Skip to main content

Theory and Modern Applications

Symmetry reductions of the \((3+1)\)-dimensional modified Zakharov–Kuznetsov equation


This paper is concerned with the symmetry reductions of the \((3+ 1)\)-dimensional modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. The direct symmetry method is applied to determine the symmetry and the corresponding vector field. Then, the considered equation is reduced to lower-dimensional equations with the aid of the obtained symmetry. At last, some exact solutions of the modified Zakharov–Kuznetsov equation are found in terms of the lower-dimensional equations.

1 Introduction

The Zakharov–Kuznetsov (ZK) equation [1]

$$ u_{t}+uu_{x}+\triangledown ^{2}u_{x}=0 $$

was first proposed by Zakharov and Kuznetsov to describe the evolution of weakly nonlinear ion-acoustic waves in a plasma consisting of hot isothermal electrons and cold ions in the presence of a uniform magnetic field in the x direction. Equation (1) also appears in many other scientific fields including geochemistry, optical fiber, and solid state physics [2,3,4,5]. In [6], Shivamoggi provided a detailed discussion of the analytical properties of Eq. (1). Nawaz et al. [7] found appropriate solutions for the ZK equations with fully nonlinear dispersion by the homotopy analysis method.

In 1999, Munro and Parkes considered a more realistic situation where the electrons are non-isothermal [8]. With an appropriately modified form of the electron number density given in [9], they showed that the reductive perturbation can lead to the following modified Zakharov–Kuznetsov (mZK) equation:

$$ 16(u_{t}-ku_{x})+30u^{\frac{1}{2}}u_{x}+u_{xxx}+u_{xyy}+u_{xzz}=0, $$

where k is a positive constant. Later, in [10] and [11], Munro and Parkes addressed the stability of solitary wave solutions and that of obliquely propagating solitary wave solutions to the mZK equation, respectively. In 2016, by using an extended direct algebraic method, Seadaway presented traveling wave solutions to the mZK equation and analyzed the stability for the electric fields and the electric field potentials [12].

It is noted that the mZK equation is a high dimensional nonlinear evolution equation and, thus, the study of its reduction problem is of theoretical interest. The Lie-group method, originally proposed by Sophus Lie, is a classical method to determine the symmetry reduction of partial differential equations (PDEs) [13,14,15,16]. During the past several decades, there have been many extensions of the Lie-group method such as the nonclassical Lie group method [17], the CK direct method [18], the direct symmetry method [19], and so on [20,21,22,23,24]. Among them, the direct symmetry method is an effective approach for seeking symmetry reductions. In [25] and [26], the method was used to investigate the Gardner–KP equation and the \((2+ 1)\)-dimensional Jaulent–Miodek equation, respectively. To our knowledge, there is no result concerning the application of the direct symmetry method to the mZK equation partly due to its high dimension and nonlinear term \(u^{\frac{1}{2}}u_{x}\), which motivates the present work.

Based on the above discussion, this paper considers the problem of seeking symmetry reductions of the mZK equation. In Sect. 2, with the help of the direct symmetry method, the symmetry and the corresponding vector field of the mZK equation are determined. In Sect. 3, by solving the symmetry equation, similarity transformations are constructed, which are applied to reduce the mZK equation to \((2+ 1)\)-dimensional or even \((1+ 1)\)-dimensional equations. In Sect. 4, some exact solutions including trigonometric function solutions, hyperbolic function solutions, and Weierstrass function solutions of the mZK equation are presented in terms of the lower-dimensional equations. Finally, the conclusion is provided in Sect. 5.

2 Symmetry analysis

For an arbitrary nonlinear evolution equation

$$ \varPhi (x,t,u,u_{x},u_{t},\ldots )=0, $$

where \(u_{x}=\frac{\partial u}{\partial x}\). The function \(\sigma (x,t,u,u _{x},u_{t},\ldots )\) is called a symmetry [27] of Eq. (3) if it satisfies the following equation for an arbitrary solution \(u(x,t)\):

$$ \varphi ^{\prime }(u)\sigma =0, $$


$$ \varphi ^{\prime }(u)\sigma =\frac{\partial \varphi }{\partial u} \sigma +\frac{\partial \varphi }{\partial u_{x}} \sigma _{x}+\frac{ \partial \varphi }{\partial u_{t}}\sigma _{t}+\frac{\partial \varphi }{ \partial u_{xx}} \sigma _{xx}+\cdots . $$

Note that Eq. (4) is a linear PDE of the symmetry σ. Therefore the linear combination of symmetry σ is also a symmetry of Eq. (3).

According to Eq. (4), the symmetry of mZK equation must satisfy

$$ 16 ( \sigma _{t}-k\sigma _{x} ) +15u^{-\frac{1}{2}}\sigma u _{x}+30u^{\frac{1}{2}}\sigma _{x}+\sigma _{xxx}+ \sigma _{xyy}+\sigma _{xzz}=0. $$

