In this section, the OFSC for the NUTFOS is designed. Firstly, we introduce the NUTFOS. Then, we investigate the design of the OFSC for the systems by the fractional indirect Lyapunov method and the static gain control method and establish an algorithm to design the OFSC for the systems.
Problem description
In this subsection, the NUTFOS are presented.
Consider the following NUTFOS:
$$ \textstyle\begin{cases} D^{\alpha }_{t} v_{1}(t)=v_{2}(t)+g_{1}(t, v(t)), \\ D^{\alpha }_{t} v_{2}(t)=v_{3}(t)+g_{2}(t, v(t)), \\ \vdots \\ D^{\alpha }_{t} v_{n-2}(t)=v_{n-1}(t)+g_{n-2}(t, v(t)), \\ D^{\alpha }_{t} v_{n-1}(t)=v_{n}(t), \\ D^{\alpha }_{t} v_{n}(t)=u(t), \\ y=v_{1}(t), \end{cases} $$
(4)
where \(\alpha \in (0,1]\), \(v(t)=(v_{1}(t),v_{2}(t),\ldots,v_{n}(t))^{T} \in \mathbb{R}^{n}\) denotes the state, \(u\in \mathbb{R}\) denotes the input, and \(y\in \mathbb{R}\) denotes the output. In this paper, \(v_{i}, w_{i}, \bar{e}_{i}\), and \(\bar{w}_{i}\) denote \(v_{i}(t), w _{i}(t), \bar{e}_{i}(t)\), and \(\bar{w}_{i}(t)\), respectively. The functions \(g_{i}: \mathbb{R}\times \mathbb{R}^{n}\to \mathbb{R}\ (i=1,2, \ldots,n-2)\) are continuous and satisfy the following.
Assumption 3.1
$$ \bigl\vert g_{i}(t,v) \bigr\vert \leq c \bigl( \vert v_{i+2} \vert + \vert v_{i+3} \vert +\cdots + \vert v_{n} \vert \bigr),\quad i=1,2, \ldots,n-2, $$
(5)
where \(c\geq 0\).
OFSC design
In this subsection, the design of the OFSC for system (4) is given in terms of the fractional indirect Lyapunov method and the static gain control method, and an algorithm to the proposed method is examined.
Firstly, we present the design of the OFSC for system (4).
Theorem 3.1
Under Assumption 3.1, system (4) is asymptotically stabilized by a linear OFSC.
Proof
Examine the following linear observer:
$$ \textstyle\begin{cases} D^{\alpha }_{t} w_{1}=w_{2}+\frac{a_{1}l}{R}(v_{1}-w_{1}), \\ D^{\alpha }_{t} w_{2}=w_{3}+\frac{a_{2} l^{2}}{R^{2}}(v_{1}-w_{1}), \\ \vdots \\ D^{\alpha }_{t} w_{n-1}=w_{n}+\frac{a_{n-1}l^{n-1}}{R^{n-1}}(v_{1}-w _{1}), \\ D^{\alpha }_{t} w_{n}=u+\frac{a_{n}l^{n}}{R^{n}}(v_{1}-w_{1}), \end{cases} $$
(6)
where \(R>1, l>0\), and \(a_{j} > 0\ (j=1,2,\ldots,n)\) are coefficients of the Hurwitz polynomial
$$ \bar{p}(k)=k^{n}+a_{1} k^{n-1}+\cdots +a_{n-1}k+a_{n}. $$
Set
$$ h_{i}=\frac{v_{i}-w_{i}}{R^{n+1-i}}, \qquad\bar{w}_{i}=\frac{w_{i}}{R ^{n+1-i}},\quad i=1,2,\ldots,n. $$
By (4) and (6), we obtain
$$\begin{aligned} & D^{\alpha }_{t} h=\frac{1}{R}\bar{A}(l)h+G, \end{aligned}$$
(7)
$$\begin{aligned} & D^{\alpha }_{t} \bar{w}=\frac{1}{R}\bar{ \varOmega } \bar{w}+\frac{1}{R}Fu+ \frac{1}{R}\bar{C}(l)h, \end{aligned}$$
(8)
where
We set \(R>1\) such that the system consisting of (7), (8) and
$$ u=-(b_{1} \bar{w}_{1}+b_{2} \bar{w}_{2}+b_{3} \bar{w}_{3}+\cdots +b _{n} \bar{w}_{n}) $$
