At first, we need an integral representation of the solution to problem (1.1) and (1.3).
Lemma 3.1
Function
\(u\in[a,b]\)
is a solution to (1.1) and (1.3) if and only if
u
is a solution to the integral equation
$$ \begin{aligned} u(t)= \int_{a}^{b} G(t,qs)\lambda(s)u(s) \,d_{q}s, \quad t\in[a,b], \end{aligned} $$
in which
G, the Green function linking (1.1) and (1.3), is given by
$$ \begin{aligned} G(t,qs)=\frac{1}{\varGamma_{q} (\alpha)} \textstyle\begin{cases} (b-qs)^{(\alpha-1)} (\frac{t-a}{b-a} )^{(\alpha -1)}-(t-qs)^{(\alpha-1)}, &a\leq qs\leq t\leq b, \\ (b-qs)^{(\alpha-1)} (\frac{t-a}{b-a} )^{(\alpha-1)}, &a\leq t\leq qs\leq b. \end{cases}\displaystyle \end{aligned} $$
Proof
By making use of Lemmas 2.1 and 2.2 with \(p=3\), from (1.1), we can see that
$$ \bigl({}_{a}D_{q}^{\alpha}u\bigr) (t)=-\lambda(t)u(t), $$
so
$$ \bigl(I_{q}^{\alpha}D_{q}^{3}I_{q}^{3-{\alpha}} u\bigr) (t)=-I_{q}^{\alpha}\lambda(t)u(t), $$
i.e.,
$$ \bigl( D_{q}^{3}I_{q}^{\alpha} I_{q}^{3-{\alpha}} u\bigr) (t)=-I_{q}^{\alpha}\lambda(t)u(t). $$
We can get a general solution to (1.1) as
$$ \begin{aligned} u(t)&=c_{1}(t-a)^{(\alpha-1)}+c_{2}(t-a)^{(\alpha -2)}+c_{3}(t-a)^{(\alpha-3)} \\ &\quad {} -\frac{1}{\varGamma_{q}(\alpha)} \int_{a}^{t}(t-qs)^{(\alpha -1)}\lambda(s)u(s) \,d_{q}s, \end{aligned} $$
in which \(c_{1}\), \(c_{2}\), \(c_{3}\) are real constants. Due to the boundary value conditions \(u(a)=0\), we know that \(c_{3}=0\). Taking the q-derivative of \(u(t)\), we get
$$ \begin{aligned} D_{q}u(t)&=[\alpha-1]_{q}c_{1}(t-a)^{(\alpha-2)}+[ \alpha -2]_{q}c_{2}(t-a)^{(\alpha-3)} \\ & \quad {} -\frac{1}{\varGamma_{q}(\alpha)} \int_{a}^{t}[\alpha -1]_{q}(t-qs)^{(\alpha-2)} \lambda(s)u(s)\,d_{q}s. \end{aligned} $$
By using the boundary condition \(D_{q}u(a)=0\), we get
Then the boundary condition given by (1.2) yields
$$ c_{1}(b-a)^{(\alpha-1)}-\frac{1}{\varGamma_{q}(\alpha)} \int _{a}^{b}(b-qs)^{(\alpha-1)}\lambda(s)u(s) \,d_{q}s=0, $$
so
$$ c_{1}=\frac{\int_{a}^{b}(b-qs)^{(\alpha-1)}\lambda (s)u(s)\,d_{q}s}{\varGamma_{q}(\alpha)(b-a)^{(\alpha-1)}}. $$
Therefore
$$ \begin{aligned} u(t)&=\frac{\int_{a}^{b}(b-qs)^{(\alpha-1)}\lambda (s)u(s)\,d_{q}s}{\varGamma_{q}(\alpha)(b-a)^{(\alpha-1)}}(t-a)^{(\alpha-1)} - \frac{1}{\varGamma_{q}(\alpha)} \int_{a}^{t}(t-qs)^{(\alpha -1)}\lambda(s)u(s) \,d_{q}s \\ &=\frac{1}{\varGamma_{q}{(\alpha)}} \int _{a}^{t} \biggl[(b-qs)^{(\alpha-1)} \biggl( \frac{t-a}{b-a} \biggr)^{(\alpha-1)}-(t-qs)^{(\alpha -1)} \biggr] \lambda(s)u(s)\,d_{q}s \\ & \quad {} +\frac{1}{\varGamma_{q}{(\alpha)}} \int_{t}^{b} \biggl[(b-qs)^{(\alpha -1)} \biggl( \frac{t-a}{b-a} \biggr)^{(\alpha-1)} \biggr] \lambda(s)u(s)\,d_{q}s \\ &= \int_{a}^{b} G(t,qs)\lambda(s)u(s) \,d_{q}s. \end{aligned} $$
The sufficiency is obvious, so we obtain the desired result. □
The properties of Green function play an important role in this paper.
