Consider a fractional differential equation
$$ \begin{gathered} D_{0}^{q}x(t) = f \bigl(t,x(t)\bigr), \quad t\in \mathbb {R}_{+}, \\ x(0) = x_{0}, \\ x'(0) = x_{1}, \end{gathered} $$
(15)
where \(q\in(1,2)\) and \(f\in C(\mathbb {R}_{+}\times \mathbb {R}^{n},\mathbb {R}^{n})\) along with an ordinary differential equation
$$ \begin{gathered} y'(t) = f\bigl(t,y(t) \bigr)+y_{1}, \quad t\in \mathbb {R}_{+}, \\ y(0) = y_{0}, \end{gathered} $$
(16)
where \(x_{0},x_{1},y_{0},y_{1}\in \mathbb {R}^{n}\). Again, we suppose assumption (H). It is known [2, Theorem 3.24] that initial value problem (15) is equivalent to the integral equation
$$x(t)=x_{0}+x_{1} t+\frac{1}{\varGamma(q)} \int_{0}^{t}(t-s)^{q-1}f\bigl(s,x(s)\bigr) \,ds. $$
Analogously to the previous section, we derive
$$\begin{aligned} \bigl\Vert x(t)-y(t) \bigr\Vert &\leq \Vert x_{0}-y_{0} \Vert + \Vert x_{1}-y_{1} \Vert t \\ &\quad {}+\frac{L}{\varGamma(q)} \int_{0}^{t}(t-s)^{q-1} \bigl\Vert x(s)-y(s) \bigr\Vert \,ds +M \int_{0}^{t} \biggl\vert 1-\frac{1}{\varGamma(q)}s^{q-1} \biggr\vert \,ds, \end{aligned}$$
and the Henry–Gronwall inequality yields
$$\bigl\Vert x(t)-y(t) \bigr\Vert \leq \biggl( \Vert x_{0}-y_{0} \Vert + \Vert x_{1}-y_{1} \Vert t+M \int_{0}^{t} \biggl\vert 1-\frac{1}{\varGamma(q)}s^{q-1} \biggr\vert \,ds \biggr)E_{q}\bigl(Lt^{q}\bigr). $$
Hence, for \(x_{0}=y_{0}\), \(x_{1}=y_{1}\), estimation (3) follows for any \(t\in \mathbb {R}_{+}\). Function \(s_{0}(q)\) of (4) is increasing on \((1,2)\) from
$$\lim_{q\to1_{+}}s_{0}(q)=e^{\lim_{q\to1_{+}}{\frac{\ln[\varGamma [q]]}{q-1}}}=e^{\lim_{q\to1_{+}}{\frac{\varGamma'[q]}{\varGamma [q]}}}=e^{-\gamma} \doteq0.561459 $$
to 1. So this time,
$$1-\frac{1}{\varGamma(q)}s^{q-1} \textstyle\begin{cases} >0 & \text{for } 0< s< s_{0},\\ =0 & \text{for } s=s_{0},\\ < 0 & \text{for } s>s_{0}. \end{cases} $$
Consequently, we have (compare with (5))
$$ \int_{0}^{t} \biggl\vert 1-\frac{1}{\varGamma(q)}s^{q-1} \biggr\vert \,ds= \textstyle\begin{cases} t-\frac{t^{q}}{\varGamma(q+1)} & \text{for } 0< t< s_{0},\\ -\lambda(q) & \text{for } t=s_{0},\\ \frac{t^{q}-t\varGamma(q+1)-2\varGamma(q)^{\frac{q}{q-1}}}{\varGamma(q+1)}+2 \varGamma(q)^{\frac{1}{q-1}} & \text{for } t>s_{0}, \end{cases} $$
(17)
where \(\lambda(q)\) is given by (5). One can check numerically that \(-\lambda''(q)<0\) for \(q\in(1,2)\). So, \(-\lambda'(q)\) is decreasing from \(e^{-\gamma}\doteq0.561459\) to \(\frac{3}{4}-\frac {\gamma}{2}\doteq0.461392\), and \(-\lambda(q)\) is increasing from 0 to \(1/2\). Hence for \(q\in(1,2)\), we can estimate
$$ 0\leq-\lambda(q)\leq0.6(q-1). $$
(18)
Next, we need the following analog to Lemma 2.1.
