In this section, to prove the existence of extremal solutions for (1), we first give the following linear equations:
$$ \textstyle\begin{cases} \Delta x(k)=Mx(k)+(\mathcal{L}x)(k)+\sigma _{\bar{\eta }}(k), \quad k\in \mathbb{Z}[0,T-1], \\ g(\eta (0),\eta (T))+M_{1}(x(0)-\eta (0))-M_{2}(x(T)-\eta (T))=0, \end{cases} $$
(6)
where \(\sigma _{\eta }(k)=(Q\eta )(k)-M\eta (k)-(\mathcal{L}\eta )(k)\).
Lemma 3.1
A function
\(x\in E_{0}\)
is a solution of (6) if and only if
x
is a solution of the summation equation below:
$$ x(k)= \frac{C_{\eta }(1+M)^{k}}{M_{1}-M_{2}(1+M)^{T}}+ \sum_{i=0}^{T-1}G(k,i) \bigl[\sigma _{\eta }(i)+(\mathcal{L}x) (i))\bigr], $$
where
\(C_{\eta }=-g(\eta (0),\eta (T))+M_{1}\eta (0)-M_{2}\eta (T)\), M, \(M_{1}\), \(M_{2}\)
are constants satisfying
\(M\geq 0\), \(M_{1}\neq M _{2}(1+M)^{T}\), and
$$ G(k,i)= \frac{1}{M_{1}-M_{2}(1+M)^{T}} \textstyle\begin{cases} \frac{M_{1}(1+M)^{k}}{(1+M)^{i+1}}, &0\leq i\leq k-1\leq T, \\ \frac{M_{2}(1+M)^{T+k}}{(1+M)^{i+1}}, &0\leq k\leq i\leq T-1. \end{cases} $$
Proof
Assume that \(x\in E_{0}\) is a solution of (6). Set \(x(k)=y(k)(1+M)^{k}\), \(k\in \mathbb{Z}[0,T]\). From (6), we see that \(y(k)\) satisfies
$$ \textstyle\begin{cases} \Delta y(k)= \frac{\sigma _{\eta }(k)+(\mathcal{L}(1+M)y)(k)}{(1+M)^{k+1}}, \quad k\in \mathbb{Z}[0,T-1], \\ y(0)= \frac{C_{\eta }}{M_{1}}+ \frac{M_{2}(1+M)^{T}}{M_{1}}y(T). \end{cases} $$
(7)
By applying (7), one arrives at
$$ y(k)=y(0)+ \sum_{i=0}^{k-1} \frac{\sigma _{\eta }(k)+(\mathcal{L}(1+M)y)(k)}{(1+M)^{k+1}}. $$
(8)
Let \(k=T\) in (8). Then one has
$$ y(T)=y(0)+ \sum_{i=0}^{T-1} \frac{\sigma _{\eta }(k)+(\mathcal{L}(1+M)y)(k)}{(1+M)^{k+1}}. $$
From the boundary condition \(y(T)= \frac{M_{1}y(0)-C_{\eta }}{M_{2}(1+M)^{T}}\), we get
$$ y(0)= \frac{C_{\eta }}{M_{1}-M_{2}(1+M)^{T}}+ \frac{M_{2}(1+M)^{T}}{M_{1}-M_{2}(1+M)^{T}} \sum _{i=0}^{T-1} \frac{\sigma _{\eta }(i)+(\mathcal{L}(1+M)y)(i)}{(1+M)^{i+1}}. $$
(9)
Substituting (9) into (8) and using \(y(k)= \frac{x(k)}{(1+M)^{k}}\), \(k\in \mathbb{Z}[0,T]\), we have
$$ \begin{aligned} \frac{x(k)}{(1+M)^{k}}= {}& \frac{C_{\eta }}{M_{1}-M_{2}(1+M)^{T}}+ \frac{M_{1}}{M_{1}-M_{2}(1+M)^{T}} \sum_{i=0}^{k-1} \frac{\sigma _{\eta }(i)+(\mathcal{L}x)(i)}{(1+M)^{i+1}} \\ &{}+ \frac{M_{2}(1+M)^{T}}{M_{1}-M_{2}(1+M)^{T}} \sum_{i=k}^{T-1} \frac{\sigma _{\eta }(i)+(\mathcal{L}x)(i)}{(1+M)^{i+1}}. \end{aligned} $$
Let
