- Research
- Open access
- Published:
Existence and Ulam–Hyers stability for Caputo conformable differential equations with four-point integral conditions
Advances in Difference Equations volume 2019, Article number: 139 (2019)
Abstract
In this article, we investigate the existence and uniqueness of solutions for conformable derivatives in the Caputo setting with four-point integral conditions, applying standard fixed point theorems such as Banach contraction mapping principle, Krasnoselskii’s fixed point theorem, and Leray–Schauder nonlinear alternative. Further, we present Ulam–Hyers stability results by using direct analysis methods. Different types of Ulam stability, such as Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias stability, are studied. Examples which support our theoretical results are also presented.
1 Introduction
Fractional calculus extends the theory of differentiation and integration of integer order to real or complex order. Recently, there has been shown a great interest in the study of differential equations and inclusions with non-integer order, since fractional order models are more accurate than integer order models. Fractional derivatives provide an excellent instrument for the description of systems with memory and hereditary properties. Many books and monographs are devoted to the development of fractional calculus, see for instance [1,2,3,4,5,6,7,8] and the references therein.
One of the most prominent research areas in the field of fractional differential equations, which has attracted great attention from the researchers, is devoted to the existence theory of solutions. For theoretical development of the topic, we refer the reader to papers [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and the references cited therein. Another important and interesting area of research, which has got great attention from the researchers recently, is devoted to the stability analysis of differential equations for classical and fractional order. The notion of Ulam stability, which can be considered as a special type of data dependence, was initiated by Ulam [24, 25]. Hyers, Aoki, Rassias, and Obloza contributed in the development of this field (see [26,27,28,29,30] and the references therein). Meanwhile, there have been few works considering the Ulam stability of a variety of classes of fractional differential equations [31,32,33,34,35,36,37,38,39,40,41,42,43,44].
In this paper, we study the existence, uniqueness, and Ulam–Hyers stability of solutions for conformable derivatives in the Caputo setting with four-point integral conditions:
where \({{}_{a}^{C}}\mathfrak{D}^{\alpha ,\rho }\) denotes the left conformable derivative in the Caputo setting of order α with \(\rho \in (0,1]\), \(f:[a,T]\times \mathbb{R}\to \mathbb{R}\) is a continuous function, \(a\geq 0\), the points \(\xi , \sigma \in {(a,T)}\), given constants \(\mu _{1},\mu _{2},\lambda \in \mathbb{R}\), and \({}_{a}\mathfrak{I}^{\beta ,\rho }\) is the left conformable integral operator of order \(\beta >0\). Indeed, we study existence and uniqueness results by applying standard fixed point theorem such as the Banach contraction mapping principle, Krasnoselskii’s fixed point theorem, and Leray–Schauder nonlinear alternative. In addition, we study different types of Ulam stability: Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias stability for problem (1.1).
The paper is organized as follows. A brief review of the fractional calculus theory is given in Sect. 2. In Sect. 3, we prove the existence and uniqueness of solutions for problem (1.1). In Sect. 4, we discuss the Ulam–Hyers stability results. Finally, examples are given in Sect. 5 to illustrate the usefulness of our main results.
2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus and present preliminary results needed in our proofs later.
Definition 2.1
The left conformable derivative starting at a point a of the function \(f:[a,\infty )\rightarrow \mathbb{R}\) of order \(0<\rho \leq 1\) is defined by
If \(({}_{a}D^{\rho }f )(t)\) exists on \((a,b)\), then \(({}_{a}D^{\rho }f )(a)=\lim_{t\rightarrow a^{+}} ({}_{a}D ^{\rho }f )(t)\). If f is differentiable, then
The corresponding left conformable integral is defined as
For the extension to the higher order \(\rho >1\), see [45].
Definition 2.2
([45])
The left Riemann–Liouville conformable integral of a function \(f:[a,\infty )\rightarrow \mathbb{R}\) of order α with \(0<\rho \leq 1\) is defined by
where \(\alpha \in \mathbb{C}\), \(\Re (\alpha )\geq 0\).
