Proof
The existence result follows by using the explicit formula
$$\begin{aligned} u(t,x)= \int _{0}^{t} \int _{{\mathbb{R}}^{d}}p(t-r,x-y)h(r,y)\,dy\,dr+ \int _{0}^{t} \int _{{\mathbb{R}}^{d}}p(t-r,x-y)f(r,y)\,dy\,dW_{r}, \end{aligned}$$
where \(p(t,x-y)\) fulfills (1.4) and (1.5). By this obvious representation, to prove u is a mild solution, we need to show \(u \in L^{\infty }_{\mathrm{loc}}({\mathbb{R}}_{+};L^{\infty }({\mathbb{R}} ^{d};L^{2}(\varOmega)))\). Now let us verify that \(u \in L^{\infty }_{\mathrm{loc}}( {\mathbb{R}}_{+};L^{\infty }({\mathbb{R}}^{d};L^{q}(\varOmega)))\).
If one uses Lemma 2.4 for given \(q\geq 2\), then
$$\begin{aligned} {\mathbb{E}} \bigl\vert u(t,x) \bigr\vert ^{q} \leq & C(q){ \mathbb{E}} \biggl\vert \int _{0}^{t} \int _{{\mathbb{R}}^{d}}p(t-r,x-z)h(r,z)\,dz \,dr \biggr\vert ^{q} \\ &{}+C(q){\mathbb{E}} \biggl[ \int _{0}^{t} \biggl\vert \int _{{\mathbb{R}}^{d}}p(t-r,x-z)f(r,z)\,dz \biggr\vert ^{2} \,dr \biggr]^{\frac{q}{2}}. \end{aligned}$$
With the aid of Lemma 2.2 and the Hölder inequality, we arrive at
$$\begin{aligned} {\mathbb{E}} \bigl\vert u(t,x) \bigr\vert ^{q} \leq &C(q) \biggl\vert \int _{0}^{t} \int _{{\mathbb{R}}^{d}}p(t-r,x-z) \bigl[{\mathbb{E}} \bigl\vert h(r,z) \bigr\vert ^{q} \bigr]^{\frac{1}{q}}\,dz\,dr \biggr\vert ^{q} \\ &{}+C(q){\mathbb{E}} \biggl[ \int _{0}^{t} \biggl\vert \int _{{\mathbb{R}}^{d}} p(t-r,x-z) \bigl[{\mathbb{E}} \bigl\vert f(r,z) \bigr\vert ^{q} \bigr]^{\frac{1}{q}}\,dz \biggr\vert ^{2}\,dr \biggr]^{ \frac{q}{2}} \\ \leq &C(q) \biggl\vert \int _{0}^{t} \biggl[ \int _{{\mathbb{R}}^{d}} \bigl\vert p(r,y) \bigr\vert ^{ \frac{q}{q-1}} \,dy \biggr]^{\frac{q-1}{q}}\,dr \biggr\vert ^{q} \sup _{0\leq r\leq t} {\mathbb{E}} \int _{{\mathbb{R}}^{d}} \bigl\vert h(r,z) \bigr\vert ^{q}\,dz \\ &{}+C(q) \biggl\vert \int _{0}^{t} \biggl[ \int _{{\mathbb{R}}^{d}} \bigl\vert p(r,y) \bigr\vert ^{ \frac{q}{q-1}} \,dy \biggr]^{\frac{2(q-1)}{q}}\,dr \biggr\vert ^{\frac{q}{2}} \sup _{0\leq r\leq t}{\mathbb{E}} \int _{{\mathbb{R}}^{d}} \bigl\vert f(r,z) \bigr\vert ^{q} \,dz. \end{aligned}$$
By using inequality (2.5), one derives
$$\begin{aligned} {\mathbb{E}} \bigl\vert u(t,x) \bigr\vert ^{q} \leq & C(q) \biggl\vert \int _{0}^{t}r^{-\frac{d}{q \alpha }}\,dr \biggr\vert ^{q} \Vert h \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d} \times \varOmega))}^{q} \\ &{}+C(q) \biggl\vert \int _{0}^{t} r^{-\frac{2d}{q\alpha }}\,dr \biggr\vert ^{\frac{q}{2}} \Vert f \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q}. \end{aligned}$$
Observing that \(q\alpha >2d\), therefore
$$\begin{aligned} {\mathbb{E}} \bigl\vert u(t,x) \bigr\vert ^{q}\leq C(q) \bigl(1+t^{q-\frac{d}{\alpha }}\bigr) \bigl[ \Vert h \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} + \Vert f \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \bigr]. \end{aligned}$$
(3.1)
Now let us consider point-wise estimates for mild solutions of (1.1). By the scaling transformations on space and time variables, to prove (1.6) and (1.7) are true for u, it is sufficient to show that u meets (1.6) and (1.7) on \([0,1]\times {\mathbb{R}}^{d}\) and \([0,1]^{d+1}\), respectively. Initially, let us check (1.6).