Lemma 3.2
Green function
G
defined above has the following properties:
-
(1)
\(G(t,qs)\geq0\), \(a\leq t,qs\leq b\);
-
(2)
\(\max_{t\in[a,b]}G(t,qs)=G(qs,qs)\), \(qs\in[a,b]\);
-
(3)
\(G(qs,qs)\)
has a unique maximum given by
$$ \max_{qs\in[a,b]}G(qs,qs) =G \biggl(\frac{a+b}{2},\frac{a+b}{2} \biggr) =\frac{1}{\varGamma_{q}(\alpha)} \biggl(\frac{b-a}{4} \biggr)^{(\alpha-1)}. $$
Proof
(1) Let
$$ \begin{aligned} &g_{1}(t,qs)=(b-qs)^{(\alpha-1)} \biggl( \frac{t-a}{b-a} \biggr)^{(\alpha-1)}-(t-qs)^{(\alpha-1)}, \quad a\leq qs\leq t\leq b, \\ &g_{2}(t,qs)=(b-qs)^{(\alpha-1)} \biggl(\frac{t-a}{b-a} \biggr)^{(\alpha-1)}, \quad a\leq t\leq qs\leq b. \end{aligned} $$
When \(a\leq t\leq qs\leq b\), it is clear that \(g_{2}(t,qs)>0\).
When \(a\leq qs \leq t\leq b\),
$$ \begin{aligned} g_{1}(t,qs)&=(b-qs)^{(\alpha-1)} \biggl( \frac{t-a}{b-a} \biggr)^{(\alpha-1)}-(t-qs)^{(\alpha-1)} \\ &= \biggl(\frac{t-a}{b-a} \biggr)^{(\alpha-1)}(b-qs)^{(\alpha -1)}- \biggl( \frac{t-a}{b-a} \biggr)^{(\alpha-1)} \biggl(b- \biggl(a+\frac{(qs-a)(b-a)}{t-a} \biggr) \biggr)^{(\alpha-1)}. \end{aligned} $$
Observe now that
$$ \begin{aligned} a+\frac{(qs-a)(b-a)}{t-a}\geq qs \end{aligned} $$
if and only if
$$ \begin{aligned} (qs-a) (b-a)\geq(qs-a) (t-a), \quad a\leq qs \leq t \leq b, \end{aligned} $$
so \(g_{1}(t,qs)\geq0\). Therefore, \(G(t,qs)\geq0\) for all \(a\leq t, qs\leq b\).
(2) From (1), we obtain \(\max_{t\in[a,b]} G(t,qs)=G(qs,qs)\), \(qs\in[a,b]\).
(3) Now we obtain the maximum of \(G(qs,qs)\).
According to Lemma 2.3, we get
$$ \begin{aligned} D_{q}G(qs,qs)&=D_{q} \biggl[ \biggl(\frac{qs-a}{b-a} \biggr)^{(\alpha -1)}(b-qs)^{(\alpha-1)} \biggr] \\ &=[\alpha-1]_{q}\frac{(qs-a)^{(\alpha-2)}}{(b-a)^{(\alpha -1)}}(b-qs)^{(\alpha-2)}(-2qs+b+a), \end{aligned} $$
which implies that \(D_{q} G(qs,qs)=0\) only at \(qs=\frac{b+a}{2}\) and \(D_{q}G(qs,qs)>0\) for \(qs<\frac{b+a}{2}\) and \(D_{q}G(qs,qs)<0\) for \(qs>\frac{b+a}{2}\).
