- Research
- Open access
- Published:
Some dynamic inequalities on time scales and their applications
Advances in Difference Equations volume 2019, Article number: 130 (2019)
Abstract
This paper is devoted to the study of Gronwall–Bellman-type inequalities on an arbitrary time scale \(\mathbb{T}\). We investigate some new explicit bounds of a certain class of nonlinear retarded dynamic inequalities of Gronwall–Bellman type on time scales. These inequalities extend some known dynamic inequalities on time scales. We also generalize and unify some continuous inequalities and their corresponding discrete analogues. To illustrate the benefits of our work, we present some applications of these results. The main results will be proved by using some analysis techniques and a simple consequence of the Keller’s chain rule on time scales.
1 Introduction
In 1919, Gronwall [1] discovered a celebrated inequality. He proved that if ϖ is a continuous function defined on the interval \(D=[a,a +h]\) and
where a, ξ, ζ, and h are nonnegative constants, then
This inequality has been very important in the theory of differential equations and difference equations. After that, in 1943, Bellman [2] proved a fundamental inequality, as a generalization for Gronwall’s inequality (1.1): If ϖ and f are continuous nonnegative functions defined on \([a,b]\), and c is a nonnegative constant, then the inequality
implies that
Bellman [2] gave a generalization of (1.2). He proved that if ϖ, f, \(a, \in C(\mathbb{R}_{+},\mathbb {R}_{+})\) and a is a nondecreasing function, then the inequality
implies
The celebrated Gronwall–Bellman inequality [3] in its discrete form asserts that if \(\varpi(n)\), \(a(n)\), and \(b(n)\) are nonnegative sequences defined for \(n\in\mathbb{N}_{0}\) and \(a(n)\) is a nondecreasing sequence for \(n\in\mathbb{N}_{0}\) and if
then
Gronwall–Bellman-type inequalities and their generalizations have received much attention from many authors (see [4,5,6,7,8,9]). For example, Pachpatte [8] established the following further generalization of the Gronwall–Bellman inequality:
for \(t\in(0,\infty)\).
Ferreira et al. [5] established the following inequality:
Retarded integral inequalities play an important role in the study of various types of retarded differential and integral equations (see [10,11,12,13]). El-Owaidy, Abdeldaim, and El-Deeb [13] established new retarded nonlinear integral inequalities
and
During the past ten years, many authors have studied several inequalitiesto achieve several objects (see [8, 11, 13,14,15,16,17,18,19], and the references therein).
As a unification of the continuous version inequality (1.3) and the discrete version inequality (1.4), Bohner and Peterson [20] proved that if χ and δ are right-dense continuous functions and \(\gamma\geq0\) is a regressive right-dense continuous function, then
implies
where \(\mathbb{T}\) is an arbitrary closed subset of the real numbers \(\mathbb{R}\) which is called a time scale. Stefan Hilger is the first to discover the theory of time scales in his PhD thesis [21]. For more information and details on the time scales, we refer the reader to the books [22, 23]. Many dynamic inequalities have been studied by different authors during the past decade (see [20, 24,25,26,27,28,29,30,31,32,33,34,35,36] and the references therein). Throughout this paper, the knowledge and understanding of the time scales and time scale notion are assumed.
Li [31] extended inequality (1.5) to time scales as follows:
Feng et al. [37] generalized inequality (1.6) to time scales as follows:
In the following, we present the basic lemmas needed in the proof of our main results.
Lemma 1.1
(See [31])
If \(\pi\in\Re\) and \(t\in \mathbb{T}\), then the exponential function \(e_{\pi}(t,t_{0})\) is a unique solution of the following initial value problem:
Lemma 1.2
(See [31])
Let \(t_{0}\in\mathbb{T}^{\kappa}\) and \(\varsigma:\mathbb{T} \times \mathbb{T}^{\kappa}\rightarrow\mathbb{R}\) be continuous at \((t,t)\), where \(t>t_{0}\) and \(t\in\mathbb{T}^{\kappa}\). Assume that \(\varsigma ^{\Delta}(t,\cdot)\) is rd-continuous on \([t_{0},\sigma(t)]_{\mathbb{T}}\). Suppose that, for any \(\varepsilon> 0\), there exists a neighborhood U of t, independent of \(\lambda\in[t_{0},\sigma (t)]_{\mathbb{T}}\), such that
where \(\varsigma^{\Delta}\) denotes the derivative of ς with respect to the first variable. Then
yields
Lemma 1.3
(See [20, p. 28, Thm. 1.76])
If \(\varpi^{\Delta}(t)\geq0\), then \(\varpi(t)\) is nondecreasing.