For every \(x_{1},x_{2}\in {\mathbb{R}}^{d}\), \(t>0\),
$$\begin{aligned} u(t,x_{1})-u(t,x_{2}) =& \int _{0}^{t} \bigl[P_{t-r}h(r,x_{1})-P_{t-r}h(r,x _{2})\bigr]\,dr \\ &{}+ \int _{0}^{t} \bigl[P_{t-r}f(r,x_{1})-P_{t-r}f(r,x_{2}) \bigr]\,dW_{r}. \end{aligned}$$
According to (2.13), one derives that
$$\begin{aligned} {\mathbb{E}} \bigl\vert u(t,x_{1})-u(t,x_{2}) \bigr\vert ^{q} \leq & C(q) \biggl\{ {\mathbb{E}} \biggl\vert \int _{0}^{t} \bigl[P_{t-r}h(r,x_{1})-P_{t-r}h(r,x_{2}) \bigr]\,dr \biggr\vert ^{q} \\ &{}+{\mathbb{E}} \biggl\vert \int _{0}^{t} \bigl[P_{t-r}f(r,x_{1})-P_{t-r}f(r,x_{2}) \bigr]^{2}\,dr \biggr\vert ^{\frac{q}{2}} \biggr\} . \end{aligned}$$
(3.2)
Let \(0<\beta <(1/2-d/(q\alpha))(1\wedge \alpha)\) be a real number. In view of Lemma 2.1 (2.2) and Lemma 2.2 (2.11), from (3.2), one concludes that
$$\begin{aligned}& {\mathbb{E}} \bigl\vert u(t,x_{1})-u(t,x_{2}) \bigr\vert ^{q} \\& \quad \leq C(q) \vert x_{1}-x_{2} \vert ^{q\beta } \Vert h \Vert _{L^{\infty }([0,t];L^{q}( {\mathbb{R}}^{d}\times \varOmega))}^{q} \biggl\vert \int _{0}^{t} r^{-\frac{ \beta }{\alpha }-\frac{d}{q\alpha }}\,dr \biggr\vert ^{q} \\& \qquad {} +C(q) \vert x_{1}-x_{2} \vert ^{q\beta } \Vert f \Vert _{L^{\infty }([0,t];L^{q}( {\mathbb{R}}^{d}\times \varOmega))}^{q} \biggl\vert \int _{0}^{t}r^{-\frac{2 \beta }{\alpha }-\frac{2d}{{q}\alpha }}\,dr \biggr\vert ^{\frac{{q}}{2}} \\& \quad \leq C({q},\alpha,d,\beta,t) \vert x_{1}-x_{2} \vert ^{q\beta } \bigl[ \Vert h \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q}+ \Vert f \Vert _{L^{\infty }([0,t];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \bigr]. \end{aligned}$$
(3.3)
Similarly, for every \(t>0\), \(\delta >0\), one can define
$$\begin{aligned}& u(t+\delta,x)-u(t,x) \\& \quad = \int _{0}^{t+\delta }P_{t+\delta -r}h(r,x)\,dr - \int _{0}^{t}P_{t-r}h(r,x)\,dr \\& \qquad {} + \int _{0}^{t+\delta }P_{t+\delta -r}f(r,x) \,dW_{r}- \int _{0} ^{t}P_{t-r}f(r,x) \,dW_{r} \\& \quad = \int _{t}^{t+\delta }P_{t+\delta -r}h(r,x)\,dr + \int _{0}^{t} \bigl[P _{t+\delta -r}h(r,x)-P_{t-r}h(r,x) \bigr]\,dr \\& \qquad {} + \int _{t}^{t+\delta }P_{t+\delta -r}f(r,x) \,dW_{r}+ \int _{0} ^{t} \bigl[P_{t+\delta -r}f(r,x)-P_{t-r}f(r,x) \bigr]\,dW_{r} \\& \quad =:J_{1}+J_{2}+J_{3}+J_{4}. \end{aligned}$$
