Liu, Y., Li, J., Wei, Z., Moroz, I.: Bifurcation analysis and integrability in the segmented disc dynamo with mechanical friction. Adv. Differ. Equ. **2018**, 210 (2018)

Article
MathSciNet
MATH
Google Scholar

Wei, Z., Moroz, I., Sprott, J.C., et al.: Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos **27**(3), 033101 (2017)

Article
MathSciNet
MATH
Google Scholar

Wei, Z., Rajagopal, K., Zhang, W., et al.: Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors. Pramana **90**(4), 50 (2018)

Article
Google Scholar

Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A **341**, 55–61 (2004)

Article
MathSciNet
Google Scholar

Rajagopal, K., Karthikeyan, A., Duraisamy, P.: Hyperchaotic chameleon: fractional-order FPGA implementation. Complexity **2017**, 8979408 (2017)

MathSciNet
MATH
Google Scholar

El-Sayed, A., et al.: Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional-order hyperchaotic system. Appl. Math. Model. **40**(5–6), 3516–3534 (2016)

Article
MathSciNet
Google Scholar

El-Sayed, A., Elsonbaty, A., Elsadany, A., Matouk, A.: Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization. Int. J. Bifurc. Chaos **26**(13), 1650222 (2016)

Article
MathSciNet
MATH
Google Scholar

Mou, J., Sun, K.: Characteristic analysis of fractional-order 4D hyperchaotic memristive circuit. Math. Probl. Eng. **2017**, 2313768 (2017)

Article
MathSciNet
Google Scholar

Wang, Y., He, S., Wang, H., et al.: Bifurcations and synchronization of the fractional-order simplified Lorenz hyperchaotic system. J. Appl. Anal. Comput. **5**(2), 210–219 (2015)

MathSciNet
MATH
Google Scholar

Huang, X., Zhao, Z., Wang, Z., et al.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing **94**(3), 13–21 (2012)

Article
Google Scholar

Huang, D., Li, H.: Theory and Method of the Nonlinear Economics. Sichuan University Press, Chengdu (1993)

Google Scholar

Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals **36**, 1305–1314 (2008)

Article
Google Scholar

Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional-order economic system via adaptive sliding mode. Neurocomputing **83**, 83–88 (2012)

Article
Google Scholar

Mircea, G., Neamtu, M., Bundau, O., Opris, D.: Uncertain and stochastic financial models with multiple delays. Int. J. Bifurc. Chaos **22**, 1250131 (2012)

Article
MathSciNet
MATH
Google Scholar

Xin, B., Chen, T., Ma, J.: Neimark–Sacker bifurcation in a discrete-time financial system. Discrete Dyn. Nat. Soc. **2010**, 405639 (2010)

Article
MathSciNet
MATH
Google Scholar

Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Chaos Solitons Fractals **45**, 1048–1057 (2012)

Article
MATH
Google Scholar

Xin, B., Li, Y.: 0–1 test for chaos in a fractional-order financial system with investment incentive. Abstr. Appl. Anal. **2013**, 876298 (2013)

MathSciNet
Google Scholar

Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. **79**(2), 1399–1409 (2015)

Article
MathSciNet
MATH
Google Scholar

Zhang, L., Sun, K., He, S., et al.: Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings. Eur. Phys. J. Plus **132**(1), 31 (2017)

Article
Google Scholar

Wang, S., Wu, R.: Dynamic analysis of a 5D fractional-order hyperchaotic system. Int. J. Control. Autom. Syst. **15**(3), 1003–1010 (2017)

Article
Google Scholar

Zheng, R., Jiang, X.: Spectral methods for the time-fractional Navier–Stokes equation. Appl. Math. Lett. **91**, 194–200 (2019)

Article
MathSciNet
MATH
Google Scholar

Xu, H., Jiang, X.: Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput. Math. Appl. **73**(6), 1377–1384 (2017)

Article
MathSciNet
MATH
Google Scholar

Fan, W., Qi, H.: An efficient finite element method for the two-dimensional nonlinear time–space fractional Schrodinger equation on an irregular convex domain. Appl. Math. Lett. **86**, 103–110 (2018)

