Appl. Sci. 41(12), 4841–4852 (2018)
Cartwright, J.H.E.: Nonlinear stiffness Lyapunov exponents and attractor dimension. Phys. Lett. A 264, 298–304 (1999)
Kaplan, J.L., Yorke, J.A.: Preturbulence: a regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 67(2), 93–108 (1979)
Elaydi, S.N.: An Introduction to Difference Equations. Springer, New York (1996)
Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhäuser, Boston (2007)
Acknowledgements
The author thanks the main editor and referees for their valuable comments and suggestions leading to improvement of this paper. This work was supported by the Higher Education Commission (HEC) of Pakistan.
Funding
The author declares that he got no funding on any part of this research.
Author information
Authors and Affiliations
Contributions
The author carried out the proof of the main results and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no conflict of interests regarding the publication of this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Khan, A.Q. Bifurcations of a two-dimensional discrete-time predator–prey model. Adv Differ Equ 2019, 56 (2019). https://doi.org/10.1186/s13662-019-1995-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-1995-6