Lemma 1.4
(See [20, p. 32, Thm. 1.90]. Chain rule)
Let \(\varpi: \mathbb{R}\rightarrow\mathbb{R}\) be continuously differentiable and suppose \(\varrho: \mathbb{T}\rightarrow\mathbb {R}\) is delta differentiable. Then \(\varpi\circ\varrho: \mathbb {T}\rightarrow\mathbb{R}\) is delta differentiable, and
Lemma 1.5
(See [20, p. 9, Exercise 1.23])
Assume that \(\varpi: \mathbb{T}\rightarrow\mathbb{R}\) is a delta differentiable function at \(x\in\mathbb{T}^{\kappa}\). Then
Lemma 1.6
(See [20, p. 5, Thm. 1.16])
Assume that \(\varpi: \mathbb{T}\rightarrow\mathbb{R}\) is a delta differentiable function at \(x\in\mathbb{T}^{\kappa}\). Then
Lemma 1.7
(See [38, p. 423, Lemma 2.5])
Let \(a,b\in\mathbb{T}\) and \(p>1\). Assume that \(\varpi: \mathbb {T}\rightarrow\mathbb{R}\) is delta differentiable at \(x\in\mathbb {T}^{\kappa}\) and nonnegative increasing function on \([a,b]_{\mathbb {T}}\). Then
In this paper, we investigate some delay dynamic integral inequalities on time scales, which extend some known retarded dynamic inequalities on time scales, also unify and extend some continuous inequalities and their corresponding discrete analogues in the literature. The paper is organized as follows: In Sect. 2, we state and prove the main results. In Sect. 3, we present several applications to study some qualitative properties of the solutions of certain retarded dynamic equations.
2 Main results
This section states and proves our results. Throughout this paper, we always assume that \(t_{0}\in\mathbb{T}\) and \(\mathbb{T}_{0}=[t_{0},\infty )\cap\mathbb{T}\).
Theorem 2.1
Suppose that \(u, a\in C_{\mathrm{rd}}(\mathbb{T}_{0},\mathbb{R^{+}})\), a is nondecreasing, \(g(t,s)\), \(g^{\Delta_{t}}(t,s)\), \(h(t,s)\), \(h^{\Delta _{t}}(t,s)\in C_{\mathrm{rd}}(\mathbb{T}_{0}\times\mathbb{T}_{0},\mathbb {R^{+}})\), \(\omega_{1}\), \(\omega_{2}\in C(\mathbb{R^{+}},\mathbb{R^{+}})\) are nondecreasing, \(\tau(t)\in(\mathbb{T}_{0},\mathbb{T})\) with \(\tau (t)< t\), \(-\infty<\alpha=\inf\{\tau(t), t\in\mathbb{T}_{0}\}\leq t_{0}\), and \(\phi\in C_{\mathrm{rd}}([\alpha,t_{0}]\cap\mathbb{T},\mathbb {R^{+}})\). If for \(t\in\mathbb{T}_{0}\), u satisfies the inequality:
with the initial condition
then
with
where G, H are increasing bijective functions defined by
Proof
