Liu, Y., Li, J., Wei, Z., Moroz, I.: Bifurcation analysis and integrability in the segmented disc dynamo with mechanical friction. Adv. Differ. Equ. 2018, 210 (2018)
Article
MathSciNet
MATH
Google Scholar
Wei, Z., Moroz, I., Sprott, J.C., et al.: Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos 27(3), 033101 (2017)
Article
MathSciNet
MATH
Google Scholar
Wei, Z., Rajagopal, K., Zhang, W., et al.: Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors. Pramana 90(4), 50 (2018)
Article
Google Scholar
Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A 341, 55–61 (2004)
Article
MathSciNet
Google Scholar
Rajagopal, K., Karthikeyan, A., Duraisamy, P.: Hyperchaotic chameleon: fractional-order FPGA implementation. Complexity 2017, 8979408 (2017)
MathSciNet
MATH
Google Scholar
El-Sayed, A., et al.: Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional-order hyperchaotic system. Appl. Math. Model. 40(5–6), 3516–3534 (2016)
Article
MathSciNet
Google Scholar
El-Sayed, A., Elsonbaty, A., Elsadany, A., Matouk, A.: Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization. Int. J. Bifurc. Chaos 26(13), 1650222 (2016)
Article
MathSciNet
MATH
Google Scholar
Mou, J., Sun, K.: Characteristic analysis of fractional-order 4D hyperchaotic memristive circuit. Math. Probl. Eng. 2017, 2313768 (2017)
Article
MathSciNet
Google Scholar
Wang, Y., He, S., Wang, H., et al.: Bifurcations and synchronization of the fractional-order simplified Lorenz hyperchaotic system. J. Appl. Anal. Comput. 5(2), 210–219 (2015)
MathSciNet
MATH
Google Scholar
Huang, X., Zhao, Z., Wang, Z., et al.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94(3), 13–21 (2012)
Article
Google Scholar
Huang, D., Li, H.: Theory and Method of the Nonlinear Economics. Sichuan University Press, Chengdu (1993)
Google Scholar
Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36, 1305–1314 (2008)
Article
Google Scholar
Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional-order economic system via adaptive sliding mode. Neurocomputing 83, 83–88 (2012)
Article
Google Scholar
Mircea, G., Neamtu, M., Bundau, O., Opris, D.: Uncertain and stochastic financial models with multiple delays. Int. J. Bifurc. Chaos 22, 1250131 (2012)
Article
MathSciNet
MATH
Google Scholar
Xin, B., Chen, T., Ma, J.: Neimark–Sacker bifurcation in a discrete-time financial system. Discrete Dyn. Nat. Soc. 2010, 405639 (2010)
Article
MathSciNet
MATH
Google Scholar
Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Chaos Solitons Fractals 45, 1048–1057 (2012)
Article
MATH
Google Scholar
Xin, B., Li, Y.: 0–1 test for chaos in a fractional-order financial system with investment incentive. Abstr. Appl. Anal. 2013, 876298 (2013)
MathSciNet
Google Scholar
Xin, B., Zhang, J.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79(2), 1399–1409 (2015)
Article
MathSciNet
MATH
Google Scholar
Zhang, L., Sun, K., He, S., et al.: Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings. Eur. Phys. J. Plus 132(1), 31 (2017)
Article
Google Scholar
Wang, S., Wu, R.: Dynamic analysis of a 5D fractional-order hyperchaotic system. Int. J. Control. Autom. Syst. 15(3), 1003–1010 (2017)
Article
Google Scholar
Zheng, R., Jiang, X.: Spectral methods for the time-fractional Navier–Stokes equation. Appl. Math. Lett. 91, 194–200 (2019)
Article
MathSciNet
MATH
Google Scholar
Xu, H., Jiang, X.: Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput. Math. Appl. 73(6), 1377–1384 (2017)
Article
MathSciNet
MATH
Google Scholar
Fan, W., Qi, H.: An efficient finite element method for the two-dimensional nonlinear time–space fractional Schrodinger equation on an irregular convex domain. Appl. Math. Lett. 86, 103–110 (2018)