Here, we set

$$\begin{aligned} \sigma (x,y,z,t,u) =&a(x,y,z,t)u_{t}+b(x,y,z,t)u_{x} \\ &{}+c(x,y,z,t)u_{y}+d(x,y,z,t)u_{z} \\ &{}+e(x,y,z,t)u+g(x,y,z,t), \end{aligned}$$

where a, b, c, d, e, and g are functions to be determined later. With the help of Maple, one can expand Eq. (5) by means of Eqs. (2) and (6). Then, taking the coefficients of u and those of the derivatives of u to zero yields the following twenty-one determining equation concerning a, b, c, d, e, and g:

$$\begin{aligned}& u_{xxxxx} : -\frac{3}{16}a_{x}=0, \\& u_{xxxxy} : -\frac{1}{8}a _{y}=0, \\& u_{xxxxz} : -\frac{1}{8}a_{z}=0, \\& u_{xxx} : 3b_{x}-a _{t}=0, \\& u_{xxy} : 2b_{y}=0, \\& u_{xxz} : 2b_{z}=0, \\& u_{xyy} : b_{x}-a_{t}+2c_{y}=0, \\& u_{xyz} : 2c_{z}+2d_{y}=0, \\& u_{xzz} : b_{x}-a_{t}+2d_{z}=0, \\& u_{xx} : 3b_{xx}=0, \\& u_{xy} : c_{zz}+c _{yy}+2e_{y}=0, \\& u_{xz} : d_{zz}+d_{yy}+2e_{z}=0, \\& u^{ \frac{1}{2}}u_{x} : 15e+30b_{x}-30a_{t}=0, \\& u^{\frac{1}{2}}u_{y} : 30c_{x}=0, \\& u^{\frac{1}{2}}u_{z} : 30d_{x}=0, \\& u^{- \frac{1}{2}}u_{x} : 15g=0, \\& u_{x} : 16b_{t}-16kb_{x}+16ka_{t}+e _{yy}+e_{zz}=0, \\& u_{y} : 16c_{t}=0, \\& u_{z} : 16d_{t}=0, \\& u ^{\frac{3}{2}} : 30e_{x}=0, \\& u : 16e_{t}=0. \end{aligned}$$

Solving the above equations yields

$$\begin{aligned}& a =\delta _{0}t+\delta _{1}, \\& b =\frac{1}{3}\delta _{0}x-\frac{2}{3}k\delta _{0}t+\delta _{2}, \\& c =\frac{1}{3}\delta _{0}y+\delta _{3}z+\delta _{4}, \\& d =\frac{1}{3}\delta _{0}z-\delta _{3}y+\delta _{5}, \\& e =\frac{4}{3}\delta _{0}, \\& g =0, \end{aligned}$$

where \(\delta _{0}\), \(\delta _{1}\), \(\delta _{2}\), \(\delta _{3}\), \(\delta _{4}\), and \(\delta _{5}\) are arbitrary constants. Hence we obtain a general symmetry of the \((3+ 1)\)-dimensional nonlinear mZK equation

$$\begin{aligned} \sigma =&(\delta _{0}t+\delta _{1})u_{t}+ \biggl(\frac{1}{3}\delta _{0}x- \frac{2}{3}k\delta _{0}t+\delta _{2}\biggr)u_{x}+\biggl( \frac{1}{3}\delta _{0}y+ \delta _{3}z+\delta _{4}\biggr)u_{y} \\ &{}+\biggl(\frac{1}{3}\delta _{0}z-\delta _{3}y+ \delta _{5}\biggr)u_{z}+\frac{4}{3} \delta _{0}u. \end{aligned}$$

The corresponding vector field of the above symmetry can be expressed as

$$\begin{aligned} \mathcal{V} =&(\delta _{0}t+\delta _{1}) \frac{\partial }{\partial t}+\biggl( \frac{1}{3}\delta _{0}x- \frac{2}{3}k\delta _{0}t+\delta _{2}\biggr) \frac{ \partial }{\partial x}+\biggl(\frac{1}{3}\delta _{0}y+\delta _{3}z+\delta _{4}\biggr)\frac{ \partial }{\partial y} \\ &{}+\biggl(\frac{1}{3}\delta _{0}z-\delta _{3}y+ \delta _{5}\biggr)\frac{\partial }{ \partial z}-\frac{4}{3}\delta _{0}u\frac{\partial }{\partial u}, \end{aligned}$$

which has the following infinitesimal generators:

$$\begin{aligned}& \mathcal{V}_{1} =t\frac{\partial }{\partial t}+\frac{1}{3}x \frac{ \partial }{\partial x}-\frac{2}{3}kt\frac{\partial }{\partial x}+ \frac{1}{3}y \frac{\partial }{\partial y}+\frac{1}{3}z\frac{\partial }{ \partial z}-\frac{4}{3}u \frac{\partial }{\partial u}, \\& \mathcal{V}_{2} =\frac{\partial }{\partial t}, \\& \mathcal{V}_{3} =\frac{\partial }{\partial x}, \\& \mathcal{V}_{4} =z\frac{\partial }{\partial y}-y\frac{\partial }{ \partial z}, \\& \mathcal{V}_{5} =\frac{\partial }{\partial y}, \\& \mathcal{V}_{6} =\frac{\partial }{\partial z}. \end{aligned}$$

The commutation relation of these infinitesimal generators is given in Table 1.

Table 1 Commutation relation of the Lie algebra of Eq. (2)

The adjoint representation can be defined by Lie series

$$ \operatorname{Ad}\bigl(\exp (\varepsilon \mathcal{V}_{i})\mathcal{V}_{j} \bigr)=\mathcal{V}_{j}- \varepsilon {}[ \mathcal{V}_{i}, \mathcal{V}_{j}]+ \frac{\varepsilon ^{2}}{2!}\bigl[\mathcal{V}_{i},[ \mathcal{V}_{i}, \mathcal{V}_{j}]\bigr]-\cdots, $$

where ε is the parameter. The adjoint representation of the Lie algebra is given in Table 2, where \(\Delta _{1} = e^{\varepsilon } \mathcal{V}_{2}-ke^{\frac{\varepsilon }{3}}(e^{ \frac{2\varepsilon }{3}}-1)\mathcal{V}_{3}\), \(\Delta _{2} = \cos (\varepsilon ) \mathcal{V}_{5}-\sin (\varepsilon ) \mathcal{V}_{6}\), and \(\Delta _{3} =\cos (\varepsilon ) \mathcal{V}_{6}+\sin (\varepsilon ) \mathcal{V}_{5}\).