Definition 2.3
([45])
The left Riemann–Liouville conformable derivative of a function \(f:[a,\infty )\rightarrow \mathbb{R}\) of order \(\alpha \in \mathbb{C}\), \(\Re (\alpha )\geq 0\) with \(0<\rho \leq 1\) is defined by
where \(m=\lceil \Re (\alpha )\rceil =\min \{m\in \mathbb{Z}|m\geq \Re (\alpha )\}\), \({}_{a}^{m}D^{\rho }=\underbrace{{{}_{a}D^{\rho }} {{}_{a}D^{\rho }} \cdots {{}_{a}D^{\rho }}}_{{m\text{-times}}}\), and \({}_{a}D^{ \rho }\) is the left conformable differential operator presented in Definition 2.1.
Definition 2.4
([45])
The left Caputo conformable derivative of a function \(f:[a,\infty )\rightarrow \mathbb{R}\) of order \(\alpha \in \mathbb{C}\), \(\Re (\alpha )\geq 0\) with \(0<\rho \leq 1\) is defined by
provided the right-hand side exists.
Lemma 2.1
([45])
Let \(\Re (\alpha )>0\), \(\Re (\beta )>0\), and \(\Re ( \nu )>0\). Then the following formulas hold:
and
Lemma 2.2
([45])
Let \(f\in C_{\alpha ,a}^{n}[a,b]\), \(\alpha \in \mathbb{C}\). Then
where n is the smallest integer greater than or equal to α.
Lemma 2.3
For \(\alpha >0\), the general solution of the fractional differential equation \({}_{a}^{C}\mathfrak{D}^{\alpha ,\rho } u(t)=0\) is given by
where \(c_{i}\in \mathbb{R}\), \(i=0,1,\ldots ,n-1\), n is the smallest integer greater than or equal to α.
In view of Lemma 2.3, it follows that
for some \(c_{i}\in \mathbb{R}\), \(i=0,1,\ldots ,n-1\).
For convenience we set constants
Lemma 2.4
Let \(1<\alpha \leq 2\), \(0<\rho \leq 1\), \(\beta >0\), \(\xi ,\sigma \in (a,T)\), \(\lambda , \mu _{1}, \mu _{2}\in \mathbb{R}\), and \(y\in C([a,T],\mathbb{R})\) and a constant
Then the problem
has a unique solution given by
where
Proof
Using Lemma 2.3, (2.11) can be expressed as an equivalent integral equation
for arbitrary constants \(c_{0},c_{1}\in \mathbb{R}\).
Taking the left-fractional conformable integral operator of order \(\beta >0\) for (2.14), we have
From the first condition of (2.12), it follows that
The second condition of (2.12) and (2.15) implies
From (2.16) and (2.17), we obtain two constants as follows:
and
Substituting constants \(c_{0}\) and \(c_{1}\) into (2.14), we obtain (2.13). The converse follows by direct computation. The proof is completed. □
3 Existence and uniqueness results
Let \(\mathcal{C}=C([a, T],\mathbb{R})\) denote the Banach space of all continuous functions from \([a, T]\) to \(\mathbb{R}\) endowed with the norm defined by \(\|x\|=\sup_{t\in [a, T]}|x(t)|\). Throughout this paper, for convenience, the expression \({{}_{a}}\mathfrak{I}^{b,\rho }f(s,x(s))(c)\) means
where \(b\in \{\alpha ,\alpha +\beta \}\) and \(c\in \{t,T,\xi ,\sigma \}\).
In view of Lemma 2.4, we define an operator \(\mathcal{F}: \mathcal{C}\rightarrow \mathcal{C}\) by
It should be noticed that problem (1.1) has solutions if and only if the operator \(\mathcal{F}\) has fixed points. In the following subsections we prove existence, as well as existence and uniqueness results, for the boundary value problem (1.1) by using a variety of fixed point theorems. In addition, we set
and
3.1 Existence and uniqueness result via Banach’s fixed point theorem
The first existence and uniqueness result is based on the Banach contraction mapping principle (Banach’s fixed point theorem).