Let us estimate \(J_{1},\ldots ,J_{4}\). To calculate \(J_{1}\), we use (2.5) to get
$$\begin{aligned} {\mathbb{E}} \vert J_{1} \vert ^{q} \leq & C(q) \Vert h \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \biggl\vert \int _{t}^{t+\delta } \biggl[ \int _{{\mathbb{R}}^{d}} \bigl\vert p(t+\delta -r,y) \bigr\vert ^{\frac{q}{q-1}}\,dy \biggr]^{\frac{(q-1)}{q}}\,dr \biggr\vert ^{q} \\ \leq & C(q) \Vert h \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}}^{d} \times \varOmega))}^{q} \biggl\vert \int _{0}^{\delta }r^{-\frac{d}{q\alpha }}\,dr \biggr\vert ^{q} \\ \leq &C(q,\alpha,d) \Vert h \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}} ^{d}\times \varOmega))}^{q} \delta ^{q-\frac{d}{\alpha }}. \end{aligned}$$
(3.4)
An analogue calculation also implies that
$$\begin{aligned} {\mathbb{E}} \vert J_{3} \vert ^{q} \leq & C(q) \Vert f \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \biggl\vert \int _{t}^{t+\delta } \biggl[ \int _{{\mathbb{R}}^{d}} \bigl\vert p(t+\delta -r,y) \bigr\vert ^{\frac{q}{q-1}}\,dy \biggr]^{\frac{2(q-1)}{q}}\,dr \biggr\vert ^{\frac{q}{2}} \\ \leq &C(q) \Vert f \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}}^{d} \times \varOmega))}^{q} \biggl\vert \int _{0}^{\delta }r^{-\frac{2d}{q\alpha }}\,dr \biggr\vert ^{\frac{q}{2}} \\ \leq &C(q,\alpha,d) \Vert f \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}} ^{d}\times \varOmega))}^{q}\delta ^{\frac{q}{2} -\frac{d}{\alpha }}. \end{aligned}$$
(3.5)
For \(J_{2}\), we use Lemma 2.1 (2.3), one concludes that
$$\begin{aligned} {\mathbb{E}} \vert J_{2} \vert ^{q} \leq & {\mathbb{E}} \biggl\vert \int _{0}^{t} \bigl\vert P_{t+ \delta -r}h(r,x)-P_{t-r}h(r,x) \bigr\vert \,dr \biggr\vert ^{q} \\ \leq & \Vert h \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q}\delta ^{\beta q} \biggl\vert \int _{0}^{t}(t-r)^{-\beta -\frac{d}{q \alpha }}\,dr \biggr\vert ^{q} \\ \leq & C(q,\alpha,d,\beta,t) \Vert h \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \delta ^{\beta q}. \end{aligned}$$
