- Research
- Open access
- Published:
Hölder estimates of mild solutions for nonlocal SPDEs
Advances in Difference Equations volume 2019, Article number: 159 (2019)
Abstract
We consider nonlocal PDEs driven by additive white noises on \({\mathbb{R}}^{d}\). For \(L^{q}\) integrable coefficients, we derive the existence and uniqueness, as well as Hölder continuity, of mild solutions. Precisely speaking, the unique mild solution is almost surely Hölder continuous with Hölder index \(0<\theta <(1/2-d/(q \alpha))(1\wedge \alpha)\). Moreover, we show that any order \(\gamma (< q)\) moment of Hölder normal for u on every bounded domain of \({\mathbb{R}}_{+}\times {\mathbb{R}}^{d}\) is finite.
1 Introduction
Let \((\varOmega,{\mathcal{F}},\{{\mathcal{F}} _{t}\}_{t\geq 0},{\mathbb{P}})\) be a filtered probability space that satisfies the usual hypotheses of completeness and right continuity. \(\{W_{t}\}_{t\geq 0}\) is a one-dimensional standard Wiener process on \((\varOmega,{\mathcal{F}},\{{\mathcal{F}}_{t}\}_{t\geq 0},{\mathbb{P}})\). In this paper, we are concerned with the Hölder-estimates of mild solutions for the following nonlocal stochastic partial differential equations (SPDEs for short):
where \(\alpha \in (0,2]\), \((-\Delta)^{\frac{\alpha }{2}}\) is the fractional Laplacian on \({\mathbb{R}}^{d}\).
When \(\alpha =2\), these SPDEs have been studied widely. \(W^{k,2}\)-theory was well established by Pardoux [15] and Rozovskii [16]. A more general \(W^{2,q}\)-theory was founded by Krylov [9,10,11] for \(2\leq q<\infty \). Krylov’s result was then generalized by Denis, Matoussi, and Stoica [5] for \(q=\infty \) to nonlinear SPDEs.
There is also some Hölder estimates for solutions of (1.1) when \(\alpha =2\). As \(f(t,\cdot)\) belongs to \(L^{q}\) with large enough q (or \(q=\infty \)), h vanishes and \({\mathbb{R}}^{d}\) is replaced by a bounded domain (with smooth boundary), the space and time Hölder estimates have been discussed by Kuksin, Nadirashvili, and Piatnitski [12, 13]. This result was further developed by Kim [8] for general Hölder estimates for generalized solutions with \(L_{p}(L_{q})\) coefficients. Using a different philosophy, Hsu, Wang, and Wang [6] discussed (1.1) with \(\alpha =2\) for general f (u dependent). By applying a stochastic De Giorgi iteration technique, they built the Hölder estimates for weak solutions on \([T,2T]\times {\mathbb{R}}^{d}\) (\(T>0\)). Recently, by using the heat kernel estimate technique, Wei, Duan, and Lv [18] also derived the Hölder estimates for stochastic transport-diffusion equations driven by Lévy noises.
When \(\alpha \in (0,2)\), Chang and Lee [4], Kim and Kim [7] studied the \(L^{q}\) (\(2\leq q<\infty\)) theory for SPDE (1.1). When f is bounded measurable, by constructing stochastic BMO and Morrey–Campanato spaces, Lv et al. [14] established the BMO and Hölder estimates for solutions.
However, as far as we know, there have been very few papers dealing with the Hölder estimates for (1.1) with \(L^{q}\) coefficients. In this paper, we will fill this gap and derive the Hölder estimates for mild solutions. Here the mild solution of (1.1) is defined as follows.
Definition 1.1
Let \(\alpha \in (0,2)\) and \(P_{t}\) denote the forward heat semigroup generated by negative fractional Laplacian \(-(-\Delta)^{\alpha /2}\). Suppose that u is given by
We call u a mild solution of (1.1) if \(u \in L^{\infty }_{\mathrm{loc}}([0, \infty);L^{\infty }({\mathbb{R}}^{d};L^{2}(\varOmega)))\) which is \({\mathcal{F}}_{t}\)-adapted and as a family of \(L^{2}(\varOmega,{\mathcal{F}}, {\mathbb{P}})\)-valued random variables is continuous.