Theorem 3.1
Assume that \(f:[a,T]\times \mathbb{R}\to \mathbb{R}\) is a continuous function such that
- (H1):
-
there exists a constant \(L>0\) such that \(|f(t,x)-f(t,y)| \leq L|x-y|\) for each \(t\in [a, T]\) and \(x, y\in \mathbb{R}\).
If
where Φ is defined by (3.6), then the boundary value problem (1.1) has a unique solution on \([a, T]\).
Proof
We transform problem (1.1) into a fixed point problem, \(x=\mathcal{F}x\), where the operator \(\mathcal{F}\) is defined as in (3.1). Observe that the fixed points of the operator \(\mathcal{F}\) are solutions of problem (1.1). Applying the Banach contraction mapping principle, we shall show that \(\mathcal{F}\) has a unique fixed point. Now, we let \(\sup_{t \in [a,T]}|f(t,0)|=M< \infty \) and choose a positive constant r satisfying
Next, we show that \(\mathcal{F} B_{r} \subset B_{r}\), where \(B_{r}=\{x \in {\mathcal{{C}}}: \|x\|\le r \}\). For any \(x \in B_{r}\), we have
which implies that \(\|{\mathcal{F}}x\|\le r\) and therefore \(\mathcal{F}B_{r}\subset B_{r}\).
Next, we let \(x, y\in \mathcal{C}\). Then, for \(t\in [a,T]\), we have
which implies that \(\|\mathcal{F}x-\mathcal{F}y\|\leq L\varPhi \|x-y\|\). As \(L\varPhi <1\), \(\mathcal{F}\) is a contraction operator. Therefore, we deduce, by the Banach contraction mapping principle, that \(\mathcal{F}\) has a fixed point which is the unique solution of problem (1.1) on \([a,T]\). The proof is completed. □
3.2 Existence result via Krasnoselskii’s fixed point theorem
The next existence theorem is based on Krasnoselskii’s fixed point theorem.
Lemma 3.1
(Krasnoselskii’s fixed point theorem [46])
Let M be a closed, bounded, convex, and nonempty subset of a Banach space X. Let A, B be the operators such that (a) \(Ax+By \in M\) whenever \(x, y \in M\); (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists \(z \in M\) such that \(z=Az+Bz\).
Theorem 3.2
Let \(f : [a,T]\times {\mathbb{R}} \to \mathbb{R}\) be a continuous function satisfying (H1). In addition we assume that
- (H2):
-
\(|f(t,x)|\le \delta (t)\), \(\forall (t,x) \in [a,T] \times {\mathbb{R}}\), and \(\delta \in C([a,T], {\mathbb{R}}^{+})\).
Then the boundary value problem (1.1) has at least one solution on \([a,T]\) provided
Proof
Setting \(\sup_{t\in [a, T]}|\delta (t)|=\|\delta \|\) and choosing
where Φ is defined by (3.6), we consider \(B_{\overline{r}}=\{x\in \mathcal{C}:\|x\|\leq \overline{r}\}\). Let us define the operators \(\mathcal{F}_{1}\) and \(\mathcal{F}_{2}\) on \(B_{\overline{r}}\) by
For any \(x,y\in B_{\overline{r}}\), we have
This shows that \(\mathcal{F}_{1}x+\mathcal{F}_{2}y\in B_{\overline{r}}\) which satisfies condition (a) of Lemma 3.1. It is easy to see, using (3.8), that \(\mathcal{F}_{2}\) is a contraction mapping and also condition (c) of Lemma 3.1 holds.
To show that condition (b) of Lemma 3.1 is fulfilled, we apply the continuity of a function f, which leads to operator \(\mathcal{F}_{1}\) being continuous. Also, the set \(\mathcal{F}_{1} B _{\overline{r}}\) is uniformly bounded as
Next, we prove the compactness of the operator \(\mathcal{F}_{1}\) by setting \(\sup_{(t,x) \in [a,T] \times B_{\overline{r}}}|f(t,x)|= \overline{f}< \infty \). Then, for \(a\le t_{1}\le t_{2}\le T\), we have
which is independent of x and tends to zero as \(t_{2}\to t_{1}\). Thus, the set \(\mathcal{F}_{1}B_{\overline{r}}\) is equicontinuous. So the set \(\mathcal{F}_{1}B_{\overline{r}}\) is relatively compact. Hence, by the Arzelá–Ascoli theorem, the operator \(\mathcal{F}_{1}\) is compact on \(B_{\overline{r}}\). Thus all the assumptions of Lemma 3.1 are satisfied. So, the conclusion of Lemma 3.1 implies that the boundary value problem (1.1) has at least one solution on \([a,T]\). The proof is completed. □
3.3 Existence result via Leray–Schauder’s nonlinear alternative
By using Leray–Schauder’s nonlinear alternative, we give in this subsection our last existence theorem.
