Now we consider the second case \(\gamma =\frac{3}{2}\). Then we have
$$ \int \frac{v\,\mathrm{d}v}{\sqrt{b_{0}+b_{1}v^{2}+a\omega v^{4}- \frac{4b}{5}v^{5}}}=\pm \frac{1}{2}(\xi -\xi _{0}). $$
(28)
By taking the transformation
$$ v=\biggl(-\frac{5}{4b}\biggr)^{\frac{1}{5}}w-\frac{a\omega }{4b}, $$
(29)
the above equation becomes
$$ \int \frac{(w-s_{0})\,\mathrm{d}w}{\sqrt{F(w)}}=\pm \biggl(-\frac{4b}{5} \biggr)^{ \frac{2}{5}}\frac{1}{2}(\xi -\xi _{0}), $$
(30)
where
$$ F(w)=w^{5}+pw^{3}+qw^{2}+rw+s, $$
(31)
and
$$\begin{aligned}& \begin{aligned}&p=10d^{2}-4c_{4}d,\qquad q=-10d^{3}+6c_{4}d^{2}+c_{2},\qquad r=5d^{4}-4c_{4}d^{3}-2c _{2}d, \\ &s=b_{0}-d^{5}+c_{4}d^{4}+c_{2}d^{2},\qquad c_{4}=a\omega \biggl(-\frac{5}{4b}\biggr)^{ \frac{4}{5}}, \\ &c_{2}=\biggl(b-\frac{5}{4b}\biggr)^{\frac{2}{5}},\qquad s_{0}= \frac{a \omega }{4b}\biggl(-\frac{4b}{5}\biggr)^{\frac{1}{5}}. \end{aligned} \end{aligned}$$
(32)
We write its complete discrimination system of \(F(w)\) as follows (see [7, 10]):
$$\begin{aligned}& \begin{aligned} &D_{2}=-p,\qquad D_{3}=40rp-12p^{3}-45q^{2}, \\ &D_{4}=12p^{4}r-4p^{3}q^{2}+117prq^{2}-88r^{2}p^{2} \\ &\hphantom{D_{4}=}{}-40qsp^{2}-27q^{4}-300qrs+160r^{3}, \\ &D_{5}=-1600qsr^{3}-3750pqs^{3}+2000ps^{2}r^{2}-4p^{3}q^{2}r^{2}+16p ^{3}q^{3}s \\ &\hphantom{D_{5}=}{}-900rs^{2}p^{3} +825p^{2}q^{2}s^{2}+144pq^{2}r^{3}+2250rq^{2}s^{2}+16p ^{4}r^{3} \\ &\hphantom{D_{5}=}{}+108p^{5}s^{2}-128r^{4}p^{2} -27r^{2}q^{4}+108sq^{5}+256r^{5}+3125s ^{4} \\ &\hphantom{D_{5}=}{}-72rsqp^{4}+560sqr^{2}p^{2}-630prsq^{3}, \\ & E_{2}=160r^{2}p^{3}+900q^{2}r^{2}-48rp^{5}+60rP^{2}q^{2}+1500pqrs+16q ^{2}p^{4} \\ &\hphantom{E_{2}=}{}-1100qsp^{3} +625s^{2}p^{2}-3375sq^{3}, \\ &F_{2}=3q^{2}-8rp.\end{aligned} \end{aligned}$$
(33)
According to the above complete discrimination system, we list the following eleven cases to discuss. Among these, in first five cases, the solutions can be represented in terms of elementary functions, while in other cases the solutions are given by elliptic functions or elliptic integrals.
