- Research
- Open access
- Published:
Effect of insecticide on the population dynamics of brown planthoppers and Cyrtorhinus lividipennis: a modeling approach
Advances in Difference Equations volume 2019, Article number: 182 (2019)
Abstract
In this paper, we investigate the effect of insecticide on the population dynamics of brown planthoppers (a major insect pest of rice) and Cyrtorhinus lividipennis (one of the natural enemies of brown planthoppers) by developing an impulsive mathematical model, and we analyze the model theoretically and numerically. The conditions on the parameters of the model for which the stability and permanence of the system can be ensured are derived. Computer simulations are also presented to confirm our theoretical results. The results show that with an appropriate amount and period between two consecutive applications of insecticide, the population of brown planthoppers could be maintained below a certain level, while Cyrtorhinus lividipennis could also survive.
1 Introduction
The brown planthopper (BPH) is recognized as one of the major insect pests of rice. The well-known damage caused by the infestation of brown planthoppers is hopperburn in which the rice crop are wilting and drying completely [1]. The outbreak of BPH in Thailand during the dry season of the year 2010 caused approximately $52 million losses as reported by the Office of Agricultural Economics, the Ministry of Agriculture and Cooperatives of Thailand [2].
Biological control and insecticide have been used to control the outbreak of brown planthoppers in a paddy field. However, when insecticide is utilized not only brown planthoppers are eliminated but also its natural enemies in the paddy field such as Cyrtorhinus lividipennis [3, 4]. Even though insecticides have been widely used for controlling the pest, BPH has developed resistance to some major insecticides such as carbamates, organophosphates, neonicotinoids, phenylpyrazoles and pyrethroids [5, 6]. As it is quick and cost-effective against insects, chemical control is a popular choice in pest management. However, excessive and irrational use of chemical pesticides could lead to negative effects on the environment such as biodiversity’s reduction and the decrease in population of natural enemies. Alternatively, biological control is a safe and an effective method. Cyrtorhinus Lividipennis is a major natural enemy of BPH. It preys mainly on eggs and nymphs of BPH [7, 8]. The predatory activity of Cyrtorhinus lividipennis against BPH has been investigated by many researchers and the study indicated that the Cyrtorhinus lividipennis’s preying on BPH’s eggs was an important cause of the decrease in the BPH population [7, 9]. However, when the outbreak of BPH is severe, the use of Cyrtorhinus lividipennis alone might not be the most effective choice because the reproduction of Cyrtorhinus lividipennis is not rapid enough to control the outbreak.
In this paper, we investigate the effects of impulsive applications of insecticide on the population dynamics of brown planthoppers and Cyrtorhinus lividipennis.
2 An impulsive system
Let \(B(t)\) represent the population density of brown planthoppers at time t and \(C(t)\) represent the population density of Cyrtorhinus lividipennis at time t. The following impulsive system is proposed to investigate the population dynamics of brown planthoppers and Cyrtorhinus lividipennis when insecticide is utilized:
with
Here, \(a_{1},a_{2},b_{1},r_{1},h_{1},h_{2},h_{3},d_{1}\) and \(d_{2}\) are assumed to be positive, T accounts for the period between two consecutive applications of insecticide, \(k\in {{Z}_{+}}\), \({{Z}_{+}}=\{1,2,3,\ldots\}\), α accounts for the negative effect of the insecticide on the population of brown planthoppers, \(0<\alpha <1\), and β accounts for the negative effect of insecticide on the population of Cyrtorhinus lividipennis, \(0<\beta <1\).
Equation (1a) describes the rate of change of the population of brown planthoppers. On the right-hand side, the first term represents the reproduction of brown planthoppers which is assumed to follow the logistic growth function, the second term represents the decrease in the population of brown planthoppers due to the predation by Cyrtorhinus lividipennis when the functional response is assumed to follow the Holling type II functional response and the last term represents the natural death rate of brown planthoppers.
Equation (1b) describes the rate of change of the population of Cyrtorhinus lividipennis. On the right-hand side, the first term represents the reproduction of Cyrtorhinus lividipennis which is assumed to follow the logistic growth function. Here, we assume that Cyrtorhinus lividipennis could feed on other insect pest in the paddy field apart from brown planthoppers and the population of Cyrtorhinus lividipennis could be high even as brown planthoppers are absent as reported in [10]. The second term represents the increase in the population of Cyrtorhinus lividipennis due to the predation on brown planthoppers and the last term represents the natural death rate of Cyrtorhinus lividipennis.