Fixing an arbitrary number \(T^{*}\in\mathbb{T}_{0}\), for \(t\in [t_{0},T^{*}]\cap\mathbb{T}\), we define the function
Clearly, ν is a nonnegative nondecreasing function, and we have
Therefore, for \(t\in[t_{0},T^{*}]\cap\mathbb{T}\), if \(\tau(t)\geq t_{0}\), then \(\tau(t)\in[t_{0},T^{*}]\cap\mathbb{T}\), and from (2.7) we obtain
On the other hand, if \(\tau(t)\leq t_{0}\), then, using the initial condition (2.2), we get
So, combining (2.8) and (2.9), we have
Moreover, from (2.6), Lemma 1.2, and (2.10) we get
which implies
Integrating (2.12) from \(t_{0}\) to t yields
Since \(\nu(t_{0})=a(T^{*})\) and G is increasing, from (2.13) we have
For brevity, let
and hence
Then
Using Lemma 1.2 and (2.15), we obtain
which implies
Integrating (2.18) from \(t_{0}\) to t yields
from which it follows that
From (2.9), (2.16), and (2.19) we obtain
Taking \(t=T^{*}\) in (2.20) yields
Since \(T^{*}\in\mathbb{T}_{0}\) is chosen arbitrarily, we obtain the desired inequality after substituting \(T^{*}\) with t into (2.21). This completes the proof. □
Remark 2.2
It is interesting to note that, in particular, if we put \(\omega _{1}(u)=u^{p}\) and \(g(t,s)=0\) in Theorem 2.1, then Theorem 2.1 reduces to [37, Thm. 3.1]. If also \(\omega_{1}(u)=u^{p}\), \(g(t,s)=0\), and \(h(t,s)=b(t)f(s)\) in Theorem 2.1, then Theorem 2.1 reduces to [37, Thm. 3.2].
Theorem 2.1 unifies some known continuous and discrete inequalities in the literature as shown in the following remarks.
Remark 2.3
If we put \(\mathbb{T}=\mathbb{R}\), \(\omega_{1}(u)=u^{p}\), \(\omega _{2}(u)=u^{q}\), \(g(t,s)=f(s)\), \(h(t,s)=h(s)\), \(t_{0}=0\), and \(a(t)=u_{0}\) (any constant) in Theorem 2.1, then Theorem 2.1 reduces to [7, Thm. 3.1].
Remark 2.4
If we put \(\mathbb{T}=\mathbb{R}\), \(\omega_{1}(u)=u\), \(g(t,s)=0\), \(t_{0}=0\) in Theorem 2.1, then Theorem 2.1 reduces to [39, Thm. 2.1]. If furthermore \(h(t,s)=f_{1}(t)f_{2}(s)\) in Theorem 2.1, then Theorem 2.1 reduces to [39, Thm. 2.2].
Remark 2.5
If we take \(\mathbb{T}=\mathbb{R}\), \(\omega_{1}(u)=u^{p}\), \(g(t,s)=0\), \(t_{0}=0\), \(\tau(t)=t\), and \(h(t,s)=b(t)f(s)\) in Theorem 2.1, then Theorem 2.1 reduces to [8, Thm. 2(\(b_{3}\))]. If \(\mathbb{T}=\mathbb{Z}\), \(\omega_{1}(u)=u^{p}\), \(g(t,s)=0\), \(t_{0}=0\), \(\tau (t)=t\), and \(h(t,s)=b(t)f(s)\) in Theorem 2.1, then Theorem 2.1 reduces to [8, Thm. 4(\(d_{3}\))].