Lemma 3.1
For all
\(t\in \mathbb {R}_{+}\), \(q\in(1,4/3)\), and
\(\kappa>0\), it holds
$$1\leq E_{q}\bigl(\kappa t^{q}\bigr)\leq\frac{e^{\kappa^{\frac{1}{q}}t}}{q} + \frac{4\sqrt{3}\sin\frac{\pi q}{2}}{9q}. $$
Proof
Using Dzherbashyan’s recursion formula [26],
$$E_{\alpha,\beta}(z)=\frac{1}{m}\sum_{h=0}^{m-1}E_{\frac{\alpha }{m},\beta} \bigl(z^{\frac{1}{m}}e^{\frac{2\pi\imath h}{m}}\bigr) $$
for \(\alpha,\beta>0\), \(z\in \mathbb {R}\), \(m\in \mathbb {N}\), where \(\imath=\sqrt {-1}\), we can write
$$ E_{q}(z)=\frac{E_{\frac{q}{2}}(\sqrt{z})+E_{\frac{q}{2}}(-\sqrt{z})}{2} $$
(19)
for any \(z>0\). Next, from [27, Theorem 2.1] we know
$$E_{\alpha}(z)=\frac{-z\sin\pi\alpha}{\pi\alpha} \int_{0}^{\infty}\frac{e^{-r^{\frac{1}{\alpha}}}\,dr}{r^{2}-2rz\cos\pi\alpha+z^{2}} $$
for any \(\alpha>0\), \(z<0\). So, using \(\cos\frac{\pi q}{2}\geq-1/2\) for \(q\in(1,4/3)\), we get
$$\begin{aligned} E_{\frac{q}{2}}(-\sqrt{z})&=\frac{2\sqrt{z}\sin\frac{\pi q}{2}}{\pi q} \int_{0}^{\infty}\frac{e^{-r^{\frac{2}{q}}}\,dr}{r^{2}+2r\sqrt{z}\cos\frac {\pi q}{2}+z} \\ &\leq\frac{2\sqrt{z}\sin\frac{\pi q}{2}}{\pi q} \int_{0}^{\infty}\frac{dr}{r^{2}-r\sqrt{z}+z} =\frac{2\sqrt{z}\sin\frac{\pi q}{2}}{\pi q} \frac{4\sqrt{3}\pi }{9\sqrt{z}} =\frac{8\sqrt{3}\sin\frac{\pi q}{2}}{9q}. \end{aligned}$$
Finally, applying this estimation and Lemma 2.1 to (19) results in
$$E_{q}\bigl(\kappa t^{q}\bigr)\leq\frac{1}{2} \biggl( \frac{2e^{\kappa^{\frac{1}{q}}t}}{q} +\frac{8\sqrt{3}\sin\frac{\pi q}{2}}{9q} \biggr) =\frac{e^{\kappa^{\frac{1}{q}}t}}{q}+ \frac{4\sqrt{3}\sin\frac{\pi q}{2}}{9q}. $$
□
Since by (17),
$$\int_{0}^{t} \biggl\vert 1-\frac{1}{\varGamma(q)}s^{q-1} \biggr\vert \,ds\le \biggl\vert t-\frac{t^{q}}{\varGamma(q+1)} \biggr\vert -2 \lambda(q) $$
for all \(t\in \mathbb {R}_{+}\), Lemma 3.1 implies
$$ \begin{aligned}[b] \theta_{q}(t)&\leq \biggl( \frac{e^{L^{\frac{1}{q}}t}}{q} +\frac{4\sqrt{3}\sin\frac{\pi q}{2}}{9q} \biggr) \biggl( \biggl\vert t - \frac{t^{q}}{\varGamma(q+1)} \biggr\vert -2\lambda(q) \biggr) \\ &\leq \biggl(e^{t\overline{L}}+\frac{4\sqrt{3}}{9} \biggr) \biggl( \biggl\vert t- \frac{t^{q}}{\varGamma(q+1)} \biggr\vert -2\lambda(q) \biggr) \end{aligned} $$
(20)
for \(q\in(1,4/3)\), where \(\overline{L}=\max\{L,L^{3/4}\}\). So we obtain a result on the uniform convergence.