3 Theoretical results
Definition 1
Let the map defined by the right hand side of (1a)–(1d) be denoted by \(f=({{f}_{1}},{{f}_{2}})\) and let \(G:{{R}_{+}}\times R_{+}^{2}\to {{R}_{+}}\), where \({{R}_{+}}=[0, \infty ), {R}_{+}^{2}=\{X\in {{R}^{2}}:X=(B,C), B\ge 0, C\ge 0\}\).
-
(a)
G is said to belong to class \({{G}_{0}}\) if G is continuous in \((kT,(k+1)T]\times R_{+}^{2}\to {{R}_{+}}\) and for each \(X\in R_{+} ^{2},k\in {{Z}_{+}}\),
$$ \lim_{(t,Y)\to (kT^{+},X)} G(t,Y)=G \bigl(kT^{+},X \bigr) $$exists and G is locally Lipschitzian in X.
-
(b)
Suppose \(G\in {{G}_{0}}\). For \((t,X)\in (kT,(k+1)T]\times R_{+} ^{2}\), the upper right derivative of \(G(t,X)\) with respect to (1a)–(1d) is defined by
$$ {D^{+}}G(t,X)=\limsup_{h \to 0^{+}} \frac{1}{h} \bigl[G \bigl(t+h,X+hf(t,X) \bigr)-G(t,X) \bigr]. $$
The solution of (1a)–(1d), \(X(t)=(B(t),C(t))\), is assumed to be a piecewise continuous function in what follows. This implies that \(X(t):{{R}_{+}}\to {R}_{+}^{2}\), \(X(t)\) is continuous on \((kT,(k+1)T]\), \(k\in {{Z}_{+}}\) and \(\lim_{t\to kT^{+}}X(t)=X(kT^{+})\) exists. Therefore, the smoothness properties of f ensure the existence and uniqueness of solution to (1a)–(1d).
Consider (1a) and (1b) when \(t\ne kT\). We can see that if \(B(t)=0\), \(\frac{dB}{dt}= 0\) and if \(C(t)=0\), \(\frac{dC}{dt}=0\). In addition, \(B(k{{T}^{+}})=(1-\alpha )B(kT)\), \(0<\alpha <1\), \(C(k{{T}^{+}})=(1- \beta )C(kT)\), \(0<\beta <1\). Hence, the following lemma is obtained.
Lemma 1
Let \(X(t)=(B(t),C(t))\) be a solution of (1a)–(1d). Then \(X(t)\ge 0\) for all \(t\ge 0\) provided that \(X({{0}^{+}})\ge 0\).
Lemma 2
Let \(X(t)=(B(t),C(t))\) be a solution of (1a)–(1d). Then \(B(t)\le M^{*}\) and \(C(t)\le M^{*}\) for some constant \(M^{*}>0\) provided that
when t is sufficiently large.
Proof
Let \(g(t)=B(t)+C(t)\), \({M_{1}}= \frac{{a_{1}}{h_{1}}}{4}\), \({M_{2}}=\frac{{a_{2}}{h_{3}}}{4}\), \({M_{3}}=\frac{{r_{1}}{b_{1}}}{h_{2}}\) and \(c^{*}=\min \{d_{1},d_{2}-M _{3}\}\).
For \(t\ne kT\), we can see that
Hence, \(D^{+}g\le -c^{*}g+{M_{0}}\).
For \(t=kT\),
For \(t\in (kT,(k+1)T]\), Lemma 2.2 of [11] implies that
Since \(g(t)=B(t)+C(t)\) and \(g(t)< M^{*}\), this means that \(B(t)\le M ^{*}\) and \(C(t)\le M^{*}\) when t is large enough and \(M^{*} > 0\). □
Next, let us investigate the reduced system of (1a)–(1d) when the brown planthopper is absent (\(B=0\)):
where \(r\equiv \frac{a_{2}}{h_{3}} > 0\) and \(s\equiv a_{2}-d_{2}\). Suppose that \(s>0\) that is
We can see that the solution of (3) is
where \(c_{1}\) is an arbitrary constant.
Since \(C(t)\) is an increasing function for \(s>0\) and (4), the system (3)–(5) has a periodic solution
with \({\tilde{C}(0^{+})}= \frac{s(1-\beta -{e^{-sT}})}{r(1-e^{-sT})}>0\) and (6) holding.