Article
MathSciNet
MATH
Google Scholar

Yang, X., Qi, H., Jiang, X.: Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl. Math. Lett. **78**, 1–8 (2018)

Article
MathSciNet
MATH
Google Scholar

Gao, X., Chen, D., Yan, D., et al.: Dynamic evolution characteristics of a fractional-order hydropower station system. Mod. Phys. Lett. B **32**(2), 1750363 (2018)

Article
Google Scholar

Wang, F., Chen, D., Zhang, X., Wu, Y.: Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay. Int. J. Syst. Sci. **48**, 984–993 (2017)

Article
MathSciNet
MATH
Google Scholar

Wu, G., Baleanu, D., Huang, L.: Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. **82**, 71–78 (2018)

Article
MathSciNet
MATH
Google Scholar

Wu, G., Baleanu, D., Luo, W.: Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials. Therm. Sci. **21**(2), 813–817 (2017)

Article
Google Scholar

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. **264**, 65–70 (2014)

Article
MathSciNet
MATH
Google Scholar

Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. **279**, 57–66 (2015)

Article
MathSciNet
MATH
Google Scholar

Abdeljawad, T., Al-Mdallal, Q., Jarad, F.: Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals **119**, 94–101 (2019)

Article
MathSciNet
Google Scholar

Acan, O., Firat, O., Keskin, Y.: Conformable variational iteration method, conformable fractional reduced differential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations. Waves Random Complex Media **8**, 1–19 (2018)

Article
Google Scholar

Attia, R., Lu, D., Khater, M.: Chaos and relativistic energy-momentum of the nonlinear time fractional Duffing equation. Math. Comput. Appl. **24**(1), 10 (2019)

Google Scholar

Bohner, M., Hatipoglu, V.: Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal. Hybrid Syst. **32**, 157–167 (2019)

Article
MathSciNet
Google Scholar

Tarasov, V.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. **62**, 157–163 (2018)

Article
MathSciNet
Google Scholar

Rosales, J., Godínez, F., Banda, V.: Analysis of the Drude model in view of the conformable derivative. Optik **178**, 1010–1015 (2019)

Article
Google Scholar

Akbulut, A., Melike, K.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. **75**(3), 876–882 (2018)

Article
MathSciNet
MATH
Google Scholar

Martinez, L., Rosales, J., Carreno, C.: Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. **46**(5), 1091–1100 (2018)

Article
Google Scholar

Rezazadeh, H., Khodadad, F., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Appl. Appl. Math. **12**(1), 13–21 (2017)

MathSciNet
MATH
Google Scholar

Korkmaz, A.: Explicit exact solutions to some one-dimensional conformable time fractional equations. Waves Random Complex Media **29**(1), 124–137 (2019)

Article
MathSciNet
Google Scholar

Perez, J., Gomez-Aguilar, J., Baleanu, D., Tchier, F.: Chaotic attractors with fractional conformable derivatives in the Liouville–Caputo sense and its dynamical behaviors. Entropy **20**(5), 384 (2018)

Article
MathSciNet
Google Scholar

He, S., Banerjee, S., Yan, B.: Chaos and symbol complexity in a conformable fractional-order memcapacitor system. Complexity **2018**, 4140762 (2018)

MATH
Google Scholar

Lu, Y., Yang, L., Liu, L.: Volatility spillovers between crude oil and agricultural commodity markets since the financial crisis. Sustainability **11**, 396 (2019)

Article
Google Scholar

Erfani, G., Vasigh, B.: The impact of the global financial crisis on profitability of the banking industry: a comparative analysis. Economies **6**, 66 (2018)

Article
Google Scholar

Dinoer, H., Yuksel, S., Senel, S.: Analyzing the global risks for the financial crisis after the great depression using comparative hybrid hesitant fuzzy decision-making models: policy recommendations for sustainable economic growth. Sustainability **10**, 3126 (2018)