Theorem 3.2
Under assumption (H), the solution
\(x(t)\)
of (15) uniformly converges on any finite interval
\([0,T]\), \(T>0\), of
\(\mathbb {R}_{+}\)
to the solution
\(y(t)\)
of (16) if
\(q\to1_{+}\)
and
\(x_{0}=y_{0}\), \(x_{1}=y_{1}\).
Proof
The statement can be proved analogously to Theorem 2.2. □
Next, we consider equation (8) for an arbitrary \(\epsilon>0\) and \(q\in(1,4/3)\). Clearly, \(\theta_{q}(t)\) is increasing on \(\mathbb {R}_{+}\) from 0 to ∞, implying that (8) has the only solution \(\bar{t}(\epsilon,q)\in \mathbb {R}_{+}\) for which \(\lim_{\epsilon\to0_{+}}\bar{t}(\epsilon,q)=0\) and \(\lim_{q\to 1_{+}}\bar{t}(\epsilon,q)=\infty\) hold. Moreover, the function \(t\mapsto t-\frac{t^{q}}{\varGamma(q+1)}\) is nonnegative on \([0,r_{0}]\) and nonpositive on \([r_{0},\infty)\) for \(r_{0}\) given by (9). Note that \(r_{0}(q)\) is increasing on \((1,\infty )\) from \(\lim_{q\to1_{+}}r_{0}(q)=e^{1-\gamma}\doteq1.526205\) to ∞.
Next, we consider the function \(\phi_{t}(q):=\frac{t^{q}}{\varGamma(q+1)}\) on \((1,4/3)\) for \(t>0\). From (10), we obtain
$$\bigl\vert \phi_{t}'(q) \bigr\vert \leq- \frac{t\ln t}{\varGamma(q+1)}+\frac{\varGamma '(q+1)}{\varGamma^{2}(q+1)} \leq-t\ln t+\frac{\varGamma'(\frac{7}{3})}{\varGamma^{2}(\frac {7}{3})}\leq1.038041 $$
for \(t\in(0,1]\), and
$$\bigl\vert \phi'_{t}(q) \bigr\vert \leq T^{q}\ln T+0.51902T^{q} $$
for \(t\in(1,T]\), \(T>1\). As a consequence, we have
$$\bigl\vert \phi_{t}'(q) \bigr\vert \leq1.038041+T^{q}\ln T+0.51902T^{q} $$
for all \(t\in(0,T]\), \(T>1\), \(q\in(1,4/3)\). This implies
$$ \biggl\vert t-\frac{t^{q}}{\varGamma(q+1)} \biggr\vert = \bigl\vert \phi_{t}(1)-\phi_{t}(q) \bigr\vert \leq \bigl(1.038041+T^{q}\ln T+0.51902T^{q}\bigr) (q-1) $$
(21)
for \(t\in(0,T]\), \(T>1\), \(q\in(1,4/3)\). Using (18), (20), and (21), we arrive at
$$\theta_{q}(t)\leq \biggl(e^{T\overline{L}}+\frac{4\sqrt{3}}{9} \biggr) \bigl(3+T^{q}\ln T+T^{q}\bigr) (q-1) $$
for \(t\in(0,T]\), \(T>1\), \(q\in(1,4/3)\). Now, we consider the equation
$$ \mu_{L,q}(T):= \biggl(e^{T\overline{L}}+\frac{4\sqrt{3}}{9} \biggr) \bigl(3+T^{q}\ln T+T^{q}\bigr)=\frac{1}{\sqrt{q-1}}. $$
(22)
The function \(\mu_{L,q}(T)\) is increasing from \(4(e^{\overline {L}}+4\sqrt{3}/9)\) to ∞ on \([1,\infty)\). So, for any
$$ q< 1+\frac{1}{16 (e^{\overline{L}}+\frac{4\sqrt{3}}{9} )^{2}},\quad q\in(1,4/3), $$
(23)
(22) has a unique solution \(T_{L}(q)>1\). Note that \(\lim_{q\to 1_{+}}T_{L}(q)=\infty\). Summarizing, we have the following result.