Therefore,
is the positive solution of (3)–(5).
Lemma 3
The system (3)–(5) has a positive periodic solution \(\tilde{C}(t)\), and \(C(t)\to \tilde{C}(t)\) as \(t\to \infty \) for every solution \({C(t)}\) of (3)–(5).
Therefore,
is a periodic solution of the system (1a)–(1d) at the absence of brown planthoppers for \(t\in (kT,(k+1)T]\) and \(\tilde{C}(kT ^{+})=\tilde{C}(0^{+})= \frac{s(1-\beta -{e^{-sT}})}{r (1-e^{-sT} )}, k\in {Z_{+}}\).
Theorem 1
Suppose that
and
Then the solution \((0,\tilde{C}(t))\) of (1a)–(1d) is locally asymptotically stable where \({T_{1}}= \frac{1}{ (a_{1}-d_{1}- \frac{{b_{1}}s}{r} )} [\ln ( \frac{1}{1-\alpha } )- \frac{{b_{1}}}{r}\ln ( \frac{1}{1-\beta } ) ]\) and \({T_{2}}= \frac{1}{s}\ln ( \frac{1}{1-\beta } )\).
Proof
Let us consider a small perturbation
from the point \((0,\tilde{C}(t))\). Then
where \({\varPhi }(t)\) satisfies
and \({\varPhi }(0)=I\), the identity matrix. Hence, the fundamental solution matrix is
Note that the terms (*) and (**) are not involved in the further calculations and hence it is not necessary to find (*) and (**).
Linearization of (1c)–(1d) yields
Consider
The eigenvalues of A are
Since \(0<\alpha <1\), \(0<\beta <1\), (8)–(10) hold, and then
Hence,
and
All conditions of Floquet theory are now satisfied and, hence, we can conclude that the solution \((0,\tilde{C}(t))\) of (1a)–(1d) is locally stable, which completes the proof. □
System Permanence
Definition 2
If there exist constants \(n, m>0\) and a finite time \({t_{0}}\) such that, for all solution with all initial values \(B(0^{+})>0\) and \(C(0^{+})>0\),
for all \(t>{t_{0}}\), the system (1a)–(1d) is said to be permanent where we note that \({t_{0}}\) may depend on the initial values whereas \(n,m\) are independent of the initial values.
Theorem 2
The system (1a)–(1d) is permanent if
and
provided (2), (6), (9) and (10) hold where
Proof
Let \(X(t)=(B(t),C(t))\) be a solution of the system (1a)–(1d) with \(B(0^{+})>0\) and \(C(0^{+})>0\). For sufficiently large t, Lemma 2 implies that a constant \(m>0\) exists so that \(B(t)\le m\) and \(C(t)\le m\).
Since \(\frac{{r_{1}}{b_{1}}BC}{1+{k_{2}}B}\ge 0\), (1b) implies that
and for sufficiently large t, we have
for some \(\varepsilon >0\).
Hence, for sufficiently large t, we obtain
Next, we have to show that there exists a constant \({n_{2}}>0\) such that \(B(t)>{n_{2}}\). For some \({n_{3}}>0\), let
Step 1. In order to prove by contradiction that there exists \(t_{1}\) such that \(B(t_{1})\ge {n_{3}}\), we assume that \(B(t)<{n_{3}}\) for all positive t.
Equations (1b) and (1d) imply that
Consider the comparison system
and
Hence,
is a periodic solution of (13)–(15) with \(\frac{1}{{Z}(0^{+})}= \frac{\beta r}{(s+M_{3}) (1-\beta -e^{-(s+M_{3})T} )}+ \frac{r}{(s+M_{3})}>0\). The positive solution of (13)–(15) is
\(t\in (kT,(k+1)T]\) and as \(t\to \infty \)
Hence, we can conclude that \(C(t)\leq Z(t)\) by the comparison theorem [12].
Now, we consider (1a)
Since \(C(t)\leq Z(t)\), there is a \({T_{1}}>0\) such that
for a sufficiently small \({\varepsilon _{1}}>0\).
Therefore,
and
Letting \(K\in {Z_{+}}\) and \(KT\ge {T_{1}}\), and integrating over \((kT,(k+1)T], k\ge K\), we get
where \(\gamma \equiv (1-\alpha )\exp ( ({\hat{M}_{1}}- {b_{1}}{\varepsilon _{1}}- \frac{{b_{1}}(s+M_{3})}{r} )T+ \frac{b_{1}}{r}\ln ( \frac{1}{1-\beta } ) )\).