Remark 1.1
Let \(p(t,x,y)\) be the transition density of symmetric α-stable process, then \(p(t,x,y)=p(t,x-y)\) and
Moreover, \(p(t,\cdot)\) is smooth for \(t>0\) and from [4, Lemma 2.2] (also see [3, 19, 20]), we have the following estimates:
For every \(t>0\), by the scaling property, then \(p(t,x-y)=t^{-\frac{d}{ \alpha }}p(1,(x-y)t^{-1/\alpha })\), which implies
Our main result is the following.
Theorem 1.1
Let us consider the nonlocal SPDE (1.1) associated with \(\alpha \in (0,2)\). We suppose that \(q>2d/\alpha \vee 2\), \(f,h\in L ^{\infty }_{\mathrm{loc}}({\mathbb{R}}_{+};L^{q}({\mathbb{R}}^{d}\times \varOmega))\) which are \({\mathcal{F}}_{t}\)-adapted. Let us set \(\vartheta =(1/2-d/(q \alpha))(1\wedge \alpha)\). Then there is a mild solution u of (1.1) and \(u\in L^{\infty }_{\mathrm{loc}}({\mathbb{R}}_{+};L^{\infty }( {\mathbb{R}}^{d}; L^{q}(\varOmega)))\).
In addition, if \(q>4(d+1)/(1\wedge \alpha)\), \(u\in {\mathcal{C}}^{ \vartheta -}([0,t]\times {\mathbb{R}}^{d};L^{q}(\varOmega))\cap L^{q-}( \varOmega;{\mathcal{C}}^{\vartheta -}_{\mathrm{loc}}({\mathbb{R}}_{+}\times {\mathbb{R}}^{d}))\) for every \(0< t<\infty \). Moreover, for every \(t>0\), every \(0<\theta <\vartheta \), every bounded domain \(Q\subset {\mathbb{R}} ^{d}\), every \(0<\gamma <q\), there exist two positive constants \(C(q,\alpha,d,\theta,t)\) and \(C(q,\alpha,d,\gamma,\theta,t,Q)\) (independent of h and f) such that
and
where
and
Remark 1.2
(i) In [4] Chang and Lee discussed (1.1); under the assumptions that \(h\in H^{k}_{q}(T,{\mathbb{R}}^{d})\), \(f\in H^{k+\frac{ \alpha }{2}+\delta }_{q}(T,{\mathbb{R}}^{d})\) (\(T>0\) is a given real number, \(0<\delta <\alpha /2\)), they founded the \(H^{k+\alpha }_{q}\) theory of solutions on \({\mathbb{R}}^{d}\). As a direct consequence, if \(k=0\) and \(q\alpha >d\), the Hölder estimate for solutions in space variable satisfies
where θ is given by the Sobolev imbedding theorem. Different from [4], \(L^{\infty }(L^{q})\) integrability in space and time variables is enough to ensure the Hölder continuity of solutions in space and time variables.
(ii) Our main idea comes from [13]. In [13], Kuksin, Nadirashvili, and Piatnitski argued (1.1) with \(\alpha =2\) on a bounded domain. By estimating the tail probability, they gained the space and time Hölder estimates. Here, we study (1.1) on \({\mathbb{R}}^{d}\) with \(\alpha \in (0,2)\). By using the techniques developed in [13], we gain the space and time Hölder estimates on every bounded domain.
This paper is organized as follows. In Sect. 2, we present some useful lemmas, and Sect. 3 is devoted to giving the proof details.