Lemma 3.2
(Nonlinear alternative for single-valued maps [47])
Let E be a Banach space, C be a closed, convex subset of E, X be an open subset of C, and \(0\in X\). Suppose that \(F:\overline{X}\to C\) is a continuous, compact (that is, \(F( \overline{X})\) is a relatively compact subset of C) map. Then either
-
(i)
F has a fixed point in X̅, or
-
(ii)
there is \(x\in \partial X\) (the boundary of X in C) and \(\lambda \in (0,1)\) with \(x=\lambda F(x)\).
Theorem 3.3
Assume that:
- (H3):
-
there exist a continuous nondecreasing function \(\psi :[0,\infty )\to (0,\infty )\) and a function \(p\in C([a,T], \mathbb{R}^{+})\) such that
$$ \bigl\vert f(t,x) \bigr\vert \le p(t)\psi \bigl( \Vert x \Vert \bigr) \quad \textit{for each } (t,x) \in [a,T]\times \mathbb{R}; $$ - (H4):
-
there exists a constant \(N>0\) such that
$$ \frac{N}{\|p\|\psi (N)\varPhi +M_{4}}> 1, $$where Φ is defined by (3.6).
Then the boundary value problem (1.1) has at least one solution on \([a,T]\).
Proof
Let the operator \(\mathcal{F}\) be defined by (3.1). Firstly, we shall show that \(\mathcal{F}\) maps bounded sets (balls) into bounded sets in \(\mathcal{C}\). For a number \(R>0\), let \(B_{R} = \{x \in \mathcal{C}: \|x\| \le R\}\) be a bounded ball in \(\mathcal{C}\). Then, for \(t\in [a,T]\), we have
which leads to
Secondly, we show that \(\mathcal{F}\) maps bounded sets into equicontinuous sets of \(\mathcal{C}\). Let \(v_{1}, v_{2} \in [a,T]\) with \(v_{1}< v_{2}\) and \(x \in B_{R}\). Then we have
Obviously, the above inequality tends to zero independently of \(x\in B_{R}\) as \(v_{2} \to v_{1}\). Therefore it follows from the Arzelá–Ascoli theorem that \(\mathcal{F}: \mathcal{C} \to \mathcal{C}\) is completely continuous.
Finally, we show that there exists an open set \(X\subseteq \mathcal{C}\) with \(x\ne \theta \mathcal{F}(x)\) for \(\theta \in (0,1)\) and \(x\in \partial X\).
Let \(x\in \mathcal{C}\) be a solution of \(x=\theta \mathcal{F}x\) for \(\theta \in [ 0,1]\). Then, for \(t\in [a,T]\), we have
which, on taking the norm for \(t \in [a,T]\), implies that
Consequently, we have
In view of (H4), there exists N such that \(\|x\|\ne N\). Let us set
Note that the operator \(\mathcal{F}:\overline{Y}\rightarrow \mathcal{C}\) is continuous and completely continuous. From the choice of Y, there is no \(x\in \partial Y\) such that \(x=\theta \mathcal{F}x\) for some \(\theta \in (0,1)\). Consequently, by the nonlinear alternative of Leray–Schauder type (Lemma 3.2), we deduce that \(\mathcal{F}\) has a fixed point \(x\in \overline{Y}\) which is a solution of the boundary value problem (1.1). This completes the proof. □
4 Ulam–Hyers stability analysis
In this section, we study Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability of problem (1.1).