Theorem 2.6
Let u, a, τ, \(\omega_{1}\), \(\omega_{2}\), g be the same as in Theorem 2.1, and let \(f,p\in C_{\mathrm{rd}}(\mathbb{T}_{0},\mathbb {R^{+}})\). If \(t\in\mathbb{T}_{0}\) and u satisfies the inequality
then
with
where G̃ and H̃ are increasing bijective functions defined by
Proof
Fixing an arbitrary number \(T^{*}\in\mathbb{T}_{0}\), for \(t\in [t_{0},T^{*}]\cap\mathbb{T}\), we define the function
Clearly, ν is a nonnegative nondecreasing function with \(\nu (t_{0})=a(T^{*})\), and we have
Similarly to (2.8)–(2.9), we get
Furthermore, from (2.26), by Lemma 1.2 and (2.28) we have
which implies
Integrating both sides of (2.30) from \(t_{0}\) to t yields
Since \(\nu(t_{0})=a(T^{*})\) and G̃ is an increasing function, from (2.31), we get
For brevity, let
and hence
Then
Using Lemma 1.2, (2.34), and (2.33), we have
From (2.35) we have
Integrating both sides of (2.36) from \(t_{0}\) to t yields
which implies
From (2.27), (2.34), and (2.37) we obtain
Taking \(t=T^{*}\) in (2.38) yields
Since \(T^{*}\in\mathbb{T}_{0}\) is chosen arbitrarily, we obtain the required result after substituting \(T^{*}\) with t into (2.39). This completes the proof. □
Remark 2.7
It is interesting to note that, as a particular case, if we put \(\omega _{1}(u)=u\), \(\omega_{2}(u)=1\), \(\tau(t)=t\), and \(a(t)=u_{0}\) (any constant) in Theorem 2.6, then the inequality given in Theorem 2.6 reduces to the inequality given in [31, Thm. 3.1].
Remark 2.8
In addition to the assumptions in Remark 2.7, if we put \(p(t)=0\) and \(g(t,s)=g(s)\) in Theorem 2.6, then we get [9, Thm. 1] as a particular case.
Theorem 2.6 unifies some known continuous and discrete inequalities in the literature as shown in the following remarks:
Remark 2.9
In addition to the assumptions in Remark 2.7, when \(p(t)=0\) in Theorem 2.6, if \(\mathbb{T}=\mathbb{R}\), then we can easily obtain the continuous version proved by Pachpatte [8, Thm. 2.1(\(a_{1}\))]. If \(\mathbb{T}=\mathbb{Z}\), then we can also get the discrete version proved by Pachpatte [8, Thm. 2.3(\(c_{1}\))].
Remark 2.10
It is interesting to note that if, in addition to the assumptions in Remark 2.7, we take \(g(t,s)=g(s)\) in Theorem 2.6 and \(\mathbb{T}=\mathbb{R}\), then we get the continuous version established by Pachpatte [8, Thm. 1.7.2(i)]. Furthermore, if \(\mathbb{T}=\mathbb{Z}\), then we can also get the discrete version inequality established by Pachpatte [8, Thm. 1.8.7].
Theorem 2.11
Let u, a, τ, \(\omega(u)\), h, g be defined as in Theorem 2.1. If \(t\in\mathbb{T}_{0}\) and u satisfies the retarded dynamic inequality
with the initial condition
then
with
where Ω and ϒ are increasing bijective functions defined by
Proof
Fixing an arbitrary number \(T^{*}\in\mathbb{T}_{0}\), for \(t\in [t_{0},T^{*}]\cap\mathbb{T}\), we define the function
Clearly, ν is a nonnegative nondecreasing function with \(\nu (t_{0}=a(T^{*}))\), and we have
Therefore, for \(t\in[t_{0},T^{*}]\cap\mathbb{T}\), if \(\tau(t)\geq t_{0}\), then \(\tau(t)\in[t_{0},T^{*}]\cap\mathbb{T}\), and from (2.46) we obtain
On the other hand, if \(\tau(t)\leq t_{0}\), then, using the initial condition (2.41), we get
So, combining (2.47) and (2.48), we have
Thus from (2.45), Lemma 1.2, and (2.49) we have
which implies
Integrating both sides of (2.51) from \(t_{0}\) to t yields
Since Ω is increasing, (2.52) implies
For brevity, let
and hence \(z(t_{0})=\varOmega(\nu(T^{*}))\).
Then
By Lemma 1.2, (2.54), and (2.55) we get
which implies
Integrating both sides of (2.56) from \(t_{0}\) to t yields
Since ϒ is increasing, (2.57) implies
Combining (2.46), (2.55), and (2.58), we obtain
Taking \(t=T^{*}\) in (2.38) yields
Since \(T^{*}\in\mathbb{T}_{0}\) is chosen arbitrarily, we obtain the required inequality after substituting \(T^{*}\) with t into (2.60). This completes the proof. □
Remark 2.12
If we take \(h(t,s)=f(s)\), \(g(s,\lambda)=g(\lambda)\), \(p=1\), \(a(t)=u_{0}\) (any constant), and \(\mathbb{T}=\mathbb{R}\) in Theorem 2.11, then the inequality given in Theorem 2.11 reduces to the inequality given in [10, Thm. 2.1].