Notations
\(a\wedge b=\min \{a,b\}\), \(a\vee b=\max \{a,b\}\). \({\mathbb{R}}_{+}=\{r\in {\mathbb{R}}, r\geq 0\}\). The letter C will mean a positive constant whose values may change in different places. For a parameter or a function ϱ, \(C(\varrho)\) means the constant is only dependent on ϱ. \({\mathbb{N}}\) is the set of natural numbers, and \({\mathbb{Z}}\) denotes the set of integral numbers. Let \(Q\subset {\mathbb{R}}^{k}\) (\(k\in {\mathbb{N}}\)) be a bounded domain. For \(0<\theta <1\), we define \({\mathcal{C}}^{\theta }( \overline{Q})\) to be the set of all continuous functions u on Q such that
2 Useful lemmas
Lemma 2.1
Let \(\rho _{0}\in L^{q}({\mathbb{R}}^{d}\times \varOmega)\). Consider the Cauchy problem
Then, for any \(0<\beta <1\), the unique mild solution (given by (1.3) if one replaces φ by \(\rho _{0}\)) of (2.1) meets the following estimates:
and
Proof
Obviously, the unique mild solution ρ of (2.1) can be represented by (1.3) if one replaces φ by \(\rho _{0}\). Hence, for any \(t>0\),
According to (1.4), then
Combining (2.4) and (2.5), then
Let us calculate ∇ρ and \(\partial _{t}\rho \). For \(1\leq i\leq d\), we manipulate that
which suggests that
By virtue of (1.4) and analogue calculations for (2.5) imply that
Therefore, one arrives at
Applying the interpolation inequality
to (2.6) and (2.7), (2.2) holds true.
Repeating the above calculations, and by virtue of (1.5), one derives that
The interpolation inequality (2.8) uses (2.6) and (2.9), for every \(t_{2}>t_{1}>0\), we get
From (2.10), inequality (2.3) is legitimate, and we finish the proof. □
Lemma 2.2
(Minkowski inequality [17])
Assume that \((S_{1}, {\mathcal{F}} _{1},\mu _{1})\) and \((S_{2}, {\mathcal{F}}_{2},\mu _{2})\) are two measure spaces and that \(G: S_{1} \times S_{2} \rightarrow {\mathbb{R}}\) is measurable. For given real numbers \(1\leq p_{1}\leq p_{2}\), we also assume that \(G\in L^{p_{1}}(S_{1};L^{p_{2}}(S_{2}))\). Then \(G\in L ^{p_{2}}(S_{2};L^{p_{1}}(S_{1}))\) and
The next lemmas will play an important role in estimating stochastic integrals.
Lemma 2.3
(Interpolation inequality)
Suppose that \(1\leq p_{1}< p_{2}\leq \infty \). Let E be a Banach space and F be a linear operator from \(L^{p_{1}}(\varOmega;E)+L^{p_{2}}(\varOmega;E)\) into the space \(L^{p_{1}}( \varOmega)+L^{p_{2}}(\varOmega)\). If F is bounded from \(L^{p_{1}}( \varOmega;E)\) into \(L^{p_{1}}(\varOmega)\) and also bounded from \(L^{p_{2}}(\varOmega;E)\) into \(L^{p_{2}}(\varOmega)\), then F is bounded from \(L^{p_{3}}(\varOmega;E)\) into \(L^{p_{3}}(\varOmega)\) for every \(p_{1}\leq p_{3}\leq p_{2}\).
Proof
When \(E={\mathbb{R}}\), this result can be recovered from the Marcinkiewicz interpolation theorem [1, Theorem 2.58]. For a general Banach space E, what we should do is to replace \(\delta _{u}(\tau)\) [1, pp. 56–57] by \(\delta _{\|u\|_{E}}( \tau)\), and then the lemma is proved. □
Lemma 2.4
Let \({\mathcal{F}}\) be given in the introduction, that g be an \({\mathcal{F}}\times {\mathcal{B}}({\mathbb{R}}_{+})\times {\mathcal{B}}( {\mathbb{R}}_{+})\times {\mathcal{B}}({\mathbb{R}}^{d})\)-measurable function. Suppose that \(\{M_{t}(x)\}_{t\geq 0}\) is a Brownian type integral of the form
Suppose that \(q\geq 2\) and
There exists a positive constant \(C(q)>0\), which is independent of x, such that for each \(t\geq 0\),
Proof
First, we assume that F has the following form:
where \(k\in {\mathbb{N}}\), \(g_{j}\) are \((\varOmega \times {\mathbb{R}} _{+}\times {\mathbb{R}}^{d};{\mathcal{F}}_{t_{j-1}}\times {\mathcal{B}}( {\mathbb{R}}_{+})\times {\mathcal{B}}({\mathbb{R}}^{d}))\)-measurable, and \(0=t_{0}< t_{1}< t_{2}<\cdots <t_{k}=t\).