Family 3.1. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}>0\), \(E_{2}\neq 0 \). Then we have
$$ F(w)=(w-\alpha )^{2}(w-\beta )^{2}(w-\gamma ), $$
(34)
where α, β, γ are real numbers, and \(\gamma \neq \alpha >\beta \neq \gamma \). When \(w>\gamma \), we have
$$\begin{aligned}& \pm (\xi -\xi _{0})=\frac{2(\alpha -s_{0})}{(\alpha -\beta ) \sqrt{ \gamma -\alpha }}\arctan {\frac{\sqrt{w-\gamma }}{\sqrt{\gamma - \alpha }}} \\& \hphantom{\pm (\xi -\xi _{0})=}{}-\frac{2(s_{0}-\beta )}{(\alpha -\beta ) \sqrt{\gamma -\beta }} \arctan {\frac{\sqrt{w-\gamma }}{\sqrt{\gamma -\beta }}}, \quad \gamma > \alpha , \end{aligned}$$
(35)
$$\begin{aligned}& \pm (\xi -\xi _{0})=-\frac{2(s_{0}-\beta )}{(\alpha -\beta )\sqrt{ \gamma -\beta }} \arctan {\frac{\sqrt{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\gamma }}{\sqrt{\gamma -\beta }}} \\& \hphantom{\pm (\xi -\xi _{0})=}{}+\frac{(\alpha -s_{0})}{(\alpha -\beta ) \sqrt{\alpha -\gamma }} \\& \hphantom{\pm (\xi -\xi _{0})=}{}\times \ln { \biggl\vert \frac{ \sqrt{((-\frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v- \gamma }-\sqrt{\alpha -\gamma }}{ \sqrt{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\gamma }+\sqrt{\alpha -\gamma }} \biggr\vert },\quad \beta < \gamma < \alpha , \end{aligned}$$
(36)
or
$$\begin{aligned} \pm (\xi -\xi _{0}) =&\frac{\alpha -s_{0}}{(\alpha -\beta )\sqrt{ \alpha -\gamma }} \ln { \biggl\vert \frac{\sqrt{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\gamma }- \sqrt{\alpha -\gamma }}{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\gamma }+\sqrt{\alpha - \gamma }} \biggr\vert } \\ &{}-\frac{s_{0}-\beta }{(\alpha -\beta )\sqrt{\beta -\gamma }}\ln { \biggl\vert \frac{\sqrt{((-\frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\gamma } -\sqrt{ \beta -\gamma }}{\sqrt{((-\frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v- \gamma }+\sqrt{\beta -\gamma }} \biggr\vert },\quad \gamma < \beta . \end{aligned}$$
(37)
Family 3.2. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}=0\), \(D_{2}\neq 0\), \(F_{2} \neq 0 \). Then we have
$$ F(w)=(w-\alpha )^{3}(w-\beta )^{2}, $$
(38)
where α, β are real numbers, and \(\alpha \neq \beta \). When \(w>\alpha \), we have
$$\begin{aligned} \pm \frac{\alpha -\beta }{2}(\xi -\xi _{0}) =&\frac{\beta -s_{0}}{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\alpha }} \\ &{}+(\alpha -s_{0})\sqrt{\alpha -\beta }\arctan {\frac{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v- \alpha }}{\sqrt{\alpha - \beta }}},\quad \alpha >\beta , \end{aligned}$$
(39)
or
$$\begin{aligned} \pm \frac{\alpha -\beta }{2}(\xi -\xi _{0}) =&\frac{\beta -s_{0}}{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\alpha }} \\ &{}-\frac{\alpha -s_{0}}{2\sqrt{\beta -\alpha }}\ln { \biggl\vert \frac{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\alpha }-\sqrt{\beta - \alpha }}{ \sqrt{((-\frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\alpha }+\sqrt{\beta -\alpha }} \biggr\vert },\quad \alpha < \beta . \end{aligned}$$
(40)
Family 3.3. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}=0\), \(D_{2}\neq 0\), \(F_{2}=0 \). Then we have
$$ F(w)=(w-\alpha )^{4}(w-\beta ), $$
(41)
where α, β, are real numbers, and \(\alpha \neq \beta \). When \(w>\alpha \), we have