Article
MathSciNet
MATH
Google Scholar
Yang, X., Qi, H., Jiang, X.: Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 78, 1–8 (2018)
Article
MathSciNet
MATH
Google Scholar
Gao, X., Chen, D., Yan, D., et al.: Dynamic evolution characteristics of a fractional-order hydropower station system. Mod. Phys. Lett. B 32(2), 1750363 (2018)
Article
Google Scholar
Wang, F., Chen, D., Zhang, X., Wu, Y.: Finite-time stability of a class of nonlinear fractional-order system with the discrete time delay. Int. J. Syst. Sci. 48, 984–993 (2017)
Article
MathSciNet
MATH
Google Scholar
Wu, G., Baleanu, D., Huang, L.: Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 82, 71–78 (2018)
Article
MathSciNet
MATH
Google Scholar
Wu, G., Baleanu, D., Luo, W.: Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials. Therm. Sci. 21(2), 813–817 (2017)
Article
Google Scholar
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
Article
MathSciNet
MATH
Google Scholar
Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Article
MathSciNet
MATH
Google Scholar
Abdeljawad, T., Al-Mdallal, Q., Jarad, F.: Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals 119, 94–101 (2019)
Article
MathSciNet
Google Scholar
Acan, O., Firat, O., Keskin, Y.: Conformable variational iteration method, conformable fractional reduced differential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations. Waves Random Complex Media 8, 1–19 (2018)
Article
Google Scholar
Attia, R., Lu, D., Khater, M.: Chaos and relativistic energy-momentum of the nonlinear time fractional Duffing equation. Math. Comput. Appl. 24(1), 10 (2019)
Google Scholar
Bohner, M., Hatipoglu, V.: Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal. Hybrid Syst. 32, 157–167 (2019)
Article
MathSciNet
Google Scholar
Tarasov, V.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)
Article
MathSciNet
Google Scholar
Rosales, J., Godínez, F., Banda, V.: Analysis of the Drude model in view of the conformable derivative. Optik 178, 1010–1015 (2019)
Article
Google Scholar
Akbulut, A., Melike, K.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(3), 876–882 (2018)
Article
MathSciNet
MATH
Google Scholar
Martinez, L., Rosales, J., Carreno, C.: Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. 46(5), 1091–1100 (2018)
Article
Google Scholar
Rezazadeh, H., Khodadad, F., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Appl. Appl. Math. 12(1), 13–21 (2017)
MathSciNet
MATH
Google Scholar
Korkmaz, A.: Explicit exact solutions to some one-dimensional conformable time fractional equations. Waves Random Complex Media 29(1), 124–137 (2019)
Article
MathSciNet
Google Scholar
Perez, J., Gomez-Aguilar, J., Baleanu, D., Tchier, F.: Chaotic attractors with fractional conformable derivatives in the Liouville–Caputo sense and its dynamical behaviors. Entropy 20(5), 384 (2018)
Article
MathSciNet
Google Scholar
He, S., Banerjee, S., Yan, B.: Chaos and symbol complexity in a conformable fractional-order memcapacitor system. Complexity 2018, 4140762 (2018)
MATH
Google Scholar
Lu, Y., Yang, L., Liu, L.: Volatility spillovers between crude oil and agricultural commodity markets since the financial crisis. Sustainability 11, 396 (2019)
Article
Google Scholar
Erfani, G., Vasigh, B.: The impact of the global financial crisis on profitability of the banking industry: a comparative analysis. Economies 6, 66 (2018)
Article
Google Scholar
Dinoer, H., Yuksel, S., Senel, S.: Analyzing the global risks for the financial crisis after the great depression using comparative hybrid hesitant fuzzy decision-making models: policy recommendations for sustainable economic growth. Sustainability 10, 3126 (2018)