Theorem 2.13
Letu, a, \(\omega_{1}\), \(\omega_{2}\), τ be defined as in Theorem 2.1, and let \(f, g \in C_{\mathrm{rd}}(\mathbb{T}_{0},\mathbb{R^{+}})\). If u satisfies the inequality
with the initial condition
where \(p>0\) and \(q\geq1\) are constants such that \(p+q>1\), then
with
where
Proof
Fixing an arbitrary number \(T^{*}\in\mathbb{T}_{0}\), for \(t\in [t_{0},T^{*}]\cap\mathbb{T}\), we define the function
which is a positive nondecreasing function with \(\nu(t_{0})=a(T^{*})\). Then we have
Therefore, for \(t\in[t_{0},T^{*}]\cap\mathbb{T}\), if \(\tau(t)\geq t_{0}\), then \(\tau(t)\in[t_{0},T^{*}]\cap\mathbb{T}\), and from (2.46) we obtain
On the other hand, if \(\tau(t)\leq t_{0}\), then, using the initial condition (2.62), we get
So, combining (2.68) and (2.69), we have
Thus, by Lemma 1.2 from (2.66) and (2.70) we get
where \(Y(t)=\nu^{q}(t)+\int_{t_{0}}^{t}g(s)\omega_{2}(\nu(s))\Delta s\) is nondecreasing. Hence \(Y(t_{0})=\nu^{q}(t_{0})= a^{q}(T^{*})\) and \(\nu ^{q}(t)\leq Y(t)\), but \(q\geq1\), and thus
for all \(t\in[t_{0},T^{*}]\cap\mathbb{T}\).
Since ν is nondecreasing, from \(Y(t)\), by Lemma 1.7 and Lemma 1.2 we see that
From (2.73), using (2.71), (2.72), and the inequality \(Y(t)\leq Y^{\sigma}(t)\), we get
\(t\in[t_{0},T^{*}]\cap\mathbb{T}\).
Since \(\omega_{2}(Y(t))>0\) for \(t>0\), from (2.74) we get
Taking \(t = s\) in the last inequality, integrating both sides from \(t_{0}\) to t, and using (2.64), we have
where \(\varPsi_{1}\) is defined by (2.64). From this inequality we have
Let \(Y_{1}(t)\) denote the function on the right-hand side of this inequality. Then
which is a positive nondecreasing function with \(Y_{1}(T^{*})=\varPsi _{2}(a^{q}(T^{*}))+\int_{t_{0}}^{T^{*}}g(s)\Delta s\), and
From (2.75), (2.76), and Lemma 1.2 we obtain
From this inequality, by the definition of \(\varPsi_{2}\) in (2.65), letting \(t=T^{*}\), we have
Since \(T^{*}\in\mathbb{T}_{0}\) is chosen, from (2.70), (2.72), (2.76), and (2.77) we get the required inequality in (2.63). This completes the proof. □
Remark 2.14
By taking \(\mathbb{T}=\mathbb{R}\) and \(a(t)=u_{0}\) (any constant) in Theorem 2.13 it is easy to observe that the inequality obtained in Theorem 2.13 reduces to the inequality obtained by Abdeldaim and El-Deeb in [13, Thm. 2.5].
Remark 2.15
If we put \(\omega_{1}(u)=\omega_{2}(u)=u\), \(a(t)=u_{0}\) (any constant), and \(\mathbb{T}=\mathbb{R}\) in Theorem 2.13, then we get the inequality obtained by Abdeldaim and El-Deeb in [13, Thm. 2.3].
Remark 2.16
If we take \(q=1\), \(a(t)=u_{0}\) (any constant), and \(\mathbb{T}=\mathbb {R}\) in Theorem 2.13, then the inequality given in Theorem 2.13 reduces to the inequality given in [40, Thm. 4].