Table 2 Adjoint representation of the Lie algebra of Eq. (2)

3 Symmetry reductions

In this section we apply the obtained symmetry to deduce symmetry reductions of Eq. (2). We first solve the symmetry equation \(\sigma =0\) to obtain similarity variables and then substitute them into the original mZK equation (2) to determine the corresponding reduction equations. To obtain the similarity variables ζ, η, ω, and \(f(\zeta ,\eta , \omega )\) of Eq. (2), we have to solve the characteristic equations of \(\sigma =0\)

$$ \frac{dt}{\delta _{0}t+\delta _{1}}=\frac{dx}{\frac{1}{3}\delta _{0}x- \frac{2}{3}k\delta _{0}t+\delta _{2}}=\frac{dy}{\frac{1}{3}\delta _{0}y+ \delta _{3}z+\delta _{4}}=\frac{dz}{\frac{1}{3}\delta _{0}z-\delta _{3}y+ \delta _{5}}= \frac{du}{-\frac{4}{3}\delta _{0}u}. $$

In terms of different choices of parameters \(\delta _{0}\), \(\delta _{1}\), \(\delta _{2}\), \(\delta _{3}\), \(\delta _{4}\), and \(\delta _{5}\), we can get various reduced equations of (2). In the following, let us discuss six concrete cases.

Case I. \(\delta _{0}=\delta _{1}=\delta _{3}=0\), \(\delta _{2}\neq 0\), \(\delta _{4}\neq 0\), \(\delta _{5}\neq 0\)

By solving system (10), one can get similarity variables as follows:

$$\begin{aligned}& \zeta =\delta _{4}x-\delta _{2}y, \\& \eta =\delta _{5}x-\delta _{2}z, \\& \omega =t, \\& u =f(\zeta ,\eta ,\omega ). \end{aligned}$$

Using the above similarity variables, mZK equation (2) can be reduced to

$$\begin{aligned}& 16(f_{\omega }-k\delta _{4}f_{\zeta }-k\delta _{5}f_{\eta })+30f^{ \frac{1}{2}}(\delta _{4}f_{\zeta }+ \delta _{5}f_{\eta }) +\bigl(\delta _{4} ^{3}+\delta _{2}^{2}\delta _{4} \bigr)f_{\zeta \zeta \zeta } \\& \quad {}+\bigl(3\delta _{4}^{2}\delta _{5}+ \delta _{2}^{2}\delta _{5}\bigr)f_{\zeta \zeta \eta } + \bigl(3\delta _{4}\delta _{5}^{2}+\delta _{2}^{2}\delta _{4}\bigr)f _{\zeta \eta \eta }+\bigl( \delta _{5}^{3}+\delta _{2}^{2}\delta _{5}\bigr)f_{ \eta \eta \eta }=0, \end{aligned}$$

which is a \((2+ 1)\)-dimensional PDE.

Case II. \(\delta _{0}=\delta _{3}=0\), \(\delta _{1} \neq 0\), \(\delta _{2}\neq 0\), \(\delta _{4}\neq 0\), \(\delta _{5}\neq 0\)

In such a case, the similarity variables of Eq. (2) are given as

$$\begin{aligned}& \zeta =\delta _{1}x-\delta _{2}t, \\& \eta =\delta _{1}y-\delta _{4}t, \\& \omega =\delta _{1}z-\delta _{5}t, \\& u =f(\zeta ,\eta ,\omega ) {.} \end{aligned}$$

Substituting the above similarity variables into Eq. (2), one can obtain

$$ -16(\delta _{2}+k\delta _{1})f_{\zeta }-16\delta _{4}f_{\eta }-16\delta _{5}f _{\omega }+30 \delta _{1}f^{\frac{1}{2}}f_{\zeta }+\delta _{1}^{3}(f_{ \zeta \zeta \zeta }+f_{\zeta \eta \eta }+f_{\zeta \omega \omega })=0. $$

Case III. \(\delta _{0}=\delta _{1}=\delta _{2}= \delta _{4}=\delta _{5}=0\), \(\delta _{3}\neq 0\)

In such a case, the similarity variables of Eq. (2) are

$$\begin{aligned}& \zeta =y^{2}+z^{2}, \\& \eta =x, \\& \omega =t, \\& u =f(\zeta ,\eta ,\omega ). \end{aligned}$$

Substituting the above similarity variables into Eq. (2), the mZK equation can be reduced to

$$ 16f_{\omega }-16kf_{\eta }+30f^{\frac{1}{2}}f_{\eta }+f_{\eta \eta \eta }+4 \zeta f_{\zeta \zeta \eta }+4f_{\zeta \eta }=0. $$

Case IV. \(\delta _{0}=\delta _{4}=\delta _{5}=0\), \(\delta _{1}\neq 0\), \(\delta _{2}\neq 0\), \(\delta _{3}\neq 0\)