Article
Google Scholar
Li, R., Liu, W., Liu, Y., Tsai, S.B.: IPO underpricing after the 2008 financial crisis: a study of the Chinese stock markets. Sustainability 10, 2844 (2018)
Article
Google Scholar
Cavdar, S.C., Aydin, A.D.: An empirical analysis for the prediction of a financial crisis in Turkey through the use of forecast error measures. J. Risk Financial Manag. 8, 337–354 (2015)
Article
Google Scholar
Zhao, H., Zhao, H., Guo, S., Li, F., Hu, Y.: The impact of financial crisis on electricity demand: a case study of North China. Energies 9, 250 (2016)
Article
Google Scholar
Derwall, J., Koedijk, K., Ter Horst, J.: A tale of values-driven and profit-seeking social investors. J. Bank. Finance 35(8), 2137–2147 (2011)
Article
Google Scholar
Rasmussen, D.: Adam Smith on what is wrong with economic inequality. Am. Polit. Sci. Rev. 110(2), 342–352 (2016)
Article
Google Scholar
Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)
Article
MathSciNet
MATH
Google Scholar
Ilie, M., Biazar, J., Ayati, Z.: The first integral method for solving some conformable fractional differential equations. Opt. Quantum Electron. 50(2), 55 (2018)
Article
Google Scholar
Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik 132, 203–209 (2017)
Article
Google Scholar
Unal, E., Gokdogan, A.: Solution of conformable fractional ordinary differential equations via differential transform method. Optik 128, 264–273 (2017)
Article
Google Scholar
Kumar, D., Seadawy, A., Joardar, A.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)
Article
Google Scholar
Srivastava, H., Gunerhan, H.: Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease. Math. Methods Appl. Sci. 42(3), 935–941 (2019)
Article
MathSciNet
MATH
Google Scholar
Kaplan, M.: Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. 49(9), 312 (2017)
Article
Google Scholar
Yavuz, M., Ozdemir, N.: A different approach to the European option pricing model with new fractional operator. Math. Model. Nat. Phenom. 13(1), 12 (2018)
Article
MathSciNet
MATH
Google Scholar
Kartal, S., Gurcan, F.: Discretization of conformable fractional differential equations by a piecewise constant approximation. Int. J. Comput. Math. 25, 1–2 (2018)
Article
Google Scholar
Iyiola, O., Tasbozan, O., Kurt, A., Cenesiz, Y.: On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons Fractals 94, 1–7 (2017)
Article
MathSciNet
MATH
Google Scholar
Ruan, J., Sun, K., Mou, J., He, S., Zhang, L.: Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. Plus 133(1), 3 (2018)
Article
Google Scholar
He, S., Sun, K., Mei, X., Yan, B., Xu, S.: Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur. Phys. J. Plus 132(1), 36 (2017)
Article
Google Scholar
Yokus, A.: Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method. Int. J. Mod. Phys. B 32(29), 1850365 (2018)
Article
MathSciNet
Google Scholar
Rezazadeh, H., Ziabarya, B.: Sub-equation method for the conformable fractional generalized Kuramoto–Sivashinsky equation. Comput. Res. Prog. App. Sci. Eng. 2(3), 106–109 (2016)
Google Scholar
Zhong, W., Wang, L.: Basic theory of initial value problems of conformable fractional differential equations. Adv. Differ. Equ. 1, 321 (2018)
Article
MathSciNet
MATH
Google Scholar
Tayyan, B., Sakka, A.: Lie symmetry analysis of some conformable fractional partial differential equations. Arab. J. Math. 2018, 1–12 (2018)
Google Scholar
Yaslan, H.: Numerical solution of the conformable space-time fractional wave equation. Chin. J. Phys. 56(6), 2916–2925 (2018)