3 Applications
In this section, we study the uniqueness and global existence of solutions for a class of nonlinear delay dynamic integral equations.
First, we consider the following delay dynamic equation on time scales:
with the initial condition
where \(u\in C_{\mathrm{rd}}(\mathbb{T}_{0}, \mathbb{R^{+}})\), \(\phi\in C_{\mathrm{rd}}([\alpha,t_{0}]\cap\mathbb{T})\), \(c\neq0\) is a constant, α, τ are defined as in Theorem 2.11, and \(E:\mathbb {T}^{2}_{0}\times\mathbb{R}^{2}\longrightarrow\mathbb{R}\) and \(F:\mathbb{T}^{2}_{0}\times\mathbb{R}\longrightarrow\mathbb{R}\) are continuous functions.
Theorem 3.1
Assume that u is a solution of the delay dynamic equation (3.1) with initial condition (3.2) and suppose that
where h, g, ω are defined as in Theorem 2.11. Then we get
with
where Ω̂, ϒ̂ are increasing bijective function, and
Proof
Clearly, the solution u of the delay dynamic equation (3.1) with initial condition (3.2) satisfies the equivalent delay dynamic integral equation
with initial condition (3.2). Using hypotheses (3.3) and (3.4), we get
with initial condition (3.2). Now a suitable application of Theorem 2.11 to (3.6) yields
This is the required estimate in (3.5). This completes the proof. □
Theorem 3.2
Assume that
where h, g, \(\omega_{1}\), and \(\omega_{2}\) are defined as in Theorem 2.11. Then the delay dynamic equation (3.1) with initial condition (3.2) has at most one solution.
Proof
Let \(u_{1}(t)\) and \(u_{2}(t)\) be two solutions of (3.1) with initial condition (3.2). Then we have
Thus from (3.8), using hypotheses (3.7), we get
Applying Theorem 2.11, we have \(|u_{1}(t)-u_{2}(t)|\equiv0\). Therefore \(u_{1}(t)=u_{2}(t)\). Then the delay dynamic equation (3.1) with initial condition (3.2) has at most one solution. This completes the proof. □
References
Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. (2) 20(4), 292–296 (1919)
Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)
Pachpatte, B.G.: On some fundamental integral inequalities and their discrete analogues. J. Inequal. Pure Appl. Math. 2(2), 1–13 (2001)
Rashid, M.H.M.: Explicit bounds on retarded Gronwall–Bellman inequality. Tamkang J. Math. 43(1), 99–108 (2012)
Ferreira, R.A.C., Torres, D.F.M.: Generalized retarded integral inequalities. Appl. Math. Lett. 22(6), 876–881 (2009)
Pachpatte, B.G.: Explicit bounds on certain integral inequalities. J. Math. Anal. Appl. 267(1), 48–61 (2002)
Abdeldaim, A., Yakout, M.: On some new integral inequalities of Gronwall–Bellman–Pachpatte type. Appl. Math. Comput. 217(20), 7887–7899 (2011)
Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Mathematics in Science and Engineering, vol. 197. Academic Press, San Diego (1998)
Wong, F.-H., Yeh, C.-C., Hong, C.-H.: Gronwall inequalities on time scales. Math. Inequal. Appl. 9(1), 75–86 (2006)
Abdeldaim, A., El-Deeb, A.A.-M.: On some generalizations of certain retarded nonlinear integral inequalities with iterated integrals and an application in retarded differential equation. J. Egypt. Math. Soc. 23(3), 470–475 (2015)
Abdeldaim, A., El-Deeb, A.A.-M.: Some new retarded nonlinear integral inequalities with iterated integrals and their applications in retarded differential equations and integral equations. J. Fract. Calc. Appl. 5(suppl. 3S), Paper no. 9 (2014)
Abdeldaim, A., El-Deeb, A.A.-M.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015)
Abdeldaim, A., El-Deeb, A.A.-M.: On some new nonlinear retarded integral inequalities with iterated integrals and their applications in integro-differential equations. Br. J. Math. Comput. Sci. 5(4), 479–491 (2015)
El-Deeb, A.A., Ahmed, R.G.: On some generalizations of certain nonlinear retarded integral inequalities for Volterra–Fredholm integral equations and their applications in delay differential equations. J. Egypt. Math. Soc. 25(3), 279–285 (2017)