(9)
is asymptotically stable at \(h=0\) and \(\bar{w}=0\), where \(b_{j}>0\ (j=1,2, \ldots,n)\) are the coefficients of the Hurwitz polynomial
$$ \bar{q}(k)=k^{n}+b_{n} k^{n-1}+\cdots +b_{2} k+b_{1}. $$
In forms of \(\bar{w}_{i}\) and (9), we obtain
$$ u=-\frac{1}{R^{n}}\bigl(b_{1} w_{1}+b_{2} R w_{2}+b_{3} R^{2} w_{3}+\cdots +b_{n} R^{n-1} w_{n}\bigr). $$
(10)
By (8) and (9), we have
$$ D^{\alpha }_{t} \bar{w}=\frac{1}{R}\bar{B} \bar{w}+\frac{1}{R}\bar{C}(l)h, $$
(11)
where
Let Lyapunov function \(\bar{V}_{1}=h^{T} \bar{P}(l)h\), where \(\bar{P}(l)>0\) is a positive definite matrix and satisfies \(\bar{P}(l) \bar{A}(l)+\bar{A}^{T} (l) \bar{P}(l)=-I\). Then we have
$$\begin{aligned} { D^{\alpha }_{t}}\bar{V}_{1}|_{(7)} &\leq \bigl({ D ^{\alpha }_{t}}h \bigr)^{T} \bar{P}(l) h+h^{T} \bar{P}(l) { D^{ \alpha }_{t}}h \\ &=\biggl(\frac{1}{R}\bar{A}(l)h+G\biggr)^{T} \bar{P}(l) h+h^{T} \bar{P}(l) \biggl( \frac{1}{R}\bar{A}(l)h+G\biggr) \\ &\leq -\frac{1}{R} \Vert h \Vert ^{2} +2 \bigl\Vert \bar{P}(l) \bigr\Vert \cdot \Vert h \Vert \cdot \Vert G \Vert . \end{aligned}$$
From (5) and the expressions of \(h_{i}\) and \(\bar{w}_{i}\), for any \(i\ (i=1,2,\ldots,n)\), we have
$$\begin{aligned} \biggl\vert \frac{g_{i}}{R^{n-i+1}} \biggr\vert &\leq \frac{c}{R^{n-i+1}}\bigl( \vert v _{i+2} \vert + \vert v_{i+3} \vert +\cdots + \vert v_{n} \vert \bigr) \\ &\leq \frac{c}{R^{2}}\sum_{j=1}^{n} \frac{ \vert v_{j} \vert }{R^{n-j+1}} \\ &=\frac{c}{R^{2}}\sum_{j=1}^{n}\bigl( \vert h_{j} \vert + \vert \bar{w}_{j} \vert \bigr) \\ &\leq \frac{c\sqrt{n}}{R^{2}} \Vert h \Vert +\frac{c\sqrt{n}}{R^{2}} \Vert \bar{w} \Vert , \end{aligned}$$
where \(R>1\) and \(\sum_{j=1}^{n}|h_{j}|\leq \sqrt{n}\|h\|\).
Hence, we get
(12)
Set Lyapunov function \(\bar{V}_{2}=\bar{w}^{T} \bar{Q}\bar{w}\), where \(\bar{Q}>0\) is a positive definite matrix \(\bar{Q}>0\) and satisfies \(\bar{Q}\bar{B}+\bar{B}^{T} \bar{Q}=-I\). Then we have
$$\begin{aligned} { D^{\alpha }_{t}}\bar{V}_{2}|_{(11)} &\leq \bigl({ D ^{\alpha }_{t}}\bar{w} \bigr)^{T} \bar{Q} \bar{w}+\bar{w}^{T} \bar{Q} { D^{\alpha }_{t}}\bar{w} \\ &=\biggl(\frac{1}{R}\bar{B}\bar{w}+\frac{1}{R}\bar{C}(l)h \biggr)^{T} \bar{Q} \bar{w}+\bar{w}^{T} \bar{Q} \biggl( \frac{1}{R}\bar{B}\bar{w}+\frac{1}{R} \bar{C}(l)h\biggr) \\ &\leq -\frac{1}{R} \Vert \bar{w} \Vert ^{2} + \frac{2}{R} \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \cdot \Vert h \Vert \cdot \Vert \bar{w} \Vert \\ &\leq -\frac{1}{R} \Vert \bar{w} \Vert ^{2} + \frac{1}{R} \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \bigl( \Vert h \Vert ^{2}+ \Vert \bar{w} \Vert ^{2}\bigr). \end{aligned}$$
(13)
Choose Lyapunov function \(\bar{V}=\bar{V}_{1}+\bar{V}_{2}\). By (12) and (13), we obtain