From what has been discussed above, the maximum of \(G(t,qs)\) is \(G(\frac{a+b}{2},\frac{a+b}{2})\), which results in \(\frac{1}{\varGamma_{q}{(\alpha)}}(\frac {b-a}{4})^{(\alpha-1)}\). This completes the proof. □
Theorem 3.1
If a nontrivial continuous solution to the fractional
q-difference boundary value problem
$$ \begin{aligned} &\bigl(D_{q}^{\alpha}u \bigr) (t)+\lambda(t)u(t)=0, \quad a< t< b, q \in[0,1), 2< \alpha\leq3, \\ &D_{q} u(a)=0, \quad\quad u(a)=0, \quad\quad u(b)=0 \end{aligned} $$
(3.1)
exists, where
\(\lambda: [a,b]\rightarrow\mathbb{R}\)
is a continuous function, then
$$ \begin{aligned} \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert (b-qs)^{(\alpha -1)}(qs-a)^{(\alpha-1)}\,d_{q}s \geq \varGamma_{q}(\alpha) (b-a)^{(\alpha-1)}. \end{aligned} $$
(3.2)
Proof
Let u be a nontrivial continuous solution to the fractional q-difference boundary value problem (3.1). Let
$$ \Vert u \Vert =\max_{a\leq t\leq b} \vert u \vert . $$
By Lemma 3.1, for all \(a\leq t\leq b\), we have
$$ \begin{aligned}[b] \bigl\vert u(t) \bigr\vert &\leq \int_{a}^{b} G(qs,qs) \bigl\vert \lambda(s) \bigr\vert \bigl\vert u(s) \bigr\vert \,d_{q}s \\ &\leq \Vert u \Vert \int_{a}^{b} G(qs,qs) \bigl\vert \lambda(s) \bigr\vert \,d_{q}s \end{aligned} $$
(3.3)
if and only if
$$ 1\leq \int_{a}^{b} G(qs,qs) \bigl\vert \lambda(s) \bigr\vert \,d_{q}s. $$
Hence,
$$ \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert (b-qs)^{(\alpha -1)}(qs-a)^{(\alpha-1)}\,d_{q}s \geq \varGamma_{q}(\alpha) (b-a)^{(\alpha-1)}, $$
which completes the proof. □
Corollary 3.1
If a nontrivial continuous solution to the Riemann–Liouville fractional boundary value problem
$$ \begin{aligned} &\bigl(D^{\alpha}u\bigr) (t)+ \lambda(t)u(t)=0, \quad a< t< b, 2< \alpha\leq3, \\ &D u(a)=0, \quad\quad u(a)=0, \quad\quad u(b)=0 \end{aligned} $$
(3.4)
exists, where
\(\lambda:[a,b]\rightarrow\mathbb{R}\)
is a continuous function and
\({}_{a}D^{\alpha}\)
denotes the Riemann–Liouville fractional derivative of order
α, then
$$ \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert (b-s)^{\alpha -1}(s-a)^{\alpha-1}\,ds \geq\varGamma(\alpha) (b-a)^{\alpha-1}. $$
Proof
It follows from Theorem 3.1 by letting \(q\rightarrow1^{-}\). □
Corollary 3.2
If there exists a nontrivial continuous solution of the fractional
q-difference boundary value problem
$$ \begin{aligned} &D_{q}^{\alpha}u(t)+ \lambda(t)u(t)=0, \quad a< t< b, q\in[0,1), 2< \alpha\leq3, \\ &D_{q}u(a)=0, \quad\quad u(a)=0, \quad\quad u(b)=0, \end{aligned} $$
where
\(\lambda:[a,b]\rightarrow\mathbb{R}\)
is a continuous function, then
$$ \begin{aligned} \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,d_{q}s\geq\varGamma _{q}{(\alpha)} \biggl( \frac{4}{b-a} \biggr)^{(\alpha-1)}. \end{aligned} $$
(3.5)
Proof