(3.6)
Similarly, one gains
$$\begin{aligned} {\mathbb{E}} \vert J_{4} \vert ^{q} \leq & {\mathbb{E}} \biggl\vert \int _{0}^{t} \bigl\vert P_{t+ \delta -r}f(r,x)-P_{t-r}f(r,x) \bigr\vert ^{2}\,dr \biggr\vert ^{\frac{q}{2}} \\ \leq & C(q) \Vert f \Vert _{L^{\infty }([0,t+\delta ];L^{q}({\mathbb{R}}^{d} \times \varOmega))}^{q}\delta ^{\beta q} \biggl\vert \int _{0}^{t}(t-r)^{-2 \beta -\frac{2d}{q\alpha }}\,dr \biggr\vert ^{\frac{q}{2}} \\ \leq & C(q,\alpha,d,\beta,t) \Vert f \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \delta ^{\beta q}. \end{aligned}$$
(3.7)
Combining (3.4)–(3.7), one arrives at
$$\begin{aligned}& {\mathbb{E}} \bigl\vert u(t+\delta,x)-u(t,x) \bigr\vert ^{q} \\& \quad \leq C(q,\alpha,d,\beta,t) \bigl[ \Vert h \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} + \Vert f \Vert _{L^{\infty }([0,t+ \delta ];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \bigr] \bigl[ \delta ^{q-\frac{d}{\alpha }}+\delta ^{\beta q} \bigr], \end{aligned}$$
which implies
$$\begin{aligned}& {\mathbb{E}} \bigl\vert u(t+\delta,x)-u(t,x) \bigr\vert ^{q} \\& \quad \leq C(q,\alpha,d,\beta,t) \bigl[ \Vert h \Vert _{L^{\infty }([0,t+\delta ];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} + \Vert f \Vert _{L^{\infty }([0,t+ \delta ];L^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \bigr]\delta ^{ \beta q} \end{aligned}$$
(3.8)
if \(\delta <1\).
Therefore, we accomplish from (3.3) and (3.8) that
$$\begin{aligned}& {\mathbb{E}} \bigl\vert u(t_{2},x_{2})-u(t_{1},x_{1}) \bigr\vert ^{q} \\& \quad \leq C(q,\alpha,d,\beta) \bigl[ \Vert h \Vert _{L^{\infty }([0,t_{2}];L^{q}( {\mathbb{R}}^{d}\times \varOmega))}^{q} + \Vert f \Vert _{L^{\infty }([0,t_{2}];L ^{q}({\mathbb{R}}^{d}\times \varOmega))}^{q} \bigr] \\& \qquad {} \times \bigl( \vert t_{2}-t_{1} \vert + \vert x_{2}-x_{1} \vert \bigr)^{\beta q} \end{aligned}$$
(3.9)
for every \(x_{1},x_{2}\in {\mathbb{R}}^{d}\), \(0\leq t_{1}\leq t_{2} \leq 1\). According to (3.1) and (3.9), (1.6) is true.