$$ G(k,i)= \frac{1}{M_{1}-M_{2}(1+M)^{T}} \textstyle\begin{cases} \frac{M_{1}(1+M)^{k}}{(1+M)^{i+1}}, &0\leq i\leq k-1\leq T, \\ \frac{M_{2}(1+M)^{T+k}}{(1+M)^{i+1}}, &0\leq k\leq i\leq T-1. \end{cases} $$
We see that x is a solution of (6) and the proof is complete. □
Apparently, \(\|G(k,i)\|=\max \{| \frac{M_{1}(1+M)^{T}}{M_{1}-M_{2}(1+M)^{T}}|,|\frac{M_{2}(1+M)^{T}}{M _{1}-M_{2}(1+M)^{T}}|\}\). In the remainder of the paper, we denote \(\tau =\|G(k,i)\|=\max \{|\frac{M_{1}(1+M)^{T}}{M_{1}-M_{2}(1+M)^{T}}|,|\frac{M _{2}(1+M)^{T}}{M_{1}-M_{2}(1+M)^{T}}|\}\).
Lemma 3.2
Suppose that
\(M\geq 0\), \(M_{1}\neq M_{2}(1+M)^{T}\), and
$$ \tau \Vert \mathcal{L} \Vert T< 1. $$
(10)
Then problem (6) has a unique solution.
Proof
Define an operator \(F: E_{0}\to E_{0}\) by
$$ (Fx) (k)= \frac{C_{\eta }(1+M)^{k}}{M_{1}-M_{2}(1+M)^{T}}+ \sum_{i=0}^{T-1}G(k,i) \bigl[\sigma (i)+(\mathcal{L}x) (i)\bigr], \quad k\in \mathbb{Z}[0,T-1]. $$
For any \(x_{1}, x_{2}\in E_{0}\), we have
$$ \vert Fx_{1}-Fx_{2} \vert \leq \Biggl\vert \sum _{i=0}^{T-1}G(k,i) \bigl[\bigl( \mathcal{L}(x_{2}-x_{1})\bigr) (i) \bigr] \Biggr\vert \leq \tau T \Vert \mathcal{L} \Vert \Vert x_{2}-x_{1} \Vert . $$
Hence, by the Banach contraction principle, F has a unique fixed point and (6) has only one solution. We complete the proof. □
Next, we give the following definitions which help us to testify our main results.
Definition 3.3
A function w is called an upper solution of (1) if
$$ \textstyle\begin{cases} \Delta w(k)\geq (Qw)(k), \quad k\in \mathbb{Z}[0,T-1], \\ g(w(0),w(T))\geq 0, \end{cases} $$
and a lower solution of (1) is defined similarly by reversing the inequalities above.
Theorem 3.4
Suppose that (4) and (10) hold, and
\(Q\in C[E_{0},E _{0}]\)
-
\((H_{1})\)
:
-
the functions
w, v
are upper and lower solutions of problem (1) with
\(w(k)\leq v(k)\), \(k\in \mathbb{Z}[0,T]\);
-
\((H_{2})\)
:
-
Q
satisfies
$$ (Qy) (k)-(Qz) (k)\leq M\bigl(y(k)-z(k)\bigr)+\bigl(\mathcal{L}(y-z)\bigr) (k), \quad k\in \mathbb{Z}[0,T-1], $$
for
\(w(k)\leq z(k)\leq y(k)\leq v(k)\), where
\(M\geq 0\), \(\mathcal{L} \in C[E_{0},E_{0}]\)
is a positive linear operator;
-
\((H_{3})\)
:
-
there exist constants
\(M_{1}\), \(M_{2}\)
such that
\(M_{2}\geq M _{1}> 0\)
and
$$ g(\bar{y},\bar{z})-g(y,z)\geq M_{1}(\bar{y}-y)-M_{2}( \bar{z}-z)) $$
for
\(w(0)\leq y\leq \bar{y}\leq v(0)\), \(w(T)\leq z\leq \bar{z}\leq v(T)\), and
\(0<\lambda \leq 1\)
with
\(\lambda =\frac{M_{1}}{M_{2}}\).