Solving Eq. (10), we obtain

$$\begin{aligned}& \zeta =y^{2}+z^{2}, \\& \eta =\delta _{3}x-\delta _{2}\arctan \biggl( \frac{y}{z}\biggr), \\& \omega =\delta _{3}t-\delta _{1}\arctan \biggl( \frac{y}{z}\biggr), \\& u =f(\zeta ,\eta ,\omega ). \end{aligned}$$

Hence Eq. (2) is reduced to a \((2+ 1)\)-dimensional variable-coefficient PDE

$$\begin{aligned}& 4\zeta ^{2}f_{\zeta \zeta \eta }+\bigl(\delta _{3}^{2} \zeta +\delta _{2}^{2}\bigr)f _{\eta \eta \eta }+30\zeta f^{\frac{1}{2}}f_{\eta }-16k\zeta f_{ \eta }+16\zeta f_{\omega }+4\zeta f_{\zeta \eta } \\& \quad {}+2\delta _{1}\delta _{2}f_{\eta \eta \omega }+\delta _{1}^{2}f_{\eta \omega \omega }=0. \end{aligned}$$

Case V. \(\delta _{2}=\delta _{3}=\delta _{4}=\delta _{5}=0\), \(\delta _{1}\neq 0\), \(\delta _{0}\neq 0\)

In such a case, the similarity variables of Eq. (2) are

$$\begin{aligned}& \zeta =\frac{\delta _{0}x+\delta _{0}kt+3k\delta _{1}}{(\delta _{0}t+ \delta _{1})^{\frac{1}{3}}}, \\& \eta =\frac{y}{(\delta _{0}t+\delta _{1})^{\frac{1}{3}}}, \\& \omega =\frac{z}{(\delta _{0}t+\delta _{1})^{\frac{1}{3}}}, \\& u =(\delta _{0}t+\delta _{1})^{-\frac{4}{3}}f(\zeta ,\eta ,\omega ). \end{aligned}$$

Substituting the above similarity variables into Eq. (2) yields

$$ 90f^{\frac{1}{2}}f_{\zeta }-16\zeta f_{\zeta }-16\eta f_{\eta }-16 \omega f_{\omega }+3\delta _{0}^{2}f_{\zeta \zeta \zeta }+3f_{\zeta \omega \omega }+3f_{\zeta \eta \eta }-64f=0. $$

Case VI. \(\delta _{1}=\delta _{2}=\delta _{3}=\delta _{4}=\delta _{5}=0\), \(\delta _{0}\neq 0\)

The similarity variables of Eq. (2) are given by

$$\begin{aligned}& \zeta =\frac{z}{y}, \\& \eta =\frac{t}{y^{3}}, \\& \omega =\frac{kt+x}{y}, \\& u =f(\zeta ,\eta ,\omega )y^{-4}. \end{aligned}$$

Thus, Eq. (2) is reduced to

$$\begin{aligned}& 16f_{\eta }+30f_{\omega }+30f^{\frac{1}{2}}f_{\omega }+(1+ \omega )^{2}f_{\omega \omega \omega } +2\zeta \omega f_{\zeta \omega \omega }+\bigl(1+ \zeta ^{2}\bigr)f_{\zeta \zeta \omega } \\& \quad {}+12\omega f_{\omega \omega }+12\zeta f_{\zeta \omega }+6\eta \omega f_{\eta \omega \omega }+42\eta f_{\eta \omega }+9\eta ^{2}f_{\eta \eta \omega }=0. \end{aligned}$$

Remark 1

In addition to PDEs with constant coefficients, the direct symmetry method can also be applied to investigate variable-coefficient PDEs. For instance, one can apply the direct symmetry method to variable-coefficient reduced equation (13) to further reduce the mZK equation.

In fact, it is not difficult to see that the symmetry of Eq. (13) satisfies

$$ 16(\sigma _{\omega }-k\sigma _{\eta })+15f^{-\frac{1}{2}}\sigma f_{ \eta }+30f^{\frac{1}{2}}\sigma _{\eta }+\sigma _{\eta \eta \eta }+4 \zeta \sigma _{\zeta \zeta \eta }+4\sigma _{\zeta \eta }=0, $$

where we set

$$ \sigma (\zeta ,\eta ,\omega ,f)=a(\zeta ,\eta ,\omega )f_{\zeta }+b( \zeta ,\eta ,\omega )f_{\eta }+c(\zeta ,\eta ,\omega )f_{\omega }+e( \zeta ,\eta ,\omega )f+g(\zeta ,\eta ,\omega ), $$

where a, b, c, e, and g are functions to be found later. To ensure that the expansion of Eq. (17) is true for an arbitrary solution f, we must take the coefficients of f and its derivatives to be zero. Hence we have

$$ c_{{\zeta }}=c_{\eta }=0. $$

According to the same procedure, it leads to

$$ a_{\eta }=a_{\omega }=0, \qquad b_{{\zeta }}=0, \qquad e_{\eta }=e_{\omega }=0,\qquad b_{\eta \eta }=0,\qquad g=0. $$

Hence, Eq. (17) is reduced to

$$\begin{aligned}& (128\zeta e_{\zeta \zeta }+512b_{\omega }+512kc_{ \omega }+128e_{\zeta }-512kb_{\eta })f^{\frac{3}{2}}f_{\eta } \\& \quad {}+(96b_{\eta }-32c_{\omega })f^{\frac{3}{2}}f_{\eta \eta \eta }+(960b _{\eta }-960c_{\omega }+480e)f^{2}f_{\eta } \\& \quad {}+(-128a-128\zeta c_{\omega }+256\zeta a_{\zeta }+128\zeta b_{\eta })f ^{\frac{3}{2}}f_{\zeta \zeta \eta } \\& \quad {}+(128a_{\zeta }+128b_{\eta }+256\zeta e_{\zeta }-128c_{\omega }+128 \zeta a_{\zeta \zeta })f^{\frac{3}{2}}f_{\zeta \eta }=0. \end{aligned}$$