Consider
For sufficiently small \({\varepsilon _{1}}>0\),
Since \(\hat{M_{1}}<{a_{1}}-{d_{1}}\) and (9) hold, we can choose a small \({n_{3}}>0\) such that \(\ln \gamma >0\) and, hence,
Then \(B((k+i)T)\ge B(kT)\gamma ^{i}\to \infty \) as \(i\to \infty \). It is in contradiction to the boundedness of \(B(t)\). Hence, there is \({t_{1}}>0\) such that \(B(t_{1})\ge {n_{3}}\).
Step 2. If \(B(t)\ge {n_{3}}\) for all \(t>{t_{1}}\), then the proof is complete. Otherwise, \(B(t)<{n_{3}}\) for some \(t>{t_{1}}\). Let \(t^{*}=\inf_{t>t_{1}}\{B(t)< n_{3}\}\).
Case 1: \({t^{*}}={k_{1}}T\) for some \({k_{1}}\in {Z_{+}}\). That is, for \(t\in (t_{1},t^{*}]\), \(B(t)\ge {n_{3}}\) and the continuity of \(B(t)\) implies that \(B(t^{*})={n_{3}}\).
Since there are \(m>0\) and \(n_{1}>0\) such that, for sufficiently large t, \(B(t)< m\) and \(n_{1}< C(t)< m\), \(m'>0\) and \(n'_{1}>0\) are chosen so that
and
such that
Then choose \(k_{2},k_{3}\in {Z_{+}}\) such that
and
where
Let \({T}'={k_{2}}T+{k_{3}}T\). We claim that there is \(t_{2}\in (t^{*},t ^{*}+T']\) such that \(B(t_{2})>{n_{3}}\). Otherwise, considering (17) with \(\frac{1}{Z(t^{*+})}= \frac{1}{C(t^{*+})}\), we have
for \(t\in (kT,(k+1)T]\) and \(k_{1}\le k\le k_{1}+k_{2}+k_{3}\).
For \({k_{2}}T\le t-{t^{*}}\le T'\), we have
Since (12), we have
Then
Similar to Step 1, we have
From (1a), we have
and then integrating over \([t^{*},t^{*}+{k_{2}}T]\), we obtain
and hence
Hence, the definition of \(n_{3}\) is contradicted. Therefore, there exists \(t_{2}\in (t^{*},t^{*}+T']\) such that \(B(t_{2})>{n_{3}}\).
Now, let \(\tilde{t}=\inf_{t>t^{*}}\{B(t)>n_{3}\}\). Then \(B(t)< {n_{3}}\) for \(t\in (t^{*},\tilde{t})\), and the continuity of \(B(t)\) implies that \(B(\tilde{t})={n_{3}}\). Next, we choose \(q\in {Z_{+}}\) such that \(q\le {k_{2}}+{k_{3}}\) and \(t^{*}+qT\ge \tilde{t}\), and suppose \(t\in (t^{*}+(q-1)T,t^{*}+qT]\). From (25), we have
We used \({\gamma _{1}}<0\) and \(q\le {k_{2}}+{k_{3}}\).
Letting
we can see that \(B(t)\ge \bar{n}_{2}\) for \(t\in (t^{*},\tilde{t})\). By using t̃ instead of \(t^{*}\) and continuing in the same way, we then obtain \(B(t)\ge \bar{n}_{2}\) for all t large enough.
Case 2: \(t^{*}\ne kT\) for all \(k\in {Z_{+}}\). This implies that \(B(t)\ge {n_{3}}\) for \(t\in [t_{1},t^{*})\) and \(B(t^{*})={n_{3}}\). For some \({k'_{1}}\in {Z_{+}}\), suppose that \(t^{*} \in ({k'_{1}}T,({k'_{1}}+1)T)\).