Then problem (1) has extremal solutions in the sector
\([w,v]=\{x:w(k)\leq x(k)\leq v(k),k\in \mathbb{Z}[0,T]\}\).
Proof
First, we define the sequences \(\{v_{n}(k)\}\), \(\{w_{n}(k)\}\) as follows:
$$ \textstyle\begin{cases} \Delta v_{n}(k)=Mv_{n}(k)+(\mathcal{L}v_{n})(k)+(Qv_{n-1})(k)-Mv_{n-1}(k)-( \mathcal{L}v_{n-1})(k), \\ g(v_{n-1}(0),v_{n-1}(T))+M_{1}(v_{n}(0)-v_{n-1}(0))-M_{2}(v_{n}(T)-v _{n-1}(T))=0 \end{cases} $$
(11)
and
$$ \textstyle\begin{cases} \Delta w_{n}(k)=Mw_{n}(k)+(\mathcal{L}w_{n})(k)+(Qw_{n-1})(k)-Mw_{n-1}(k)-( \mathcal{L}w_{n-1})(k), \\ g(w_{n-1}(0),w_{n-1}(T))+M_{1}(w_{n}(0)-w_{n-1}(0))-M_{2}(w_{n}(T)-w _{n-1}(T))=0 \end{cases} $$
(12)
for \(n=1,2,\ldots \) , where \(v_{0}=v\), \(w_{0}=w\).
It follows from Lemma 3.2 that both (11) and (12) have unique solutions, respectively.
We have four steps to complete the proof.
Step 1. We demonstrate that \(w_{n-1}\leq w_{n}\) and \(v_{n}\leq v_{n-1}\), \(n=1,2,\ldots \) .
Set \(p=v_{1}-v\). Employing \((H_{1})\), we have
$$ \begin{aligned} \Delta p(k) &=\Delta v_{1}(k)-\Delta v(k) \\ &\geq Mv_{1}(k)+( \mathcal{L}v_{1}) (k)+(Qv) (k)-Mv(k)-( \mathcal{L}v) (k)-(Qv) (k) \\ &=Mp(k)+( \mathcal{L}p) (k), \quad k\in \mathbb{Z}[0,T-1] \end{aligned} $$
and
$$ \begin{aligned} p(0) &=v_{1}(0)-v(0)=- \frac{1}{M_{1}}g \bigl(v(0),v(T)\bigr)+ \frac{M_{2}}{M_{1}}\bigl(v_{1}(T)-v(T)\bigr) \geq \frac{M_{2}}{M_{1}}p(T). \end{aligned} $$
From Lemma 2.2 and \(M_{2}\geq M_{1}> 0\), we get \(p\leq 0\), so \(v_{1}\leq v\).
Employing mathematical induction, it is readily seen that \(v_{n}\) is a nonincreasing sequence. Analogously, we can show \(w_{n}\) is a nondecreasing sequence.
Step 2. We prove that \(w_{1}\leq v_{1}\) if \(w\leq v\).