Article
Google Scholar

Li, R., Liu, W., Liu, Y., Tsai, S.B.: IPO underpricing after the 2008 financial crisis: a study of the Chinese stock markets. Sustainability **10**, 2844 (2018)

Article
Google Scholar

Cavdar, S.C., Aydin, A.D.: An empirical analysis for the prediction of a financial crisis in Turkey through the use of forecast error measures. J. Risk Financial Manag. **8**, 337–354 (2015)

Article
Google Scholar

Zhao, H., Zhao, H., Guo, S., Li, F., Hu, Y.: The impact of financial crisis on electricity demand: a case study of North China. Energies **9**, 250 (2016)

Article
Google Scholar

Derwall, J., Koedijk, K., Ter Horst, J.: A tale of values-driven and profit-seeking social investors. J. Bank. Finance **35**(8), 2137–2147 (2011)

Article
Google Scholar

Rasmussen, D.: Adam Smith on what is wrong with economic inequality. Am. Polit. Sci. Rev. **110**(2), 342–352 (2016)

Article
Google Scholar

Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo **53**(3), 475–485 (2016)

Article
MathSciNet
MATH
Google Scholar

Ilie, M., Biazar, J., Ayati, Z.: The first integral method for solving some conformable fractional differential equations. Opt. Quantum Electron. **50**(2), 55 (2018)

Article
Google Scholar

Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik **132**, 203–209 (2017)

Article
Google Scholar

Unal, E., Gokdogan, A.: Solution of conformable fractional ordinary differential equations via differential transform method. Optik **128**, 264–273 (2017)

Article
Google Scholar

Kumar, D., Seadawy, A., Joardar, A.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. **56**(1), 75–85 (2018)

Article
Google Scholar

Srivastava, H., Gunerhan, H.: Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease. Math. Methods Appl. Sci. **42**(3), 935–941 (2019)

Article
MathSciNet
MATH
Google Scholar

Kaplan, M.: Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. **49**(9), 312 (2017)

Article
Google Scholar

Yavuz, M., Ozdemir, N.: A different approach to the European option pricing model with new fractional operator. Math. Model. Nat. Phenom. **13**(1), 12 (2018)

Article
MathSciNet
MATH
Google Scholar

Kartal, S., Gurcan, F.: Discretization of conformable fractional differential equations by a piecewise constant approximation. Int. J. Comput. Math. **25**, 1–2 (2018)

Article
Google Scholar

Iyiola, O., Tasbozan, O., Kurt, A., Cenesiz, Y.: On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons Fractals **94**, 1–7 (2017)

Article
MathSciNet
MATH
Google Scholar

Ruan, J., Sun, K., Mou, J., He, S., Zhang, L.: Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. Plus **133**(1), 3 (2018)

Article
Google Scholar

He, S., Sun, K., Mei, X., Yan, B., Xu, S.: Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur. Phys. J. Plus **132**(1), 36 (2017)

Article
Google Scholar

Yokus, A.: Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method. Int. J. Mod. Phys. B **32**(29), 1850365 (2018)

Article
MathSciNet
Google Scholar

Rezazadeh, H., Ziabarya, B.: Sub-equation method for the conformable fractional generalized Kuramoto–Sivashinsky equation. Comput. Res. Prog. App. Sci. Eng. **2**(3), 106–109 (2016)

Google Scholar

Zhong, W., Wang, L.: Basic theory of initial value problems of conformable fractional differential equations. Adv. Differ. Equ. **1**, 321 (2018)

Article
MathSciNet
MATH
Google Scholar

Tayyan, B., Sakka, A.: Lie symmetry analysis of some conformable fractional partial differential equations. Arab. J. Math. **2018**, 1–12 (2018)

Google Scholar

Yaslan, H.: Numerical solution of the conformable space-time fractional wave equation. Chin. J. Phys. **56**(6), 2916–2925 (2018)

Article
MathSciNet
Google Scholar

Kurt, A., Cenesiz, Y., Tasbozan, O.: On the solution of Burgers’ equation with the new fractional derivative. Open Phys. **13**, 355–360 (2015)