Let u be a nontrivial continuous solution to the fractional boundary value problem (3.1). Let
$$ \Vert u \Vert =\max_{a\le t\le b} \bigl\vert u(t) \bigr\vert . $$
By Lemma 3.1, for all \(a\leq t\leq b\), we have
$$ u(t)= \int_{a}^{b}G(t,qs)\lambda(s)u(s)\,d_{q}s, \quad t\in[a,b]. $$
Then
$$ \bigl\vert u(t) \bigr\vert \leq \Vert u \Vert \max_{a\leq t\leq b} \int_{a}^{b}G(t,qs) \bigl\vert \lambda(s) \bigr\vert \,d_{q}s. $$
Therefore
$$ \begin{aligned} &\bigl\vert u(t) \bigr\vert \leq \Vert u \Vert \frac {1}{\varGamma_{q}(\alpha)} \biggl(\frac{b-a}{4} \biggr)^{(\alpha-1)} \int _{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,d_{q}s, \\ &1\leq\frac{1}{\varGamma_{q}(\alpha)} \biggl(\frac{b-a}{4} \biggr)^{(\alpha-1)} \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,d_{q}s, \end{aligned} $$
(3.6)
and as a consequence,
$$ \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,d_{q}s\geq\varGamma _{q}(\alpha) \biggl(\frac{4}{b-a} \biggr)^{(\alpha-1)}, $$
which yields the desired inequality. In fact, this conclusion is a generalization of Theorem 3.1. □
Corollary 3.3
If a nontrivial continuous solution to the Riemann–Liouville fractional boundary value problem
$$ \begin{aligned} &\bigl(D^{\alpha}u\bigr) (t)+\lambda(t)u(t)=0, \quad a< t< b, 2< \alpha\leq3, \\ &D_{q}u(a)=0, \quad\quad u(a)=0, \quad\quad u(b)=0 \end{aligned} $$
exists, where
\(\lambda:[a,b]\rightarrow\mathbb{R}\)
is a continuous function, then
$$ \begin{aligned} \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,ds\geq\varGamma(\alpha ) \biggl(\frac{4}{b-a}\biggr)^{\alpha-1}. \end{aligned} $$
(3.7)
Proof
Let \(q\rightarrow1^{-}\) in Corollary 3.2. □
Corollary 3.4
If a nontrivial continuous solution to the boundary value problem
$$ \begin{aligned} &u''(t)+\lambda(t)u(t)=0, \quad a< t< b, \\ &u'(a)=0, \quad\quad u(a)=0, \quad\quad u(b)=0 \end{aligned} $$
exists, where
\(\lambda:[a,b]\rightarrow\mathbb{R}\)
is a continuous function, then
$$ \int_{a}^{b} \bigl\vert \lambda(s) \bigr\vert \,ds\geq\frac{4}{b-a}. $$
Proof
We need take \(\alpha=2\) in the Corollary 3.3, which immediately gives us the proof. □
Consider the following problem:
$$ D_{q}^{\alpha}u(t)+\lambda(t)u(t)=0, \quad 0< t< 1, $$
(3.8)
subject to the boundary value problem
$$ D_{q} u(0)=0, \quad\quad u(0)=0, \quad\quad u(1)=0, $$
(3.9)
where \({\lambda}:[0,1]\rightarrow\mathbb{R}\) is a continuous function. We have the following result:
Corollary 3.5
Assume that
$$ { \int_{0}^{1} \bigl\vert \lambda(s) \bigr\vert } \,d_{q}s< {4^{(\alpha -1)}} {\varGamma_{q}(\alpha)}. $$
(3.10)
Then (3.8)–(3.9) has no nontrivial solution.
Proof
Assume on the contrary that (3.8)–(3.9) has a nontrivial solution. By Corollary 3.2, we get \({\int_{0}^{1}\vert\lambda (s)\vert}\,d_{q}s\geq{4^{(\alpha-1)}}{\varGamma_{q}(\alpha)}\), which contradicts assumption (3.10). □