$$\begin{aligned} \pm (\xi -\xi _{0}) =&\frac{\alpha -s_{0}}{\alpha -\beta }\frac{\sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\beta }}{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\alpha } \\ &{}+\biggl\{ \frac{\alpha -s_{0}}{2(\alpha -\beta )^{\frac{3}{2}}}-\frac{1}{\sqrt{ \alpha -\beta }}\biggr\} \arctan { \frac{ \sqrt{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\beta }}{\sqrt{\beta -\alpha }}},\quad \alpha < \beta , \end{aligned}$$
(42)
or
$$\begin{aligned} \pm (\xi -\xi _{0}) =&\frac{\alpha -s_{0}}{\beta -\alpha }\frac{\sqrt{(- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\beta }}{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\alpha } \\ &{}+\biggl\{ \frac{\alpha -s_{0}}{(\beta -\alpha )^{\frac{3}{2}}}+\frac{1}{\sqrt{ \beta -\alpha }}\biggr\} \\ &{}\times \ln { \biggl\vert \frac{\sqrt{((-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-\beta }-\sqrt{\beta -\alpha }}{ \sqrt{((- \frac{5}{4b})^{1/5}-\frac{a}{4b})^{-1}v-\beta }+\sqrt{\beta -\alpha }} \biggr\vert }, \quad \alpha >\beta . \end{aligned}$$
(43)
Family 3.4. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}=0\), \(D_{2}=0 \). Then we have
$$ F(w)=(w-\alpha )^{5}, $$
(44)
where α is real number. When \(w>\alpha \), we have
$$\begin{aligned} \pm (\xi -\xi _{0}) =&-2\biggl(\biggl(\biggl(-\frac{5}{4b} \biggr)^{1/5}-\frac{a}{4b}\biggr)^{-1}v- \alpha \biggr)^{-\frac{1}{2}} \\ &{}-\frac{2(\alpha -s_{0})}{3} \biggl(\biggl(\biggl(-\frac{5}{4b} \biggr)^{1/5}- \frac{a}{4b}\biggr)^{-1}v-\alpha \biggr)^{-\frac{2}{3}}. \end{aligned}$$
(45)
Family 3.5. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}<0\), \(E_{2}\neq 0 \). Then we have
$$ F(w)=(w-\alpha ) \bigl(w^{2}+rw+s\bigr)^{2}, $$
(46)
where α is real number, and \(r^{2}-4s<0 \). When \(w>\alpha \), we have
$$\begin{aligned} \pm (\xi -\xi _{0}) =&\frac{b-\alpha +s_{0}}{4ab}\ln \biggl(\biggl(\biggl(- \frac{5}{4b}\biggr)^{1/5}- \frac{a}{4b}\biggr)^{-2} \biggl(\biggl(-\frac{5}{4b}\biggr)^{1/5}-\frac{a}{4b} \biggr)^{-2}v^{2} \\ &{}+r\biggl(\biggl(-\frac{5}{4b}\biggr)^{1/5}-\frac{a}{4b} \biggr)^{-1}v+s\biggr) \\ &{}+ \frac{7b-\alpha +s _{0}}{2b\sqrt{4b-a^{2}}}\arctan \frac{2(-\frac{5}{4b})^{1/5}- \frac{a}{4b})^{-1}v-a}{4b-a^{2}}, \end{aligned}$$
(47)
where
$$ b=\sqrt{\alpha ^{2}+r\alpha +s},\qquad a=\sqrt{2b-r-2\alpha }. $$
(48)
Family 3.6. \(D_{5}=0\), \(D_{4}>0 \). Then we have
$$ F(w)=(w-\alpha )^{2}(w-\alpha _{1}) (w-\alpha _{2}) (w-\alpha _{3}), $$
(49)
where α, \(\alpha _{1}\), \(\alpha _{2}\), \(\alpha _{3}\) are real numbers, and \(\alpha _{1}>\alpha _{2}>\alpha _{3} \). We have
$$\begin{aligned} \pm (\xi -\xi _{0}) =& \int \frac{\mathrm{d}w}{\sqrt{(w-\alpha _{1})(w- \alpha _{2})(w-\alpha _{3})}} \\ &{}-\frac{2(\alpha -s_{0})}{(\alpha -\alpha _{2})\sqrt{\alpha _{2}-\alpha _{3}}}\biggl\{ \operatorname {F}(\varphi ,k) -\frac{\alpha _{1}-\alpha _{2}}{\alpha _{1}- \alpha }\varPi \biggl( \varphi ,\frac{\alpha _{1}-\alpha _{2}}{\alpha _{1}-\alpha },k\biggr)\biggr\} , \end{aligned}$$
(50)
where
$$\begin{aligned}& \operatorname {F}(\varphi ,k)= \int _{0}^{\varphi }\frac{\mathrm{d}\varphi }{\sqrt{1-k ^{2}\sin ^{2}\varphi }}, \end{aligned}$$
(51)
$$\begin{aligned}& \varPi (\varphi ,h,k)= \int _{0}^{\varphi }\frac{\mathrm{d}\varphi }{(1+h \sin ^{2}\varphi )\sqrt{1-k^{2}\sin ^{2}\varphi }}. \end{aligned}$$