For \(q=2\), by using the Itô isometry, we obtain
For \(q=4\), according to Burkholder’s inequality [2, Theorem 4.4.21], we also have
From (2.15) and (2.16), for every \(t>0\), the linear operator
is bounded from \(L^{2}(\varOmega;L^{2}(0,t))\) into \(L^{2}(\varOmega)\) and also bounded from \(L^{4}(\varOmega;L^{2}(0,t))\) into \(L^{4}(\varOmega)\). According to Lemma 2.3, F is bounded from \(L^{q}(\varOmega;L ^{2}(0,t))\) into \(L^{q}(\varOmega)\) for every \(2\leq q\leq 4\), i.e., (2.13) holds true if g has the form (2.14). Observing that the functions which meet condition (2.13) can be approximated by the step functions, we thus complete the proof for \(q\in [2,4]\).
Analogously, for every even number and every step function of the form (2.14), one can prove that (2.16) holds. In view of Lemma 2.3, one derives an inequality of (2.13) for every \(q>4\). Then, by an approximating argument, we accomplish the proof. □
Remark 2.1
When \(g(t,r,x)\) is a deterministic function, the Marcinkiewicz interpolation inequality is not needed. Indeed, an \(L^{q}\) type interpolation inequality is enough.
Lemma 2.5
([13, Lemma 4])
Let a function g satisfy the estimate
in any small cube J which is a mesh of the grid \(2^{-n}{\mathbb{Z}} ^{d+1}\), i.e., in any \(J=2^{-n}j+[0,2^{-n}]^{d+1}\), where \(j\in {\mathbb{Z}} ^{d+1}\). Then, for any \(\Delta \in {\mathbb{R}}^{d+1}\), one has
where \([\cdot ]\) stands for the integer part.
3 Proof of Theorem 1.1
Proof
The existence result follows by using the explicit formula
where \(p(t,x-y)\) fulfills (1.4) and (1.5). By this obvious representation, to prove u is a mild solution, we need to show \(u \in L^{\infty }_{\mathrm{loc}}({\mathbb{R}}_{+};L^{\infty }({\mathbb{R}} ^{d};L^{2}(\varOmega)))\). Now let us verify that \(u \in L^{\infty }_{\mathrm{loc}}( {\mathbb{R}}_{+};L^{\infty }({\mathbb{R}}^{d};L^{q}(\varOmega)))\).
If one uses Lemma 2.4 for given \(q\geq 2\), then
With the aid of Lemma 2.2 and the Hölder inequality, we arrive at
By using inequality (2.5), one derives
Observing that \(q\alpha >2d\), therefore
Now let us consider point-wise estimates for mild solutions of (1.1). By the scaling transformations on space and time variables, to prove (1.6) and (1.7) are true for u, it is sufficient to show that u meets (1.6) and (1.7) on \([0,1]\times {\mathbb{R}}^{d}\) and \([0,1]^{d+1}\), respectively. Initially, let us check (1.6).
For every \(x_{1},x_{2}\in {\mathbb{R}}^{d}\), \(t>0\),
According to (2.13), one derives that
Let \(0<\beta <(1/2-d/(q\alpha))(1\wedge \alpha)\) be a real number. In view of Lemma 2.1 (2.2) and Lemma 2.2 (2.11), from (3.2), one concludes that
Similarly, for every \(t>0\), \(\delta >0\), one can define
Let us estimate \(J_{1},\ldots ,J_{4}\). To calculate \(J_{1}\), we use (2.5) to get
An analogue calculation also implies that
For \(J_{2}\), we use Lemma 2.1 (2.3), one concludes that
Similarly, one gains
Combining (3.4)–(3.7), one arrives at
which implies
if \(\delta <1\).