From Eqs. (19)–(20), we obtain

$$\begin{aligned}& \begin{aligned}&a=\frac{2}{3}\lambda _{1}\zeta ,\qquad b= \frac{1}{3}\lambda _{1}\eta - \frac{2}{3}k\lambda _{1}\omega +\lambda _{2}, \\ & c=\lambda _{1}\omega + \lambda _{3},\qquad e= \frac{4}{3}\lambda _{1},\qquad g=0, \end{aligned} \end{aligned}$$

where \(\lambda _{1}\), \(\lambda _{2}\), and \(\lambda _{3}\) are arbitrary constants. Thus we get a symmetry of Eq. (13) as follows:

$$ \sigma =\frac{2}{3}\lambda _{1}\zeta f_{\zeta }+\biggl( \frac{1}{3}\lambda _{1}\eta -\frac{2}{3}k\lambda _{1}\omega +\lambda _{2}\biggr)f_{\eta }+( \lambda _{1}\omega +\lambda _{3})f_{\omega }+ \frac{4}{3}\lambda _{1}f. $$

The corresponding characteristic equation of \(\sigma =0\) is

$$ \frac{d\zeta }{\frac{2}{3}\lambda _{1}\zeta }=\frac{d\eta }{ \frac{1}{3}\lambda _{1}\eta -\frac{2}{3}k\lambda _{1}\omega +\lambda _{2}}=\frac{d\omega }{\lambda _{1}\omega +\lambda _{3}}=\frac{df}{- \frac{4}{3}\lambda _{1}f}. $$

From Eq. (23) we can obtain the following similarity variables ϕ, φ, and F:

$$ \begin{aligned}&\phi =(\lambda _{1}\omega +\lambda _{3})/ \zeta ^{\frac{3}{2}}\lambda _{1},\qquad \varphi =\bigl[(k\omega +\eta ) \lambda _{1}+3k\lambda _{3}+3\lambda _{2}\bigr]/ \zeta ^{\frac{1}{2}}\lambda _{1}, \\ & F(\phi ,\varphi )=f\zeta ^{2}. \end{aligned} $$

By using the obtained similarity variables, we obtain the further reduced equation of Eq. (13)

$$\begin{aligned}& 11\varphi F_{\varphi \varphi }+\bigl(\varphi ^{2}+1\bigr)F_{ \varphi \varphi \varphi }+6{ \phi \varphi } F_{\phi \varphi \varphi }+16F_{\phi }+25F_{\varphi }+30F_{\varphi } \sqrt{F} \\& \quad {}+9\phi ^{2}F_{\phi \phi \varphi }+39\phi F_{\phi \varphi }=0, \end{aligned}$$

which is a \((1+ 1)\)-dimensional nonlinear PDE. It is easy to find that the symmetry of Eq. (25) satisfies the following equation:

$$\begin{aligned}& 11\varphi \sigma _{\varphi \varphi }+\bigl(\varphi ^{2}+1\bigr) \sigma _{\varphi \varphi \varphi }+6{\phi \varphi } \sigma _{\phi \varphi \varphi }+16\sigma _{\phi }+25\sigma _{\varphi }+30 \sigma _{\varphi }\sqrt{F} \\& \quad {}+15F_{\varphi }F^{-\frac{1}{2}}\sigma +9\phi ^{2} \sigma _{\phi \phi \varphi }+39\phi \sigma _{\phi \varphi }=0. \end{aligned}$$

Using the same direct symmetry method, we can reduce Eq. (25) to an ordinary differential equation (ODE). Here we omit them.

Remark 2

It is shown that \((2+ 1)\)-dimensional Eq. (13) can be reduced to \((1+ 1)\)-dimensional partial differential equation Eq. (25). Similarly, Eqs. (14)–(16) can be discussed by the same method. In theory, Eq. (25) can be further reduced to an ODE. This problem will be discussed in our future work.

4 Discussion of the solutions of mZK equation

One of the main functions for finding symmetry reductions is to use them to seek exact solutions. There are many effective direct methods that can be used to solve the obtained reduced equations such as the tanh method [28], the homogeneous balance method [29], the Horota bilinear method [30], the Darboux transformation method [31], and so on (see [32,33,34,35,36,37,38,39] for reference). Here, we use the traveling wave transformation to transform reduced equations (11) and (12) to ODEs for obtaining exact solutions. Let

$$ \theta =l\zeta +m\eta +n\omega , $$

where l, m, and n are nonzero constants. Then Eq. (12) can be transformed into an ODE as follows:

$$ A_{1}f^{\prime }+A_{2}f^{\frac{1}{2}}f^{\prime }+A_{3}f^{{\prime \prime \prime }}=0, $$

where \(f^{\prime }=df/d\theta \), \(\theta =l(\delta _{1}x-\delta _{2}t)+m( \delta _{1}y-\delta _{4}t)+n(\delta _{1}z-\delta _{5}t)\), \(A_{1}=-16l(\delta _{2}+k\delta _{1})-16m\delta _{4}-16n\delta _{5}\), \(A_{2}=30\delta _{1}l\), and \(A_{3}=\delta _{1}^{3}(l^{3}+lm^{2}+\ln ^{2})\). The same procedure can be followed, then reduced equation (11) is also transformed into Eq. (28), where