Definition 4.1
Problem (1.1) is Ulam–Hyers stable if there exists a real constant \(\kappa >0\) such that, for \(\varepsilon >0\) and for every solution \(y\in \mathcal{C}\) of the inequality
there exists a solution \(x\in \mathcal{C}\) of problem (1.1) with
Definition 4.2
Problem (1.1) is generalized Ulam–Hyers stable if there is \(\varPsi _{f}\in C(\mathbb{R}^{+},\mathbb{R}^{+})\) and \(\varPsi _{f}(0)=0\) such that for every solution \(y\in \mathcal{C}\) of inequality (4.1) there exists a solution \(x\in \mathcal{C}\) of problem (1.1) which satisfies the following inequality:
Definition 4.3
Problem (1.1) is Ulam–Hyers–Rassias stable with respect to \(\varphi :[a,T]\to \mathbb{R}^{+}\) if there exists a real constant \(\kappa _{\varphi } >0\) such that, for \(\varepsilon >0\) and for every solution \(y\in \mathcal{C}\) of the inequality
there exists a solution \(x\in \mathcal{C}\) of problem (1.1) with
Definition 4.4
Problem (1.1) is generalized Ulam–Hyers–Rassias stable with respect to \(\varphi :[a,T]\to \mathbb{R}^{+}\) if there exists a real constant \(\kappa _{\varphi } >0\) such that, for \(\varepsilon >0\) and for every solution \(y\in \mathcal{C}\) of the inequality
there exists a solution \(x\in \mathcal{C}\) of problem (1.1) with
Remark 4.1
A function \(y\in \mathcal{C}\) is a solution of inequality (4.1) if and only if there exists a function \(g\in \mathcal{C}\) (which depends on y) such that
-
(i)
\(|g(t)|<\varepsilon \), \(t\in [a,T]\),
-
(ii)
\({{}_{a}^{C}}\mathfrak{D}^{\alpha ,\rho }y(t)=f(t,y(t))+g(t)\), \(t\in [a,T]\).
By Remark 4.1, the solution of the equation
can be formulated by
Then we have the following estimation.
Remark 4.2
Let \(y\in \mathcal{C}\) be a solution of inequality (4.1). Then y is a solution of the following integral inequality:
Now we are ready to state our Ulam–Hyers stability result.
Theorem 4.1
Assume that \(f:[a,T]\times \mathbb{R}\to \mathbb{R}\) is a continuous function and (H1) holds with \(L<\varPhi ^{-1}\). Then problem (1.1) is Ulam–Hyers stable on \([a,T]\) and consequently generalized Ulam–Hyers stable.
Proof
Let \(y\in \mathcal{C}\) be the solution of inequality (4.1) and let \(x\in \mathcal{C}\) be the unique solution of
Then consider
which yields that
Taking for simplicity
such that \(L\varPhi < 1\), then (4.4) becomes
Thus problem (1.1) is Ulam–Hyers stable. Further, using \(\varPsi _{f}(\varepsilon )=\kappa \varepsilon \), \(\varPsi _{f}(0)=0\) implies that solution of (1.1) is generalized Ulam–Hyers stable. This completes the proof. □
Remark 4.3
A function \(y\in {\mathcal{C}}\) is a solution of inequality (4.2) if and only if there exists a function \(h\in {\mathcal{C}}\) (which depends on y) such that
-
(i)
\(|h(t)|<\varepsilon \varphi (t)\), \(t\in [a,T]\),
-
(ii)
\({{}_{a}^{C}}\mathfrak{D}^{\alpha ,\rho }y(t)=f(t,y(t))+h(t)\), \(t\in [a,T]\).
By Remark 4.3, the solution of the equation
can be formulated by
Then we have the following estimation.
Remark 4.4
Let \(y\in {\mathcal{C}}\) be a solution of inequality (4.2). Then y is a solution of the following integral inequality:
Now we are ready to state our Ulam–Hyers–Rassias stability result.
Theorem 4.2
Assume that \(f:[a,T]\times \mathbb{R}\to \mathbb{R}\) is a continuous function satisfying (H3). If (H4) holds and there exists a function \(h(t)\) satisfying Remark 4.3 with \(2N\leq h(t)\), \(t\in [a,T]\), then problem (1.1) is Ulam–Hyers–Rassias stable and consequently generalized Ulam–Hyers–Rassias stable.