Li, W.N., Zhang, Q., Qiu, F.: Some nonlinear delay discrete inequalities and their applications. Demonstr. Math. 39(4), 771–782 (2006)
Pachpatte, B.G.: On some new inequalities related to a certain inequality arising in the theory of differential equations. J. Math. Anal. Appl. 251(2), 736–751 (2000)
Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung. 7, 81–94 (1956)
El-Owaidy, H.M., Ragab, A.A., El-Deeb, A.A.-M., Abuelela, W.M.K.: On some new nonlinear integral inequalities of Gronwall–Bellman type. Kyungpook Math. J. 54(4), 555–575 (2014)
Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165(3), 599–612 (2005)
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser Boston, Boston (2001)
Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)
Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Boston (2003)
Bohner, M., Erbe, L., Peterson, A.: Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl. 301(2), 491–507 (2005)
Tian, Y., El-Deeb, A.A., Meng, F.: Some nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales. Discrete Dyn. Nat. Soc. 2018, Article ID 5841985 (2018)
El-Deeb, A.A., Cheung, W.-S.: A variety of dynamic inequalities on time scales with retardation. J. Nonlinear Sci. Appl. 11(10), 1185–1206 (2018)
El-Deeb, A.A., Elsennary, H.A., Nwaeze, E.R.: Generalized weighted Ostrowski, trapezoid and Grüss type inequalities on time scales. Fasc. Math. 60, 123–144 (2018)
Abdeldaim, A., El-Deeb, A.A., Agarwal, P., El-Sennary, H.A.: On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 41(12), 4737–4753 (2018)
El-Deeb, A.A., Elsennary, H.A., Cheung, W.-S.: Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 11(4), 444–455 (2018)
Saker, S.H., El-Deeb, A.A., Rezk, H.M., Agarwal, R.P.: On Hilbert’s inequality on time scales. Appl. Anal. Discrete Math. 11(2), 399–423 (2017)
Akin-Bohner, E., Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 6(1), Article 6 (2005)
Li, W.N.: Some Pachpatte type inequalities on time scales. Comput. Math. Appl. 57(2), 275–282 (2009)
Li, W.N.: Some new dynamic inequalities on time scales. J. Math. Anal. Appl. 319(2), 802–814 (2006)
Li, W.N., Han, M.: Bounds for certain nonlinear dynamic inequalities on time scales. Discrete Dyn. Nat. Soc. 2009, Article ID 897087 (2009)
Saker, S.H.: Some nonlinear dynamic inequalities on time scales and applications. J. Math. Inequal. 4(4), 561–579 (2010)
Anderson, D.R.: Dynamic double integral inequalities in two independent variables on time scales. J. Math. Inequal. 2(2), 163–184 (2008)
Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4(4), 535–557 (2001)
Feng, Q., Meng, F., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on time scales. J. Math. Anal. Appl. 382(2), 772–784 (2011)
Yin, L., Luo, Q.-M., Qi, F.: Several integral inequalities on time scales. J. Math. Inequal. 6(3), 419–429 (2012)
Lipovan, O.: Integral inequalities for retarded Volterra equations. J. Math. Anal. Appl. 322(1), 349–358 (2006)
Wang, W.-S., Shen, C.-X.: On a generalized retarded integral inequality with two variables. J. Inequal. Appl. 2008, Article ID 518646 (2008)
Acknowledgements
The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable comments and suggestions.
Funding
This research was partially supported by the National Natural Science Foundation of China (No. 11501342) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (No. 201701D221007).
Author information
Authors and Affiliations
Contributions
All authors contributed equally. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
El-Deeb, A.A., Xu, H., Abdeldaim, A. et al. Some dynamic inequalities on time scales and their applications. Adv Differ Equ 2019, 130 (2019). https://doi.org/10.1186/s13662-019-2023-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2023-6