Case 2.1: \(B(t)\le {n_{3}}\) for all \(t\in (t^{*},( {k'_{1}}+1)T]\). We claim that there is \({t'_{2}}\in [({k'_{1}}+1)T,( {k'_{1}}+1)T+T']\) such that \(x(t'_{2})>{n_{3}}\). Otherwise, considering (17) with \(\frac{1}{Z(({k'_{1}}+1){T^{+}})}= \frac{1}{C(({k'_{1}}+1){T^{+}})}\). For \(t\in (kT,(k+1)T]\), \({k'_{1}}+1 \le k\le {k'_{1}}+1+{k_{2}}+{k_{3}}\), we obtain
For \({k_{2}}T\le t-{t^{*}}\), as in Case 1, we obtain
Then
Since \({k_{2}}T\le ({k'_{1}}+1+{k_{2}})T-{t^{*}}\), we have
Then
The definition of \(n_{3}\) is contradicted and, hence, we can conclude that there is \(t'_{2} \in [({k'_{1}}+1)T,({k'_{1}}+1)T+T']\) such that \(B(t'_{2})>{n_{3}}\).
Now, let \(\bar{t}=\inf_{t>t^{*}}\{B(t)>n_{3}\}\). Then \(B(t)\le {n_{3}}\) for \(t\in [t^{*},\bar{t})\), and \(B(\bar{t})={n_{3}}\). We choose \(q'\in {Z_{+}}\) such that \(q'\le {k_{2}}+{k_{3}}+1\) and suppose \(t\in ({k'_{1}}T+(q'-1)T,{k'_{1}}T+q'T]\). From (25), we have
We used \({\gamma _{1}}<0\) and \(t-{t^{*}}\le q'T\). Hence,
Letting
then, for \(t\in (t^{*},\bar{t})\), we obtain \(B(t)\ge {n_{2}}\). By using t̄ instead of \(t^{*}\) and continue with the same way, we shall obtain \(B(t)\ge {n_{2}}\) for all t large enough.
Case 2.2: There is a \(t''\in (t^{*},({k'_{1}}+1)T]\) such that \(B(t'')>{n_{3}}\). Let \(\underline{t}=\inf_{t>t^{*}}\{B(t)>n_{3}\}\). Hence, \(B(t)<{n_{3}}\) for \(t\in [t^{*},\underline{t})\), and \(B(\underline{t})={n_{3}}\). For \(t\in [t^{*},\underline{t})\), (25) holds, we have
since \(t<{k'_{1}}T+T<{t^{*}}+T\).
Since \(B(\underline{t})\ge {n_{3}}\), we can continue in the same way for \(t>\underline{t}\). Since \({n_{2}}<{\bar{n}_{2}}<{n_{3}}\), we have \(B(t)\ge {n_{2}}\) for \(t\ge {t_{1}}\). The proof is complete. □
Existence of the positive periodic solution
Let us investigate the possibility of positive periodic solution to the system (1a)–(1d) near \((0,\tilde{C}(t))\) by interchanging the state variables and consider the following system instead:
with
Let
According to Lakmeche and Arini [13],
and
Now, we can compute
where \(\tau _{0}\) is the root of \(d'_{0}=0\). Note that \(d'_{0}>0\) if \(T< T_{1}\) and \(d'_{0}<0\) if \(T>T_{1}\).
Note that \(a'_{0}>0\) if \(T>{T_{1}}>T_{2}\),
Note that \(P^{*}<0\) and \(Q^{*}>0\) if
and
Thus, \({P^{*}}{Q^{*}}<0\), and by Lakmeche and Arini [13], the following result is obtained.
Theorem 3
The system (25)–(28) has a positive periodic solution which is supercritical provided (2), (6), (9), (10), (12), (30), (31) hold, and \(T>T_{1}>T_{2}\).
4 Numerical simulations
Figure 1 shows a simulation result of the system of Eqs. (1a)–(1d) with the parametric values \({a_{1}}=0.5, {a_{2}}=0.8, {b_{1}}=0.5\), \({r_{1}}=0.9\), \({d_{1}}=0.01, {d_{2}}=0.1, {h_{1}}=2, {h_{2}}=5, {h_{3}}=0.3\), \(\alpha =0.5, \beta =0.5, T=1\), \(B(0)=5\), and \(C(0)=10\) in which all the conditions in Theorem 1 are satisfied. The solution trajectory tends to a limit cycle as predicted in Theorem 1.
Figure 2 shows a simulation result of the system of equations (1a)–(1d) with the parametric values \({a_{1}}=0.5, {a_{2}}=0.7, {b_{1}}=0.5\), \({r_{1}}=0.9\), \({d_{1}}=0.01\), \({d_{2}}=0.1\), \({h_{1}}=3\), \({h_{2}}=5\), \({h_{3}}=0.2\), \(\alpha =0.2\), \(\beta =0.2, T=10\), \(B(0)=5\), and \(C(0)=5\) in which all the conditions in Theorem 2 are satisfied. The solution of the system shows permanence as predicted in Theorem 2.