Therefore, we accomplish from (3.3) and (3.8) that
for every \(x_{1},x_{2}\in {\mathbb{R}}^{d}\), \(0\leq t_{1}\leq t_{2} \leq 1\). According to (3.1) and (3.9), (1.6) is true.
Notice that \(q>4(d+1)/(1\wedge \alpha)\) and (3.9) holds for every \(0<\beta <(1/2-d/(q\alpha))(1\wedge \alpha)\). For a given sufficiently large natural number \(0< m\in {\mathbb{N}}\), if one obtains
then
In view of (3.9) and (3.11), by using Kolmogorov’s theorem, u has a continuous version. It remains to prove the Hölder estimate (1.7) on \([0,1]^{d+1}\), and for writing simplicity, we set
One introduces a sequence of sets: \({\mathcal{S}}_{n}=\{z\in {\mathbb{Z}} ^{d+1} | z2^{-n}\in (0,1)^{d+1}\}\), \(0< n\in {\mathbb{N}}\). For an arbitrary \(e=(e^{1},\ldots ,e^{d+1})\in {\mathbb{N}}\times {\mathbb{Z}} ^{d}\) such that \(\|e\|_{\infty }=\max_{1\leq i\leq d+1}|e^{i}|=1\), and every \(z,z+e\in {\mathcal{S}}_{n}\), we define \(v_{z}^{n,e}=|u((z+e)2^{-n})-u(z2^{-n})|\). Then
For any \(\tau >0\) and \(K>0\), one sets a number of events \({\mathcal{A}} _{z,\tau }^{n,e}=\{\omega \in \varOmega | v_{z}^{n,e}\geq K\tau ^{n} \}\) (\(z,z+e\in {\mathcal{S}}_{n}\)), it yields that
Observe that, for each n, the total number of the events \({\mathcal{A}} _{z,\tau }^{n,e}\) (\(z,z+e\in {\mathcal{S}}_{n}\)) is not greater than \(2^{(d+1)n}3^{d+1}\). Hence the probability of the union \({\mathcal{A}} _{\tau }^{n}=\bigcup_{z,z+e\in S_{n}}(\bigcup_{\|e\|_{\infty }=1}{\mathcal{A}} _{z,\tau }^{n,e})\) meets the estimate
For \(m>0\) large enough (given in (3.10)), one takes β by (3.10), \(\tau =2^{-\beta /m}\), then the probability of the event \({\mathcal{A}}=\bigcup_{n\geq 1}{\mathcal{A}}_{\tau }^{n}\) can be calculated as follows:
For every point \(\xi =(t,x)\in (0,1)^{d+1}\), we have \(\xi =\sum_{i=0} ^{\infty }e_{i}2^{-i}\) (\(\|e_{i}\|_{\infty }\leq 1\)). Denote \(\xi _{k}=\sum_{i=0}^{k}e_{i}2^{-i}\) (\(\xi _{0}=0\)). For any \(\omega \mathbin{\overline{ \in }}\mathcal{A}\), we have \(|u(\xi _{k+1})-u(\xi _{k})|< K\tau ^{k+1}\), which suggests that
Set \(v_{1}=\sup_{(t,x)\in (0,1)^{d+1}}|u(t,x)|\), then \(v_{1}= \sup_{(t,x)\in [0,1]^{d+1}}|u(t,x)|\) since u has a continuous version. For any \(0<\gamma < q\), it yields that
If one chooses \(c\geq (2^{\frac{\beta }{m}}-1)^{-1}\), according to (3.12) and (3.13), from (3.14) one finishes at
which hints that
if one chooses \(K=A\).
Let us calculate the Hölder semi-norm of u. For a solution of (1.1) and for every \(\omega \mathbin{\overline{\in }}{\mathcal{A}}\), inequality (2.17) holds for \(\kappa _{n}=K\tau ^{n}\). With the help of Lemma 2.5 (2.18), one has
for \((t,x),(t,x)+\Delta \in (0,1)^{d+1}\).