(52)
Family 3.7. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}<0\), \(E_{2}=0 \). Then we have
$$ F(w)=(w-\alpha )^{3}\bigl((w-l_{1})^{2}+s_{1}^{2} \bigr), $$
(53)
where α, \(l_{1}\), and \(s_{1} \) are real numbers. When \(w> \alpha \) and \(\alpha \neq l_{1}+s_{1}\), we have
$$\begin{aligned} \pm (\xi -\xi _{0}) =& \int \frac{\mathrm{d}w}{\sqrt{(w-\alpha )((w-l _{1})^{2}+s_{1}^{2})}} \\ &{}+(\alpha -s_{0})\biggl\{ \frac{\tan \theta +\cot \theta }{2(s_{1}\tan \theta -l_{1}-\alpha )\sqrt{\frac{s_{1}}{\sin ^{3}{2\theta }}}}\operatorname {F}(\varphi ,k)- \frac{s_{1}\tan \theta +s_{1}\cot \theta }{s_{1}\cot \theta +l _{1}+\alpha } \\ &{}\times \biggl\{ (\frac{\tan \theta +l_{1}+\alpha }{(s_{1}\cot \theta +l_{1}- \alpha )\sin \varphi }\sqrt{1-k^{2} \sin ^{2}\varphi } +\operatorname {F}(\varphi ,k)-\operatorname {E}(\varphi ,k)\biggr\} \biggr\} , \end{aligned}$$
(54)
where
$$ E(\varphi , k)= \int _{0}^{\varphi }\sqrt{1-k^{2}\sin ^{\theta }} \,\mathrm{d}\theta . $$
(55)
Family 3.8. \(D_{5}=0\), \(D_{4}<0 \). Then we have
$$ F(w)=(w-\alpha )^{2}(w-\beta ) \bigl((w-l_{1})^{2}+s_{1}^{2} \bigr), $$
(56)
where α, \(l_{1}\), and \(s_{1} \) are real numbers. The solution is represented by
$$\begin{aligned} \pm (\xi -\xi _{0}) =& \int \frac{\mathrm{d}w}{\sqrt{(w-\beta )((w-l _{1})^{2}+s_{1}^{2})}} \\ &{}+(\alpha -s_{0})\biggl\{ \frac{\tan \theta +\cot \theta }{2(s_{1}\tan \theta -l_{1}-\alpha )\sqrt{\frac{s}{\sin ^{3}{2\theta }}}}\operatorname {F}(\varphi ,k)- \frac{s_{1}\tan \theta +s\cot \theta }{s_{1}\cot \theta +l_{1}+\alpha } \\ &{}\times \biggl\{ (\frac{\tan \theta +l_{1}+\alpha }{(s\cot \theta +l_{1}- \alpha )\sin \varphi }\sqrt{1-k^{2} \sin ^{2}\varphi } +\operatorname {F}(\varphi ,k)-\operatorname {E}(\varphi ,k)\biggr\} \biggr\} . \end{aligned}$$
(57)
Family 3.9. \(D_{5}=0\), \(D_{4}=0\), \(D_{3}>0\), \(E_{2}=0 \). Then we have
$$ F(w)=(w-\alpha )^{3}(w-\beta ) (w-\gamma ), $$
(58)
where α, β, and γ are real numbers. The solution is represented by
$$\begin{aligned} \pm (\xi -\xi _{0}) =& \int \frac{\mathrm{d}w}{\sqrt{(w-\alpha )(w- \beta )(w-\gamma )}} \\ &{}+\frac{(\alpha -\beta )(\alpha -s_{0})}{2\sqrt{\alpha -\gamma }}\operatorname {E}\biggl( \arcsin \sqrt{\frac{\alpha -\gamma }{w-\gamma }},\sqrt{ \frac{ \beta -\gamma }{\alpha -\gamma }}\biggr) -\sqrt{\frac{w-\beta }{(w-\gamma )(w-\alpha )}}. \end{aligned}$$
(59)
In other cases, we can give the corresponding solutions similarly. We omit them for simplicity.
Family 3.10. In the following three cases: \(D_{5}>0\), \(D_{4}>0\), \(D_{3}>0\), \(D_{2}>0\) or \(D_{5}<0\) or \(D_{5}>0\wedge (D_{4}\leq 0 \vee D_{3}\leq 0\vee D_{2}\leq 0) \), where ∧ means “and”, ∨ means “or”, we have respectively
$$\begin{aligned}& F(w)=(w-\alpha _{1}) (w-\alpha _{2}) (w-\alpha _{3}) (w-\alpha _{4}) (w-\alpha _{5}), \end{aligned}$$
(60)
$$\begin{aligned}& F(w)=(w-\alpha _{1}) (w-\alpha _{2}) (w-\alpha _{3}) \bigl((w-l)^{2}+s^{2}\bigr), \end{aligned}$$
(61)
or
$$ F(w)=(w-\alpha ) \bigl((w-l_{1})^{2}+s_{1}^{2} \bigr)) \bigl((w-l_{2})^{2}+s_{2}^{2} \bigr). $$
(62)
Then the corresponding solutions can be expressed by hyper-elliptic functions or hyper-elliptic integral. We omit them for brevity.