Notice that \(q>4(d+1)/(1\wedge \alpha)\) and (3.9) holds for every \(0<\beta <(1/2-d/(q\alpha))(1\wedge \alpha)\). For a given sufficiently large natural number \(0< m\in {\mathbb{N}}\), if one obtains
$$\begin{aligned} \beta =\frac{m}{1+m}\biggl(\frac{1}{2}- \frac{d}{q\alpha }\biggr) (1\wedge \alpha), \end{aligned}$$
(3.10)
then
$$\begin{aligned} q\beta =q\frac{m}{1+m}\biggl(\frac{1}{2}- \frac{d}{q\alpha }\biggr) (1\wedge \alpha)>\frac{m}{1+m}(d+2)>d+1. \end{aligned}$$
(3.11)
In view of (3.9) and (3.11), by using Kolmogorov’s theorem, u has a continuous version. It remains to prove the Hölder estimate (1.7) on \([0,1]^{d+1}\), and for writing simplicity, we set
$$\begin{aligned} A= \Vert h \Vert _{L^{\infty }([0,1];L^{q}({\mathbb{R}}^{d}\times \varOmega))}+ \Vert f \Vert _{L^{\infty }([0,1];L^{q}({\mathbb{R}}^{d}\times \varOmega))}. \end{aligned}$$
One introduces a sequence of sets: \({\mathcal{S}}_{n}=\{z\in {\mathbb{Z}} ^{d+1} | z2^{-n}\in (0,1)^{d+1}\}\), \(0< n\in {\mathbb{N}}\). For an arbitrary \(e=(e^{1},\ldots ,e^{d+1})\in {\mathbb{N}}\times {\mathbb{Z}} ^{d}\) such that \(\|e\|_{\infty }=\max_{1\leq i\leq d+1}|e^{i}|=1\), and every \(z,z+e\in {\mathcal{S}}_{n}\), we define \(v_{z}^{n,e}=|u((z+e)2^{-n})-u(z2^{-n})|\). Then
$$\begin{aligned} {\mathbb{E}} \bigl\vert v_{z}^{n,e} \bigr\vert ^{q}\leq C(q,\alpha,d)A^{q}2^{-n\beta q}. \end{aligned}$$
For any \(\tau >0\) and \(K>0\), one sets a number of events \({\mathcal{A}} _{z,\tau }^{n,e}=\{\omega \in \varOmega | v_{z}^{n,e}\geq K\tau ^{n} \}\) (\(z,z+e\in {\mathcal{S}}_{n}\)), it yields that
$$\begin{aligned} {\mathbb{P}}\bigl({\mathcal{A}}_{z,\tau }^{n,e}\bigr)\leq \frac{{\mathbb{E}} \vert v _{z}^{n,e} \vert ^{q}}{K^{q}\tau ^{qn}}\leq \frac{ C(q,\alpha,d)A^{q}2^{-n \beta q}}{K^{q}\tau ^{qn}}. \end{aligned}$$
Observe that, for each n, the total number of the events \({\mathcal{A}} _{z,\tau }^{n,e}\) (\(z,z+e\in {\mathcal{S}}_{n}\)) is not greater than \(2^{(d+1)n}3^{d+1}\). Hence the probability of the union \({\mathcal{A}} _{\tau }^{n}=\bigcup_{z,z+e\in S_{n}}(\bigcup_{\|e\|_{\infty }=1}{\mathcal{A}} _{z,\tau }^{n,e})\) meets the estimate
$$\begin{aligned} {\mathbb{P}}\bigl({\mathcal{A}}_{\tau }^{n}\bigr)\leq C(q, \alpha,d)A^{q} \frac{2^{-n \beta q}}{K^{q}\tau ^{qn}}2^{(d+1)n}\leq C(q, \alpha,d)A^{q}K^{-q} \biggl(\frac{2^{(d+1)}}{(2^{\beta }\tau)^{q}} \biggr)^{n}. \end{aligned}$$
For \(m>0\) large enough (given in (3.10)), one takes β by (3.10), \(\tau =2^{-\beta /m}\), then the probability of the event \({\mathcal{A}}=\bigcup_{n\geq 1}{\mathcal{A}}_{\tau }^{n}\) can be calculated as follows:
$$\begin{aligned} {\mathbb{P}}({\mathcal{A}})\leq C(q,\alpha,d)A^{q}K^{-q}. \end{aligned}$$
(3.12)