Let β be described in (3.10). For any \(0<\theta <\beta \), if one has \(\tau =2^{-\theta }\), we arrive at
which hints that
Finally, for any \(0<\gamma <q\), analogue calculations of (3.14) and (3.15) imply that
From (3.15) and (3.16), and observing that \(m\in {\mathbb{N}}\) is arbitrary, the desired conclusion holds true. □
References
Adams, A., Fourier, J.F.: Sobolev Space. Pure and Applied Mathematics Series, vol. 140. Elsevier, Amsterdam (2005)
Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)
Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271(1), 179–198 (2007)
Chang, T., Lee, K.: On a stochastic partial differential equation with a fractional Laplacian operator. Stoch. Process. Appl. 122(9), 3288–3311 (2012)
Denis, L., Matoussi, A., Stoica, L.: \(L^{p}\) estimates for the uniform norm of solutions of quasilinear SPDEs. Probab. Theory Relat. Fields 133(133), 437–463 (2005)
Hsu, E., Wang, Y., Wang, Z.: Stochastic De Giorgi iteration and regularity of stochastic partial differential equations. Ann. Probab. 45(5), 2855–2866 (2017)
Kim, I., Kim, K.H.: An \(L^{p}\)-theory of a class of stochastic equations with the random fractional Laplacian driven by Lévy processes. Stoch. Process. Appl. 122(12), 3921–3952 (2012)
Kim, K.H.: \(L_{q}(L_{p})\) theory and Hölder estimates for parabolic SPDEs. Stoch. Process. Appl. 114(2), 313–330 (2004)
Krylov, N.V.: On \(L_{p}\)-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27(2), 313–340 (1996)
Krylov, N.V.: An analytic approach to SPDEs. Stoch. Partial Differ. Equ.: Six Perspect. 64, 185–242 (1999)
Krylov, N.V.: SPDEs in \(L^{q}(0,\tau,L^{p})\) spaces. Electron. J. Probab. 5(13), 1–29 (2000)
Kuksin, S.B.: A stochastic nonlinear Schrödinger equation I: a priori estimates. Proc. Steklov Inst. Math. 225, 219–242 (1999)
Kuksin, S.B., Nadirashvili, N.S., Piatnitski, A.L.: Hölder estimates for solutions of parabolic SPDEs. Theory Probab. Appl. 47(1), 152–159 (2003)
Lv, G., Gao, H., Wei, J., Wu, J.: BMO and Morrey–Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations. J. Differ. Equ. 266, 2666–2717 (2019)
Pardoux, É.: Stochastic Partial Differential Equations. Lecture Notes Given in Fudan (2007)
Rozovskii, B.L.: Stochastic Evolution Systems. Springer, Netherlands (1990)
Stein, E.: Singular Integrals and Differentiability Properties of Functions, vol. 30. Princeton University Press, Princeton (1970)
Wei, J., Duan, J., Lv, G.: Schauder estimates for stochastic transport-diffusion equations with Lévy processes. J. Math. Anal. Appl. 474, 1–22 (2019)
Xie, L.: Singular SDEs with critical non-local and non-symmetric Lévy type generator. Stoch. Process. Appl. 127, 3792–3824 (2017)
Xie, X., Duan, J., Li, X., Lv, G.: A regularity result for the nonlocal Fokker–Planck equation with Ornstein–Uhlenbeck drift (2015) arXiv:1504.04631
Acknowledgements
The authors sincerely thank the referees and the editors for their helpful comments and suggestions.
Funding
The first author is partially supported by the Fundamental Research Funds for the Central Universities (WUT: 193114001). The third author is partially supported by National Science Foundation of China (11501577).
Author information
Authors and Affiliations
Contributions
All authors carried out the proofs and conceived the study. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tian, R., Ding, L., Wei, J. et al. Hölder estimates of mild solutions for nonlocal SPDEs. Adv Differ Equ 2019, 159 (2019). https://doi.org/10.1186/s13662-019-2097-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2097-1