Figure 3 shows a simulation result of the system of equations (1a)–(1d) with the parametric values \({a_{1}}=0.5, {a_{2}}=0.4, {b_{1}}=0.5, {r_{1}}=0.9, {d_{1}}=0.01, {d_{2}}=0.2, {h_{1}}=0.3, {h_{2}}=2\), \({h_{3}}=0.5\), \(\alpha =0.5\), \(\beta =0.5, T=5\), \(B(0)=5\), and \(C(0)=5\) in which all the conditions in Theorem 3 are satisfied. The solution of the system is positive periodic as predicted in Theorem 3.
5 Conclusion
We investigate the dynamics behaviors of the populations of BPH and Cyrtorhinus lividipennis when insecticide is utilized to control the population of BPH in the paddy field through an impulsive mathematical model. Once insecticide is applied, both BPH and Cyrtorhinus lividipennis populations decrease rapidly. The appropriate duration T between two consecutive applications of insecticide might lead to effective control (the population of BPH reaches the vanishing level or maintains a level lower than the desired level) of BPH while Cyrtorhinus lividipennis still survive in the paddy field.
References
Stout, M.J.: Chapter I: Host-plant resistance in pest management. In: Abrol, D.P. (ed.) Integrated Pest Management Elsevier, Amsterdam (2014)
Escalada, M.M., Luecha, M., Heong, K.L.: Chapter 10—Social impacts of planthopper outbreaks: case study from Thailand. In: Heong, K.L., Cheng, J.A., Escalada, M.M. (eds.) Rice Planthoppers: Ecology, Management, Socio Economics and Policy, pp. 209–226. Zhejiang University Press, Hangzhou (2015). https://doi.org/10.1007/978-94-017-9535-7
Huang, J., Qiao, F., Zhang, L., Rozelle, S.: Farm Pesticide, Rice Production and Human Health, Centre for Chinese Agricultural Policy. Chinese Academy of Sciences, Beijing (2000)
Rola, A.C., Pingali, P.L.: Pesticides, Rice Productivity, and Farmers’ Health: An Economic Assessment. International Rice Research Institute and World Resource Institute, Washington (1993)
Zhang, X., Liao, X., Mao, K., Zhang, K., Wan, H., Li, J.: Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvara lugens (Stål) in China 2012–2014. Pestic. Biochem. Physiol. 132, 13–20 (2016)
Ramli, N.H., Yusup, S., Kueh, B.W.B., Kamarulzaman, P.S.D., Osman, N., Rahim, M.A., Aziz, R., Mokhtar, S., Ahmad, A.B.: Effectiveness of biopesticides against brown planthopppers (Nilaparvata lugens) in paddy cultivation. Sustainable Chemistry and Pharmacy 8, 16–20 (2018)
Katti, G., Pasalu, I.C., Padmakumari, A.P., Padmavathi, C., Jhansilakshmi, V., Krishnaiah, N.V., Bentur, J.S., Prasad, J.S., Rao, Y.K.: Biological control of insect pests of rice. Technical Bulletin, Directorate of Rice Research, Rajendranagar, Hyderabad, AP, India 22, 22 (2007)
Sigsgaard, L.: Early season natural control of the brown planthopper Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug. Bull. Entomol. Res. 97, 533–544 (2007)
Preetha, G., Stanley, J., Suresh, S., Samiyappan, R.: Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.). Chemosphere 80, 498–503 (2010)
Lu, Z., Yu, X., Hu, C.: Predatory behavior of mirid bug, Cyrtorhinus lividipennis, on rice plants with different nitrogen regimes. International Rice Research Notes. 29, 38–40 (2004)
Liu, B., Zhi, Y., Chen, L.: The dynamics of a predator-prey model with Ivlev’s functional response concerning integrated pest management. Acta Math. Appl. Sin. 20(1), 133–146 (2004)
Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Lakmeche, A., Arini, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 7, 265–287 (2000)
Funding
We acknowledge the support by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chaiya, I., Rattanakul, C. Effect of insecticide on the population dynamics of brown planthoppers and Cyrtorhinus lividipennis: a modeling approach. Adv Differ Equ 2019, 182 (2019). https://doi.org/10.1186/s13662-019-2128-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2128-y