Proof
Let \(y\in \mathcal{C}\) be the solution of inequality (4.2) and \(x\in \mathcal{C}\) be a solution of
Then we consider
which yields that
Taking for simplicity \(\kappa _{\varphi }=(1+\varPhi )\), then (4.5) becomes
Thus problem (1.1) is Ulam–Hyers–Rassias stable. Further, in the same fashion, it can be shown that problem (1.1) is generalized Ulam–Hyers–Rassias stable. □
5 Examples
In this section, we present examples to illustrate our results.
Example 5.1
Consider the following four-point integral boundary value problem:
Here \(\alpha =3/2\), \(\rho =1\), \(a=0\), \(T=1\), \(\mu _{1}=1/2\), \(\mu _{2}=3/4\), \(\xi =1/2\), \(\lambda =109\), \(\sigma =1/3\), \(\beta =1/3\). From information, we can find that \(\mathcal{J}= 30.98772937\neq 0\) and
(i) If
then \(|f(t,x)-f(t,y)| \leq 2/57|x-y|\), and consequently (H1) is satisfied with \(L=2/57\). Thus \(L\varPhi = 0.06022632<1\). Hence, by Theorem 3.1, problem (5.1) has a unique solution on \([0,1]\).
Further, we can find that \(\kappa =\varPhi /(1-L\varPhi )=1.82645044>0\). Hence, by Theorem 4.1, problem (5.1) is Ulam–Hyers stable and also generalized Ulam–Hyers stable.
(ii) If
it follows that
Choosing \(p(t) = (1/19)(t-1)^{2}\) and \(\psi (|x|) = |x| + 1\), we can show that
implies that \(N>2.860892580\). Hence, by Theorem 3.3, problem (5.1) has at least one solution on \([0,1]\).
Further, by choosing \(h(t)=7e^{(t+1)^{2}}\) and \(N=3\), then we have \(2N\leq h(t)\) for all \(t\in [0,1]\). Now we set \(\varphi (t)=e^{(t+1)^{2}}\) and we find that \(\kappa _{\varphi }=(1+ \varPhi )=2.71645006>0\). Hence, by Theorem 4.2, problem (5.1) is Ulam–Hyers–Rassias stable and also generalized Ulam–Hyers–Rassias stable on \([0,1]\).
6 Conclusion
Existence and uniqueness of solutions for conformable derivatives in the Caputo setting with four-point integral conditions are investigated. The existence results are proved via Krasnoselskii’s fixed point theorem and Leray–Schauder nonlinear alternative, while the uniqueness result is obtained by applying the Banach contraction mapping principle. Further, different types of Ulam stability, such as Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–Hyers–Rassias stability, are presented. Examples illustrating the obtained results are also included.
References
Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham (2017)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, vol. 301. Longman, Harlow (1994); copublished in the United States with, John Wiley & Sons, Inc., New York
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, Yverdon (1993)
Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2010)
Graef, J.R., Kong, L.: Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives. Fract. Calc. Appl. Anal. 16, 695–708 (2013)
Alsaedi, A., Ntouyas, S.K., Agarwal, R.P., Ahmad, B.: A nonlocal multi-point multi-term fractional boundary value problem with Riemann-Liouville type integral boundary conditions involving two indices. Adv. Differ. Equ. 2013, 369 (2013)
Zhai, C., Xu, L.: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820–2827 (2014)
Li, B., Sun, S., Li, Y., Zhao, P.: Multi-point boundary value problems for a class of Riemann–Liouville fractional differential equations. Adv. Differ. Equ. 2014, 151 (2014)
Zhang, L., Ahmad, B., Wang, G.: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half line. Bull. Aust. Math. Soc. 91, 116–128 (2015)
Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2015)
Qarout, D., Ahmad, B., Alsaedi, A.: Existence theorems for semilinear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions. Fract. Calc. Appl. Anal. 19, 463–479 (2016)
Ahmad, B., Ntouyas, S.K., Agarwal, R.P., Alsaedi, A.: Existence results for sequential fractional integro-differential equations with nonlocal multi-point and strip conditions. Bound. Value Probl. 2016, 205 (2016)
Agarwal, R.P., Ahmad, B., Garout, D., Alsaedi, A.: Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions. Chaos Solitons Fractals 102, 149–161 (2017)