$$\begin{aligned}& \theta =l(\delta _{{4}}x-\delta _{2}y)+m(\delta _{{5}}x-\delta _{{2}}z)+nt, \end{aligned}$$
$$\begin{aligned}& A_{1} =16(n-k\delta _{{4}}l-k\delta _{{5}}m), \end{aligned}$$
$$\begin{aligned}& A_{2} =30\delta _{{4}}l+30\delta _{{5}}m , \end{aligned}$$
$$\begin{aligned}& A_{3} =\bigl(\delta _{4}^{3}+\delta _{2}^{2}\delta _{4}\bigr)l^{3}+\bigl(3 \delta _{4} ^{2}\delta _{5}+\delta _{2}^{2}\delta _{5}\bigr)l^{2}m +\bigl(3 \delta _{4}\delta _{5} ^{2}+\delta _{2}^{2}\delta _{4}\bigr)lm^{2} \\& \hphantom{A_{3} =}{}+\bigl(\delta _{5}^{3}+\delta _{2}^{2}\delta _{5}\bigr)m^{3} . \end{aligned}$$

Integrating Eq. (28) with respect to the independent variable θ yields that

$$ A_{1}f+\frac{2}{3}A_{2}f^{\frac{3}{2}}+A_{3}f^{{\prime \prime }}+A _{4}=0, $$

where \(A_{4 }\) is the integral scalar. Multiplying Eq. (33) by \(f^{\prime }\) and then integrating both sides, we have

$$ A_{1}f^{2}+\frac{8}{15}A_{2}f^{\frac{5}{2}}+A_{3}f^{{\prime }2}+2A _{4}f+A_{5}=0, $$

where \(A_{5 }\) is the integral scalar. Using the transformation \(f^{\frac{1}{2}}=g\), we obtain

$$ A_{1}g^{2}+\frac{8}{15}A_{2}g^{3}+4A_{3}g^{{\prime }2}+2A_{4}+A_{5}/g ^{2}=0. $$

By solving the above equation, one can obtain the following solutions which are expressed in the form of trigonometric functions, hyperbolic functions, and Weierstrass function:

$$\begin{aligned}& g_{1}(\theta ) =-\frac{15}{8}\frac{A_{1}}{A_{2}}\sec ^{2} \biggl( \frac{\sqrt{A _{1}A_{3}} }{4A_{3}}{\theta } \biggr), \qquad A_{4}=A_{5}=0,\qquad A_{1}A_{3}>0, \\& g_{2}(\theta ) =-\frac{15}{8}\frac{A_{1}}{A_{2}}\csc ^{2} \biggl( \frac{\sqrt{A _{1}A_{3}}\theta }{4A_{3}}{\theta } \biggr) ,\qquad A_{4}=A _{5}=0, \qquad A_{1}A_{3}>0, \\& g_{3}(\theta ) =-\frac{15}{8}\frac{A_{1}}{A_{2}} \operatorname{sech}^{2} \biggl( \frac{\sqrt{-A _{1}A_{3}}}{4A_{3}}{\theta } \biggr) , \qquad A_{4}=A_{5}=0,\qquad A_{1}A_{3}< 0, \\& g_{4}(\theta ) =\frac{15}{8}\frac{A_{1}}{A_{2}}\operatorname{csch}^{2} \biggl( \frac{\sqrt{-A _{1}A_{3}}}{4A_{3}}{\theta } \biggr) ,\qquad A_{4}=A_{5}=0,\qquad A_{1}A_{3}< 0, \\& g_{5}(\theta ) =\frac{1}{\sqrt[3]{-A_{2}}}\rho \biggl( \frac{ \sqrt{30}}{30} \frac{\sqrt{A_{3}(-A_{2})^{\frac{2}{3}}}}{A_{3}} {\theta } ,0,15A_{4} \biggr) ,\qquad A_{1}=A_{5}=0, \end{aligned}$$

where θ is given by Eq. (29), and ρ is the Weierstrass P function. Reverting back to the original variables, one can obtain the corresponding exact solutions of mZK equation (2)

$$\begin{aligned}& u_{1}(x,y,z,t) = \frac{225}{64}\frac{A_{1}^{2}}{A_{2}^{2}}\sec ^{4} \biggl( \frac{\sqrt{A_{1}A_{3}}}{4A_{3}}\theta \biggr),\qquad A_{1}A_{3}>0 , \\& u_{2}(x,y,z,t) = \frac{225}{64}\frac{A_{1}^{2}}{A_{2}^{2}}\csc ^{4} \biggl( \frac{\sqrt{A_{1}A_{3}}}{4A_{3}}\theta \biggr),\qquad A_{1}A_{3}>0 , \\& u_{3}(x,y,z,t) = \frac{225}{64}\frac{A_{1}^{2}}{A_{2}^{2}} \operatorname{sech}^{4} \biggl( \frac{\sqrt{-A_{1}A_{3}}}{4A_{3}}\theta \biggr),\qquad A_{1}A _{3}< 0, \\& u_{4}(x,y,z,t) = \frac{225}{64}\frac{A_{1}^{2}}{A_{2}^{2}}\operatorname{csch}^{4} \biggl( \frac{\sqrt{-A_{1}A_{3}}}{4A_{3}}\theta \biggr),\qquad A_{1}A _{3}< 0, \\& u_{5}(x,y,z,t) = \frac{1}{\sqrt[3]{A_{2}^{2}}}\rho ^{2} \biggl( \frac{ \sqrt{30}}{30}\frac{\sqrt{A_{3}(-A_{2})^{\frac{2}{3}}}}{A_{3}} \theta ,0,15A_{4} \biggr),\qquad A_{1}=0, \end{aligned}$$

where θ, \(A_{1}\), \(A_{2}\), and \(A_{3}\) are given by Eqs. (29)–(32).