Article
Google Scholar

Khalil, R., Abu-Shaab, H.: Solution of some conformable fractional differential equations. Int. J. Pure Appl. Math. **103**(4), 667–673 (2015)

Article
Google Scholar

Unal, E., Gokdogan, A., Celik, E.: Solutions of sequential conformable fractional differential equations around an ordinary point and conformable fractional Hermite differential equation (2015). Preprint. arXiv:1503.05407

Liu, S., Wang, H., Li, X., Li, H.: The extremal iteration solution to a coupled system of nonlinear conformable fractional differential equations. J. Nonlinear Sci. Appl. **10**, 5082–5089 (2017)

Article
MathSciNet
Google Scholar

Cenesiz, Y., Kurt, A.: The solutions of time and space conformable fractional heat equations with conformable Fourier transform. Acta Univ. Sapientiae Math. **7**(2), 130–140 (2015)

Article
MathSciNet
MATH
Google Scholar

El-Sayed, A., Salman, S.: On a discretization process of fractional-order Riccati differential equation. J. Fract. Calc. Appl. **4**(2), 251–259 (2013)

Google Scholar

Agarwal, R., El-Sayed, A., Salman, S.: Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv. Differ. Equ. **1**, 320 (2013)

Article
MathSciNet
MATH
Google Scholar

Mohammadnezhad, V., Eslami, M., Rezazadeh, H.: Stability analysis of linear conformable fractional differential equations system with time delays. Bol. Soc. Parana. Mat. **38**(6), 159–171 (2020)

Google Scholar

Xin, B., Chen, T., Liu, Y.: Synchronization of chaotic fractional-order WINDMI systems via linear state error feedback control. Math. Probl. Eng. **2010**, 859685 (2010)

Article
MathSciNet
MATH
Google Scholar

Yavuz, M., Ozdemir, N.: European vanilla option pricing model of fractional-order without singular kernel. Fractal Fract. **2**(1), 3 (2018)

Article
MathSciNet
Google Scholar

Baskonus, H., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional-order economic system. Entropy **17**, 5771–5783 (2015)

Article
Google Scholar

Ma, J., Ren, W.: Complexity and Hopf bifurcation analysis on a kind of fractional-order IS-LM macroeconomic system. Int. J. Bifurc. Chaos **26**(11), 1650181 (2016)

Article
MathSciNet
MATH
Google Scholar

Huang, Y., Wang, D., Zhang, J., Guo, F.: Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system. PLoS ONE **13**(3), e0194112 (2018)

Article
Google Scholar

Xin, B., Chen, T., Liu, Y.: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Commun. Nonlinear Sci. Numer. Simul. **16**, 4479–4486 (2011)

Article
MathSciNet
MATH
Google Scholar

Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. **41**(1), 336–352 (2018)

Article
MathSciNet
MATH
Google Scholar

Yuan, L., Yang, Q.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. **17**(1), 305–316 (2012)

Article
MathSciNet
MATH
Google Scholar

Behinfaraz, R., Badamchizadeh, M., Ghiasi, A.R.: Parameter identification and synchronization of fractional-order chaotic systems. Appl. Math. Model. **40**(7–8), 4468–4479 (2016)

Article
MathSciNet
Google Scholar

Belkhatir, Z., Laleg-Kirati, T.M.: Parameters and fractional differentiation orders estimation for linear continuous-time non-commensurate fractional order systems. Syst. Control Lett. **115**, 26–33 (2018)

Article
MathSciNet
MATH
Google Scholar

Pikulina, E., Renneboog, L., Tobler, P.: Overconfidence and investment: an experimental approach. J. Corp. Finance **43**(4), 175–192 (2017)

Article
Google Scholar

Deaves, R., Kluger, B., Miele, J.: An exploratory experimental analysis of path-dependent investment behaviors. J. Econ. Psychol. **43**(4), 175–192 (2017)

Google Scholar