Xu, M., Han, Z.: Positive solutions for integral boundary value problem of two-term fractional differential equations. Bound. Value Probl. 2018, 100 (2018)
Wang, G., Pei, K., Agarwal, R.P., Zhang, L., Ahmad, B.: Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 343, 230–239 (2018)
Baleanu, D., Mousalou, A., Rezapour, S.: The extended fractional Caputo-Fabrizio derivative of order \(0\le \sigma < 1\) on \(C_{ \mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018, 255 (2018)
Baleanu, D., Ghafarnezhad, K., Rezapour, S., Shabibi, M.: On the existence of solutions of a three steps crisis integro-differential equation. Adv. Differ. Equ. 2018, 135 (2018)
Agarwal, R.P., Baleanu, D., Hedayati, V., Rezapour, S.: Two fractional derivative inclusion problems via integral boundary condition. Appl. Math. Comput. 257, 205–212 (2015)
Baleanu, D., Mohammadi, H., Rezapour, S.: The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv. Differ. Equ. 2013, 359 (2013)
Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1940)
Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1968)
Hyers, D.H.: On the stability of linear functional equations. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
Aoki, T.: On the stability of linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)
Rassias, T.M.: On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Rassias, T.M.: On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 158, 106–113 (2003)
Oblaza, M.: Hyers stability of linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259–270 (1993)
Benchohra, M., Lazreg, J.E.: On stability of nonlinear implicit fractional differential equations. Matematiche 70, 49–61 (2015)
Benchohra, M., Lazreg, J.E.: Existence and Ulam stability for non-linear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babeş–Bolyai, Math. 62, 27–38 (2017)
Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63 (2011)
Wang, J., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)
Aliyu, A., Inc, M., Yusuf, A., Baleanu, D.: A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 116, 268–277 (2018)
Abro, K., Memon, A., Memon, A.: Functionality of circuit via modern fractional differentiations. Analog Integr. Circuits Signal Process. 99, 11–21 (2019)
Yusuf, A., Qureshi, S., Inc, M., Aliyu, A., Baleanu, D., Shaikh, A.: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos, Interdiscip. J. Nonlinear Sci. 28(12), 123121 (2018)
Qureshi, S., Chandio, M.: Absolute stability for a fractional numerical algorithm. Sindh Univ. Res. J. Sci. Ser. 49(3), 655–658 (2017)
Ghanbari, B., Yusuf, A., Inc, M.: Dark optical solitons and modulation instability analysis of nonlinear Schrodinger equation with higher order dispersion and cubic-quintic nonlinearity. J. Coupled Syst. Multiscale Dyn. 6, 217–227 (2018)
Yusuf, A., Inc, M., Bayram, M.: Stability analysis and conservation laws via multiplier approach for the perturbed Kaup–Newell equation. J. Adv. Phys. 7, 451–453 (2018)
Abdel-Gawad, H.I., Tantawy, M., Inc, M., Yusuf, A.: On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis. Mod. Phys. Lett. B 32(29), 1850353 (2018)
Inc, M., Yusuf, A., Aliyu, A., Baleanu, D.: Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics. Opt. Quantum Electron. 50, 190 (2018)
Inc, M., Yusuf, A., Aliyu, A., Hashemi, M.: Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients. Eur. Phys. J. Plus 133, 168 (2018)
Wang, J., Zhou, Y., Medved, M.: Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods Nonlinear Anal. 41, 113–133 (2013)
Jarad, F., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)
Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
Funding
A. Aphithana is supported by the Thailand Research Fund through the Royal Golden Jubilee PhD Program (Grant No. PHD/0134/2558).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Aphithana, A., Ntouyas, S.K. & Tariboon, J. Existence and Ulam–Hyers stability for Caputo conformable differential equations with four-point integral conditions. Adv Differ Equ 2019, 139 (2019). https://doi.org/10.1186/s13662-019-2077-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2077-5