For every point \(\xi =(t,x)\in (0,1)^{d+1}\), we have \(\xi =\sum_{i=0} ^{\infty }e_{i}2^{-i}\) (\(\|e_{i}\|_{\infty }\leq 1\)). Denote \(\xi _{k}=\sum_{i=0}^{k}e_{i}2^{-i}\) (\(\xi _{0}=0\)). For any \(\omega \mathbin{\overline{ \in }}\mathcal{A}\), we have \(|u(\xi _{k+1})-u(\xi _{k})|< K\tau ^{k+1}\), which suggests that
$$\begin{aligned} \bigl\vert u(t,x) \bigr\vert \leq \sum _{k=0}^{\infty } \bigl\vert u(\xi _{k+1})-u(\xi _{k}) \bigr\vert < K\sum_{k=1} ^{\infty }\tau ^{k}=K\frac{\tau }{1-\tau }\leq K\bigl(2^{\frac{\beta }{m}}-1 \bigr)^{-1}. \end{aligned}$$
(3.13)
Set \(v_{1}=\sup_{(t,x)\in (0,1)^{d+1}}|u(t,x)|\), then \(v_{1}= \sup_{(t,x)\in [0,1]^{d+1}}|u(t,x)|\) since u has a continuous version. For any \(0<\gamma < q\), it yields that
$$\begin{aligned} {\mathbb{E}} v_{1}^{\gamma } =&\gamma \int _{0}^{\infty }r^{\gamma -1} { \mathbb{P}}(v_{1}\geq r)\,dr \\ =&\gamma \int _{0}^{cK}r^{\gamma -1}{ \mathbb{P}}(v_{1}\geq r)\,dr+ \gamma \int _{cK}^{\infty }r^{\gamma -1}{\mathbb{P}}(v_{1} \geq r)\,dr. \end{aligned}$$
(3.14)
If one chooses \(c\geq (2^{\frac{\beta }{m}}-1)^{-1}\), according to (3.12) and (3.13), from (3.14) one finishes at
$$\begin{aligned} {\mathbb{E}} v_{1}^{\gamma }\leq (cK)^{\gamma }+C(q, \alpha,d)A^{q} \gamma \int _{cK}^{\infty }r^{\gamma -1-q}\,dr \leq (cK)^{\gamma }+C(q, \alpha,d)A^{q}\gamma K^{\gamma -q}, \end{aligned}$$
which hints that
$$\begin{aligned} {\mathbb{E}} v_{1}^{\gamma }\leq C(q,\alpha,d, \gamma)A^{\gamma } \end{aligned}$$
(3.15)
if one chooses \(K=A\).
Let us calculate the Hölder semi-norm of u. For a solution of (1.1) and for every \(\omega \mathbin{\overline{\in }}{\mathcal{A}}\), inequality (2.17) holds for \(\kappa _{n}=K\tau ^{n}\). With the help of Lemma 2.5 (2.18), one has
$$\begin{aligned} \bigl\vert u\bigl((t,x)+\Delta\bigr)-u(t,x) \bigr\vert \leq 2K\tau ^{-1} \vert \Delta \vert ^{\log _{2}(1/\tau)} \end{aligned}$$
for \((t,x),(t,x)+\Delta \in (0,1)^{d+1}\).
Let β be described in (3.10). For any \(0<\theta <\beta \), if one has \(\tau =2^{-\theta }\), we arrive at
$$\begin{aligned} \bigl\vert u\bigl((t,x)+\Delta\bigr)-u(t,x) \bigr\vert \leq 4K \vert \Delta \vert ^{\theta }, \end{aligned}$$
which hints that
$$\begin{aligned} {\mathbb{P}}\bigl([u]_{{\mathcal{C}}^{\theta }([0,1]^{d+1})}\geq 4K\bigr)\leq {\mathbb{P}}({ \mathcal{A}})\leq C(q,\alpha,d,\theta)A^{q}K^{-q}. \end{aligned}$$
Finally, for any \(0<\gamma <q\), analogue calculations of (3.14) and (3.15) imply that
$$\begin{aligned} {\mathbb{E}} \Vert u \Vert ^{\gamma }_{{\mathcal{C}}^{\theta }([0,1]^{d+1})} \leq C(q,\alpha,d,\gamma,\theta)A^{\gamma }. \end{aligned}$$
(3.16)
From (3.15) and (3.16), and observing that \(m\in {\mathbb{N}}\) is arbitrary, the desired conclusion holds true. □