Theorem 3.3
Under assumption (H) and for any
q
fulfilling (23), the solutions
\(x(t)\)
and
\(y(t)\)
of (15) and (16) with
\(x_{0}=y_{0}\), \(x_{1}=y_{1}\), respectively, satisfy
$$ \bigl\Vert x(t)-y(t) \bigr\Vert \le M\sqrt{q-1} $$
(24)
for any
\(t\in[0,T_{L}(q)]\), where
\(T_{L}(q)>1\)
is the unique solution of (22).
Next, we present a simple example illustrating the convergence results when the order q is close to 1.
Example 3.4
Let us consider the following initial-value problems:
$$\begin{aligned}& \begin{gathered} D_{0}^{q}x(t) = px(t),\quad t\in \mathbb {R}_{+}, \\ x(0) = x_{0}, \end{gathered} \end{aligned}$$
(25)
$$\begin{aligned}& \begin{gathered} y'(t) = py(t), \quad t\in \mathbb {R}_{+}, \\ y(0) = y_{0}, \end{gathered} \end{aligned}$$
(26)
$$\begin{aligned}& \begin{gathered} D_{0}^{q}u(t) = pu(t), \quad t\in \mathbb {R}_{+}, \\ u(0) = u_{0}, \\ u'(0) = u_{1}, \end{gathered} \end{aligned}$$
(27)
$$\begin{aligned}& \begin{gathered} v'(t) = pv(t)+v_{1}, \quad t\in \mathbb {R}_{+}, \\ v(0) = v_{0}, \end{gathered} \end{aligned}$$
(28)
where \(q\in(0,1)\) in (25) and \(q\in(1,2)\) in (27). The ODEs have the solutions \(y(t)=y_{0}e^{pt}\), \(v(t)=e^{pt}(v_{0}+v_{1}/p)-v_{1}/p\). From [2, Theorem 4.3], the other solutions are \(x(t)=x_{0}E_{q}(pt^{q})\) and \(u(t)=u_{0}E_{q}(pt^{q})+u_{1}tE_{q,2}(pt^{q})\). To see the convergence, we set all the initial conditions and the parameter equal to 1, i.e., \(x_{0}=y_{0}=u_{0}=v_{0}=u_{1}=v_{1}=p=1\). Figure 1 depicts the convergences \(x\to y\) and \(u\to v\) as \(q\to1_{-}\) and \(q\to1_{+}\), respectively.
The physical significance of Fig. 1 relies on demonstration of transition of q through 1. Since (25) is a one-dimensional system depending just on \(x_{0}\), its limit (26) is also one-dimensional. But passing to (27), we get a two-dimensional system depending on \(u_{0}\) and \(u_{1}\). Then its limit (28) as \(q\to1_{+}\) is also two-dimensional. This makes the difference. Note that (28) is equivalent to a second order ODE
$$\begin{gathered} v''(t) = pv'(t), \quad t\in \mathbb {R}_{+}, \\ v(0) = v_{0}, \\ v'(0) = \tilde{v}_{1}:=pv_{0}+v_{1}. \end{gathered} $$
The above arguments are more visible for \(p<0\). Then by [27, Formula (7)] we see that solutions of (25), (26), and (27) asymptotically tend to zero, while the one of (28) tends to \(-\frac{v_{1}}{p}\). So all these equations are dissipative. But the limit of (27) as \(q\to2_{-}\) is
$$ \begin{gathered} z''(t) = pz(t), \quad t\in \mathbb {R}_{+}, \\ z(0) = z_{0}, \\ z'(0) = z_{1}, \end{gathered} $$
(29)
which has all solutions oscillating for \(p<0\). Consequently, the dissipation of (25)–(28) is changing to oscillation on finite intervals as \(q\to2_{-}\). This is presented in Figs. 2 and 3.
These figures also support the fact that comparison estimates can be done in general only on finite intervals.