Skip to main content

Theory and Modern Applications

Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation

Abstract

In this paper, we study the IBVP for the 2D Boussinesq equations with fractional dissipation in the subcritical case, and prove the persistence of global well-posedness of strong solutions. Moreover, we also prove the long time decay of the solutions, and investigate the existence of the solutions in Sobolev spaces \(W^{2,p}({R}^{2})\times W^{1,p}({R}^{2})\) for some \(p>2\).

1 Introduction

In this paper, we study the 2D Boussinesq equations with fractional dissipation. The model reads

$$\begin{aligned} \begin{aligned} &u_{t}+\nu \varLambda ^{2\alpha } u+u\cdot \nabla u+\nabla P=\theta e_{2}, \\ &\operatorname{div} u=0, \\ &\theta _{t}+\kappa \varLambda ^{2\beta } \theta +u\cdot \nabla \theta =0, \\ &u(x,0)=u_{0}(x), \qquad\theta (x,0)=\theta _{0}(x),\quad x\in \varOmega, \\ &u(x,t)=0, \qquad \theta (x,t)=0, \quad x\in \partial \varOmega, \end{aligned} \end{aligned}$$
(1)

where \(u=(u_{1},u_{2})\) is the velocity vector field, \(u_{i}=u_{i}(x,t) \ (i=1,2), (x,t)\in {R}^{2}\times {R}_{+}\), \(\theta (x,t)\) and \(P(x,t)\) denote the scalar temperature and pressure of the fluid, respectively. The constants \(\nu \geq 0\) and \(\kappa \geq 0\) denote the viscosity and thermal diffusivity; \(e_{2}=(0,1)\) is the unit vector in the vertical direction, and the unknown function \(\theta e_{2}\) is the buoyancy force. For the sake of simplicity, we denote \(\varLambda:=\sqrt{- \Delta }\), the square root of the negative Laplacian, and obviously \(\widehat{\varLambda f}(k)=|k|\hat{f}(k)\), where \(k=(k_{1},k_{2})\) is a tuple consisting two integers, \(|k|=\sqrt{k_{1}^{2}+k_{2}^{2}}\) and the Fourier transform f̂ of a tempered distribution \(f(x)\) on Ω is defined as

$$\begin{aligned} \hat{f}(k)=\frac{1}{(2\pi )^{2}} \int _{\varOmega }f(x)e^{-ik\cdot x}\,dx. \end{aligned}$$
(2)

More generally, we will define the fractional Laplacian \(\varLambda ^{s} f\) for \(s\in {R}\) with the Fourier series

$$\begin{aligned} \varLambda ^{s} f:=\sum_{k\in {Z}^{2}} \vert k \vert ^{s}\hat{f}(k)e^{ik\cdot x}. \end{aligned}$$
(3)

As suggested by Jiu, Miao, Wu and Zhang in [33], we classify the parameters α and β into three categories:

  1. (1)

    the subcritical case, \(\alpha +\beta >\frac{1}{2}\);

  2. (2)

    the critical case, \(\alpha +\beta =\frac{1}{2}\);

  3. (3)

    the supercritical case, \(\alpha +\beta <\frac{1}{2}\).

When \(\alpha =\beta =1\), the Boussinesq equations (1) reduce to the standard Boussinesq equation. So far, there has been a lot of literature about the mathematical theory of the standard Boussinesq equation. In the cases when \(\nu,\kappa >0\), \(\nu >0\) and \(\kappa =0\), as well as \(\kappa >0\) and \(\nu =0\), the global regularity has been studied by many authors (see, e.g., [1, 6, 8, 11, 16, 24, 26,27,28, 32, 40, 41, 45, 65, 86, 87]). However, in the case of \(\nu =\kappa =0\), we only have the local well-posedness theory (see, e.g., [12, 13, 23]), the global regularity or singularity question is a rather challenging problem in mathematical fluid mechanics. Recently, the 2D incompressible Boussinesq equations with temperature-dependence or anisotropy dissipation have attracted considerable attention. In the case of temperature-dependent dissipation, the global-in-time regularity is well-known (see, e.g., [4,5,6, 29, 30, 43, 47, 48, 58, 60]). In the case of anisotropy dissipation, many authors have proved the global well-posedness (see, e.g., [2, 3, 9, 17, 42, 44, 61, 80]). For a detailed review on interesting results, we refer the reader to [52, 57].

Our main focus of the research on the 2D Boussinesq equation has been on the global regularity issue when only fractional dissipation is present. Using the Fourier localization method, Fang, Qian, and Zhang [19] obtained the local and global well-posedness and gave some blowup criteria with the velocity or temperature. Hmidi, Keraani, and Rousset [25] proved the global well-posedness results. Jia, Peng, and Li [31] proved that the generalized 2D Boussinesq equation has a global and unique solution. Jiu, Miao, Wu, and Zhang [33, 34] aimed at the global regularity. Jiu, Wu, and Yang [35] studied the solutions in the periodic box. KC, Regmi, Tao, and Wu [38, 39] studied the global (in time) regularity problem. Miao and Xue [49] proved the global well-posedness results for rough initial data. Stefanov and Wu [56] solved the global regularity problem. Wu and Xu [63] were concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations. Using energy methods, the Fourier localization technique, and Bony’s paraproduct decomposition, Xiang and Yan [64] showed the global existence of the classical solutions. Xu [66] has proved the global existence, uniqueness and regularity of the solution. Xu and Xue [67] considered the Yudovich-type solution and gave a refined blowup criterion in the supercritical case. Yang, Jiu, and Wu [70] examined the global regularity issue and established the global well-posedness. Ye and Xu [83] established the global regularity of the smooth solutions, and in [84] they proved the global regularity of the smooth solutions.