Article
MathSciNet
Google Scholar
Kurt, A., Cenesiz, Y., Tasbozan, O.: On the solution of Burgers’ equation with the new fractional derivative. Open Phys. 13, 355–360 (2015)
Article
Google Scholar
Khalil, R., Abu-Shaab, H.: Solution of some conformable fractional differential equations. Int. J. Pure Appl. Math. 103(4), 667–673 (2015)
Article
Google Scholar
Unal, E., Gokdogan, A., Celik, E.: Solutions of sequential conformable fractional differential equations around an ordinary point and conformable fractional Hermite differential equation (2015). Preprint. arXiv:1503.05407
Liu, S., Wang, H., Li, X., Li, H.: The extremal iteration solution to a coupled system of nonlinear conformable fractional differential equations. J. Nonlinear Sci. Appl. 10, 5082–5089 (2017)
Article
MathSciNet
Google Scholar
Cenesiz, Y., Kurt, A.: The solutions of time and space conformable fractional heat equations with conformable Fourier transform. Acta Univ. Sapientiae Math. 7(2), 130–140 (2015)
Article
MathSciNet
MATH
Google Scholar
El-Sayed, A., Salman, S.: On a discretization process of fractional-order Riccati differential equation. J. Fract. Calc. Appl. 4(2), 251–259 (2013)
Google Scholar
Agarwal, R., El-Sayed, A., Salman, S.: Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv. Differ. Equ. 1, 320 (2013)
Article
MathSciNet
MATH
Google Scholar
Mohammadnezhad, V., Eslami, M., Rezazadeh, H.: Stability analysis of linear conformable fractional differential equations system with time delays. Bol. Soc. Parana. Mat. 38(6), 159–171 (2020)
Google Scholar
Xin, B., Chen, T., Liu, Y.: Synchronization of chaotic fractional-order WINDMI systems via linear state error feedback control. Math. Probl. Eng. 2010, 859685 (2010)
Article
MathSciNet
MATH
Google Scholar
Yavuz, M., Ozdemir, N.: European vanilla option pricing model of fractional-order without singular kernel. Fractal Fract. 2(1), 3 (2018)
Article
MathSciNet
Google Scholar
Baskonus, H., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional-order economic system. Entropy 17, 5771–5783 (2015)
Article
Google Scholar
Ma, J., Ren, W.: Complexity and Hopf bifurcation analysis on a kind of fractional-order IS-LM macroeconomic system. Int. J. Bifurc. Chaos 26(11), 1650181 (2016)
Article
MathSciNet
MATH
Google Scholar
Huang, Y., Wang, D., Zhang, J., Guo, F.: Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system. PLoS ONE 13(3), e0194112 (2018)
Article
Google Scholar
Xin, B., Chen, T., Liu, Y.: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Commun. Nonlinear Sci. Numer. Simul. 16, 4479–4486 (2011)
Article
MathSciNet
MATH
Google Scholar
Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41(1), 336–352 (2018)
Article
MathSciNet
MATH
Google Scholar
Yuan, L., Yang, Q.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)
Article
MathSciNet
MATH
Google Scholar
Behinfaraz, R., Badamchizadeh, M., Ghiasi, A.R.: Parameter identification and synchronization of fractional-order chaotic systems. Appl. Math. Model. 40(7–8), 4468–4479 (2016)
Article
MathSciNet
Google Scholar
Belkhatir, Z., Laleg-Kirati, T.M.: Parameters and fractional differentiation orders estimation for linear continuous-time non-commensurate fractional order systems. Syst. Control Lett. 115, 26–33 (2018)
Article
MathSciNet
MATH
Google Scholar
Pikulina, E., Renneboog, L., Tobler, P.: Overconfidence and investment: an experimental approach. J. Corp. Finance 43(4), 175–192 (2017)
Article
Google Scholar
Deaves, R., Kluger, B., Miele, J.: An exploratory experimental analysis of path-dependent investment behaviors. J. Econ. Psychol. 43(4), 175–192 (2017)
Google Scholar