$$\begin{aligned} { D^{\alpha }_{t}}\bar{V}|_{(7)(11)} \leq{} &{-} \frac{1}{R}\bigl(1- \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \bigr) \Vert h \Vert ^{2} +\frac{3nc}{R^{2}} \bigl\Vert \bar{P}(l) \bigr\Vert \cdot \Vert h \Vert ^{2} \\ & {}-\frac{1}{R}\bigl(1- \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \bigr) \Vert \bar{w} \Vert ^{2}+\frac{nc}{R ^{2}} \bigl\Vert \bar{P}(l) \bigr\Vert \cdot \Vert \bar{w} \Vert ^{2} \\ ={}&{-}\frac{1}{R^{2}}\bigl[\bigl(1- \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \bigr)R-3nc \bigl\Vert \bar{P}(l) \bigr\Vert \bigr] \Vert h \Vert ^{2} \\ & {}-\frac{1}{R^{2}}\bigl[\bigl(1- \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \bigr)R-nc \bigl\Vert \bar{P}(l) \bigr\Vert \bigr] \Vert \bar{w} \Vert ^{2}. \end{aligned}$$
Set \(l>0\) and \(R>1\) satisfying
$$ \bigl\Vert \bar{Q}\bar{C}(l) \bigr\Vert \leq \delta,\qquad R>\frac{3n}{1-\delta } \bigl(c \bigl\Vert \bar{P}(l) \bigr\Vert +\eta \bigr), $$
where δ satisfies \(0<\delta <1\) and \(\eta >0\).
Thus, from Lemma 2.2, we get \({ D^{\alpha }_{t}}\bar{V} |_{\text{( 7)(11)}}<-\frac{\eta }{R^{2}}(\|h\|^{2}+\|\bar{w}\| ^{2})\), which implies that system (7) and (11) is asymptotically stable at \(h=0\) and \(\bar{w}=0\). Therefore, closed-loop system (4), (8), and (9) is asymptotically stable at \(v=0\) and \(\bar{w}=0\). Closed-loop system (4), (6), and (10) is also asymptotically stable at \(v=0\) and \(w=0\). Thus, it can be concluded that system (6) and (10) is the linear output dynamic compensator of system (4). This completes the proof. □
Based on the above analysis, we establish an algorithm to construct an OFSC for system (4).
Algorithm 3.1
The algorithm is divided into the following five steps:
-
(1)
Let
\(a_{j}>0, b_{j}>0\ (j=1,2,\ldots,n)\)
be the coefficients of the Hurwitz polynomials
$$\begin{aligned} &\bar{p}(k)=k^{n}+a_{1} k^{n-1}+\cdots +a_{n-1} k+a_{n},\\ & \bar{q}(k)=k ^{n}+b_{n} k^{n-1}+\cdots +b_{2} k+b_{1}. \end{aligned}$$
Then we get
\(\bar{A}(l), \bar{C}(l)\), and
B̄.
-
(2)
Solving the equation
$$ \bar{B}^{T} \bar{Q}+\bar{Q} \bar{B}=-I $$
leads to
\(\bar{Q}>0\).
-
(3)
Choose an appropriate constant
l
such that
\(\delta =\|\bar{Q}\bar{C}(l)\|<1\).
-
(4)
Solve the equation
$$ \bar{P}(l)\bar{A}(l)+\bar{A}^{T} (l) \bar{P}(l)=-I. $$
Then we obtain
\(\bar{P}(l)>0\).
-
(5)
Let
$$ R>\frac{3n}{1-\delta }c \bigl\Vert \bar{P}(l) \bigr\Vert . $$
Then a linear OFSC for system (4) is
u, where
u
is defined as in (10), and
\(w_{1}, w_{2},\ldots, w_{n}\)
are the states of system (6).
Remark 3.1
The different research problems of this paper and [27] are on the design problem of the OFSC output and the SFSC for the same system (4). The OFSC for the NUTFOS is studied in this paper, and the SFSC for the NUTFOS is considered in [27]. In fact, the design process of the OFSC is more complicated than that of the SFSC.