Let \(p=w_{1}-v_{1}\). Using \((H_{2})\) and \((H_{3})\), we get
$$ \begin{aligned} \Delta p(k) ={}&\Delta w_{1}(k)-\Delta v_{1}(k) \\ ={}&Mw_{1}(k)+( \mathcal{L}w_{1}) (k)+(Qw) (k)-Mw(k)-( \mathcal{L}w) (k) \\ & {}-Mv_{1}(k)-(\mathcal{L}v_{1}) (k)-(Qv) (k)+Mv(k)+( \mathcal{L}v) (k) \\ \geq{}& Mp(k)+(\mathcal{L}p) (k) , \quad k\in \mathbb{Z}[0,T-1] \end{aligned} $$
and
$$\begin{aligned} p(0) ={}&w_{1}(0)-v_{1}(0) \\ ={}&{-} \frac{1}{M_{1}}g\bigl(w(0),w(T)\bigr)+ \frac{M_{2}}{M_{1}} \bigl(w_{1}(T)-w(T)\bigr)+w(0) \\ &{}- \biggl[- \frac{1}{M_{1}}g\bigl(v(0),v(T)\bigr)+ \frac{M_{2}}{M_{1}}\bigl(v_{1}(T)-v(T)\bigr)+v(0) \biggr] \\ \geq{} &\frac{M_{2}}{M_{1}}p(T). \end{aligned}$$
From Lemma 2.2, we obtain \(p\leq 0\) and \(w_{1}\leq v_{1}\). By mathematical induction, we obtain \(w_{n}\leq v_{n}\), \(n=1,2,\ldots\) .
Step 3. By the first two steps, we get
$$ w_{0}\leq w_{1}\leq w_{2}\leq \cdots \leq w_{n}\leq \cdots \leq v_{n} \leq \cdots \leq v_{2}\leq v_{1}\leq v_{0}, $$
and each \(v_{n}\), \(w_{n}\) satisfies (10) and (11). It is easy to see that sequences \(\{v_{n}(k)\}\), \(\{w_{n}(k)\}\) are monotonously and bounded, passing to the limit when \(n\to \infty \), we have \(\lim_{n\to \infty }v_{n}(k)=\rho (k)\) and \(\lim_{n\to \infty }w_{n}(k)=r(k)\) uniformly on \(\mathbb{Z}[0,T]\). Clearly, \(\rho (k)\), \(r(k)\) satisfy problem (1).
Step 4. We show that ρ and r are extremal solutions of (1) in \([w,v]\).
Let \(x(k)\) be any solution of (1) such that \(w(k)\leq x(k) \leq v(k)\). Assume that there exists a positive integer n such that \(w_{n}(k)\leq x(k)\leq v_{n}(k)\). Then, setting \(p=w_{n+1}-x\), we have
$$ \begin{aligned} \Delta p(k) &=\Delta w_{n+1}(k)-\Delta x(k) \\ &=Mw_{n+1}(k)+( \mathcal{L}w_{n+1}) (k)+(Qw_{n}) (k)-Mw_{n}(k)-(\mathcal{L}w_{n}) (k)-(Qx) (k) \\ &\geq Mp(k)+(\mathcal{L}p) (k), \quad k\in \mathbb{Z}[0,T-1] \end{aligned} $$
and
$$ \begin{aligned} p(0) ={}&w_{n+1}(0)-x(0) \\ ={}&{-} \frac{1}{M_{1}}g\bigl(w_{n}(0),w_{n}(T)\bigr)+ \frac{M_{2}}{M_{1}}\bigl(w_{n+1}(T)-w_{n}(T) \bigr)\\ &{}+w_{n}(0)-x(0)+ \frac{1}{M_{1}}g\bigl(x(0),x(T)\bigr) \\ \geq {}&\frac{M_{2}}{M_{1}}p(T). \end{aligned} $$
By Lemma 2.2, \(p\leq 0\), i.e., \(w_{n+1}\leq x\). Similarly, we may get that \(x\leq v_{n+1}\) on \(\mathbb{Z}[0,T]\). Since \(w_{0}(k)\leq x(k)\leq v_{0}(k)\), by induction we obtain \(w_{n}(k) \leq x(k)\leq v_{n}(k)\) for every \(n\in \mathbb{N}\), which implies \(r(k)\leq x(k)\leq \rho (k)\), and the proof is complete. □