Choosing \(l=m=n=\delta _{2}=\delta _{4}=\delta _{5}=1\) in \(u_{3}(x,y,z,t)\), we have the following solitary wave solution:

$$ u(x,y,z,t)=\frac{1}{4}\operatorname{sech}^{4}( \frac{\sqrt{3}}{6}(2x-y-z+t) $$

of the mZK equation with \(k=1\). The evolutions of solution (34) are given in Fig. 1, Fig. 2, and Fig. 3, respectively.

Figure 1
figure 1

The solution of the mZK with \(k=1\), \(z=2x\)

Figure 2
figure 2

The solution of the mZK with \(k=1\), \(t=-2x\)

Figure 3
figure 3

The solution of the mZK with \(k=1\), \(t=z\)

At the end of this section, let us consider the obtained reduced equation (15). By using (27), it can be transformed into the following ODE:

$$ 90lf^{\frac{1}{2}}f^{\prime }-16\theta f^{\prime }+3 \bigl( \delta _{0}^{2}l^{3}+lm^{2}+n^{2}l \bigr) f^{\prime \prime \prime }-64f=0, $$


$$\begin{aligned}& \begin{aligned}&f^{\prime }=df/d\theta , \\ &\theta = \bigl( l(\delta _{0}x+\delta _{0}kt+3k \delta _{1})+my+nz \bigr) / ( \delta _{0}t+\delta _{1} ) ^{1/3}. \end{aligned} \end{aligned}$$

It is not difficult to find that Eq. (35) has the following exact solution:

$$ f=A\theta ^{-4}, $$

where A, l, m, and n satisfy the relationship \(A^{1/2}l+\delta _{0}^{2}l^{3}+lm^{2}+n^{2}l=0\). Therefore the mZK equation (2) possesses an exact solution as follows:

$$ u_{6}(x,y,z,t)=(\delta _{0}t+\delta _{1})^{-\frac{4}{3}}A \theta ^{-4}, $$

where θ is given in Eq. (36).

5 Conclusions

By implementing the direct symmetry method, we have determined the symmetry σ and the corresponding vector field \(\mathcal{V}\) of the \((3+ 1)\)-dimensional mZK equation. In view of the compatibility of \(\sigma =0\) and the mZK equation, we have got six \((2+ 1)\)-dimensional symmetry reduction equations. Then, in terms of the obtained lower dimensional reduced equations, we have found exact solutions of the mZK equation including trigonometric function solutions, hyperbolic function solutions, and Weierstrass function solutions. Time delays and stochastic disturbances are often unavoidable in practical systems [40, 41]. Future study will focus on stochastic Zakharov-Kuznetsov equations with time delays.


  1. Kuznetsov, E., Zakharov, V.: On three dimensional solitons. Sov. Phys. JETP 39, 285–286 (1974)

    Google Scholar 

  2. Yan, Z., Liu, X.: Symmetry and similarity solutions of variable coefficients generalized Zakharov–Kuznetsov equation. Appl. Math. Comput. 180, 288–294 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M.: The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13, 1039–1047 (2008)

    Article  MathSciNet  Google Scholar 

  4. Zhen, H., Tian, B., Zhong, H., Jiang, Y.: Dynamic behaviors and soliton solutions of the modified Zakharov–Kuznetsov equation in the electrical transmission line. Comput. Math. Appl. 68, 579–588 (2014)

    Article  Google Scholar 

  5. Seadawy, A.R.: Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 21, 052107 (2014)

    Article  Google Scholar 

  6. Shivamoggi, B.K.: Nonlinear ion-acoustic waves in a magnetized plasma and the Zakharov–Kuznetsov equation. J. Plasma Phys. 41, 83–88 (1989)

    Article  Google Scholar 

  7. Nawaz, T., Yıldırım, A., Mohyud-Din, S.T.: Analytical solutions Zakharov–Kuznetsov equations. Adv. Powder Technol. 24, 252–256 (2013)

    Article  Google Scholar 

  8. Munro, S., Parkes, E.: The derivation of a modified Zakharov–Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62, 305–317 (1999)

    Article  Google Scholar 

  9. Schamel, H.: A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377–387 (1973)

    Article  Google Scholar 

  10. Munro, S., Parkes, E.: Stability of solitary-wave solutions to a modified Zakharov–Kuznetsov equation. J. Plasma Phys. 64, 411–426 (2000)

    Article  Google Scholar 

  11. Munro, S., Parkes, E.: The stability of obliquely-propagating solitary-wave solutions to a modified Zakharov–Kuznetsov equation. J. Plasma Phys. 70, 543–552 (2004)

    Article  Google Scholar 

  12. Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput. Math. Appl. 71, 201–212 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985)

    Book  Google Scholar 

  14. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (2000)

    MATH  Google Scholar 

  15. Nadjafikhah, M., Ahangari, F.: Symmetry analysis and similarity reduction of the Korteweg–de Vries–Zakharov–Kuznetsov equation. Asian-Eur. J. Math. 5, 1250006 (2012)

    Article  MathSciNet  Google Scholar 

  16. Dong, H., Chen, T., Chen, L., Zhang, Y.: A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations. J. Nonlinear Sci. Appl. 9, 5107–5118 (2016)

    Article  MathSciNet  Google Scholar 

  17. Bluman, G.W., Cole, J.D.: The general similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  MATH  Google Scholar 

  18. Clarkson, P.A., Kruskal, M.D.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MathSciNet  Google Scholar 

  19. Yan, Z., Liu, X.: Symmetry reductions and explicit solutions for a generalized Zakharov–Kuznetsov equation. Commun. Theor. Phys. 45, 29 (2006)

    Article  MathSciNet  Google Scholar 

  20. Moleleki, L.D., Johnpillai, A.G., Khalique, C.M.: Symmetry reductions and exact solutions of a variable coefficient \((2+ 1)\)-Zakharov–Kuznetsov equation. Math. Comput. Appl. 17, 132–139 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Cherniha, R., Davydovych, V., Muzyka, L.: Lie symmetries of the Shigesada–Kawasaki–Teramoto system. Commun. Nonlinear Sci. Numer. Simul. 45, 81–92 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jannelli, A., Ruggieri, M., Speciale, M.: Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries. Nonlinear Dyn. 92, 543–555 (2018)

    Article  Google Scholar 

  23. Zhou, J., Wang, Y., Wang, Y., Yan, Z., Wang, Z.: New similarity solutions of a generalized variable-coefficient Gardner equation with forcing term. Symmetry 10, 112 (2018)

    Article  Google Scholar 

  24. Baleanu, D., Inc, M., Yusuf, A., Aliyu, A.I.: Space-time fractional Rosenou–Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws. Adv. Differ. Equ. 2018, 46 (2018)

    Article  MathSciNet  Google Scholar 

  25. Xu, B., Liu, X.: Classification, reduction, group invariant solutions and conservation laws of the Kardner-KP equation. Appl. Math. Comput. 215, 1244–1250 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Liu, X., Wang, G.: Symmetry reductions and exact solutions of the \((2+ 1)\)-dimensional Jaulent–Miodek equation. Appl. Math. Comput. 219, 911–916 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Tian, C.: Symmetries and group-invariant solutions of differential equations. Appl. Math. J. Chin. Univ. 9, 319–324 (1994)

    Article  MathSciNet  Google Scholar 

  28. Lou, S., Huang, G., Ruan, H.: Exact solitary waves in a convecting fluid. J. Phys. A 24, 587–590 (1991)

    Article  MathSciNet  Google Scholar 

  29. Wang, M., Zhou, Y., Li, Z.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  Google Scholar 

  30. Ma, W., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  MathSciNet  Google Scholar 

  31. Li, X., Zhao, Q.: The Darboux transformation associated with two-parameter lattice soliton equation. Commun. Nonlinear Sci. Numer. Simul. 14, 2956–2961 (2009)

    Article  MathSciNet  Google Scholar 

  32. Fang, Y., Dong, H., Hou, Y., Kong, Y.: Frobenius integrable decompositions of nonlinear evolution equations with modified term. Appl. Math. Comput. 226, 435–440 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Dong, H., Zhao, K., Yang, H., Li, Y.: Generalised \((2+ 1)\)-dimensional super MKdV hierarchy for integrable systems in soliton theory. East Asian J. Appl. Math. 5, 256–272 (2015)

    Article  MathSciNet  Google Scholar 

  34. Inc, M., Kilic, B., Baleanu, D.: Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients. Optik 127, 1056–1058 (2016)

    Article  Google Scholar 

  35. Yang, X., Tenreiro, M., Baleanu, D., Cattani, C.: On exact traveling-wave solutions for local fractional Korteweg–de Vries equation. Chaos, Interdiscip. J. Nonlinear Sci. 26, 084312 (2016)

    Article  MathSciNet  Google Scholar 

  36. Jaradat, A., Noorani, M.S.M., Alquran, M., Jaradat, H.M.: Construction and solitary wave solutions of two-mode higher-order Boussinesq–Burger system. Adv. Differ. Equ. 2017, 376 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zhao, H., Ma, W.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    Article  MathSciNet  Google Scholar 

  38. Huang, B., Xie, S.: Searching for traveling wave solutions of nonlinear evolution equations in mathematical physics. Adv. Differ. Equ. 2018, 29 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wang, Y., Wang, H., Dong, H., Zhang, H., Temuer, C.: Interaction solutions for a reduced extended \((3+ 1)\)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 92, 487–497 (2018)

    Article  Google Scholar 

  40. Zhou, J., Park, J.H., Ma, Q.: Non-fragile observer-based \(\mathcal{H_{\infty}}\) control for stochastic time-delay systems. Appl. Math. Comput. 291, 69–83 (2016)

    MathSciNet  Google Scholar 

  41. Zhou, J., Wang, Y., Zheng, X., Wang, Z., Shen, H.: Weighted \(\mathcal{H_{\infty}}\) consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies. Nonlinear Dyn. (2019, in press).

    Article  Google Scholar 

Download references


This research was supported by the National Natural Science Foundation of China (grant numbers 61503002 and 61573008) and the Natural Science Foundation of the Anhui Higher Education Institutions (grant numbers KJ2018ZD007 and KJ2017A064).

Author information

Authors and Affiliations



All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianping Zhou.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Teng, Q., Tai, W. et al. Symmetry reductions of the \((3+1)\)-dimensional modified Zakharov–Kuznetsov equation. Adv Differ Equ 2019, 77 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Zakharov–Kuznetsov equation
  • Direct symmetry method
  • Symmetry reduction