There are many papers dealing with the fractional differential equation [10, 14, 20, 22, 50, 53,54,55, 59, 69, 71, 74,75,76,77,78,79, 81, 82, 85]. For a recent review of the fractional calculus operators, we refer the reader to [72]. In hydrodynamics, Boussinesq equation is a low-dimensional model of fluid dynamics, which plays a very important role in the study of Raleigh–Bernard convection. Boussinesq equation has many applications in modeling fluids and geophysical fluids [15, 21, 51, 70, 73].

The following is the first main result of this paper, which asserts the global well-posedness of the 2D Boussinesq equations (1).

Theorem 1

Let \(\nu >0,\kappa >0\), \(\alpha,\beta \in (\frac{2}{3},1)\). Assume that \((u_{0},\theta _{0})\in H^{1+s}({R}^{2})\times H^{1+s}({R}^{2})\), \(s\in (0,1)\). Then there exists a unique global solution \((u(t), \theta (t) )\) of Boussinesq equations (1) such that, for any \(T>0\),

$$\begin{aligned} &u(t)\in C \bigl([0,T];H^{1+s}\bigl( {R}^{2}\bigr) \bigr)\cap L^{2} \bigl([0,T];H^{1+s+ \alpha }\bigl( {R}^{2}\bigr) \bigr), \end{aligned}$$
(4)
$$\begin{aligned} &\theta (t)\in C \bigl([0,T];H^{1+s}\bigl( {R}^{2}\bigr) \bigr)\cap L^{2} \bigl([0,T];H ^{1+s+\beta }\bigl( {R}^{2} \bigr) \bigr). \end{aligned}$$
(5)

Moreover, there exist positive constants λ and C independent of t and such that

$$\begin{aligned} \bigl\Vert \nabla \theta (t) \bigr\Vert ^{2}\leq C,\qquad \bigl\Vert \nabla u(t) \bigr\Vert ^{2}\leq C. \end{aligned}$$
(6)

And in the case when \(\min \{\nu \lambda ^{2\alpha }, \kappa \lambda ^{2\beta }\}>\frac{1}{2}\), one has

$$\begin{aligned} \bigl\Vert \varLambda ^{1+s}\theta (t) \bigr\Vert ^{2} \leq C,\qquad \bigl\Vert \varLambda ^{1+s} u(t) \bigr\Vert ^{2} \leq C. \end{aligned}$$
(7)

Inspired by the work of [62, 68], the second main result of this paper asserts the existence of the solutions in Sobolev spaces \(W^{2,p}( {R}^{2})\times W^{1,p}({R}^{2})\) for some \(p>2\).

Theorem 2

Let \(\nu >0,\kappa >0\), \(\alpha \geq \frac{1}{2}+\frac{n}{4}\) (we consider \(n=2\)), \(\beta \in (0,1)\). For some \(p\geq 2\), assume that \((u_{0},\theta _{0})\in W^{2,p}( {R}^{2})\times W^{1,p}( {R}^{2})\), with \(\operatorname{div} u_{0}=0\). Then there exists a global solution \((u(t),\theta (t) )\) of Boussinesq equations (1) such that, for any \(T>0\),

$$\begin{aligned} \bigl(u(t),\theta (t) \bigr)\in C \bigl([0,T],W^{2,p}\bigl( {R}^{2}\bigr) \bigr)\times \bigl([0,T],W^{1,p}\bigl( {R}^{2}\bigr) \bigr). \end{aligned}$$
(8)

Remark 1

The same result holds for the case \(n\geq 3\). The persistence of global well-posedness should be true in Sobolev spaces, which is left to a future work.

Remark 2

In the case \(\kappa =0\), our guess is that Theorems 1–2 remain true.

2 Preliminaries

In this section, we first introduce Kato–Ponce inequality from [37] (see also [28, 36]) which is important for the proof of Theorem 1, and give a positive inequality from [46] (see also [40, 66]) and Brezis–Wainger inequality from [7] (see also [18]), which are important for the proof of Theorem 2.

Lemma 1

([37])

Suppose that \(f,g\in C_{c}^{\infty }(\varOmega )\). Let \(s> 0\) and \(1< r\leq p_{1},p_{2},q_{1},q_{2} \leq +\infty \) be such that \(\frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{q_{1}}+\frac{1}{q _{2}}\) with the restriction \(p_{1},q_{2}\neq +\infty \). Then

$$\begin{aligned} \bigl\Vert \varLambda ^{s}(fg) \bigr\Vert _{L^{r}} \leq C \bigl( \bigl\Vert \varLambda ^{s}f \bigr\Vert _{L^{p_{1}}} \Vert g \Vert _{L^{p_{2}}}+ \Vert f \Vert _{L^{q_{1}}} \bigl\Vert \varLambda ^{s}g \bigr\Vert _{L^{q_{2}}} \bigr), \end{aligned}$$
(9)

where \(C>0\) is a constant.

Lemma 2

([46])

Suppose that \(u\in L^{p}({R}^{n})\) is such that \(\varLambda ^{\alpha }u \in L^{p}({R}^{n})\). Let \(0\leq m\leq 2\). For all \(p>1\), one has

$$\begin{aligned} \frac{4(p-1)}{p^{2}} \int _{{R}^{n}}\bigl(\varLambda ^{\frac{\alpha }{2}} \vert u \vert ^{ \frac{p}{2}}\bigr)^{2}\,dx \leq \int _{{R}^{n}}\varLambda ^{\alpha }u\cdot u \vert u \vert ^{p-2}\,dx. \end{aligned}$$
(10)

Observe that, if \(\alpha =2\), integrating (10) by parts, we obtain

$$\begin{aligned} \int _{{R}^{n}}\bigl(\varLambda \vert u \vert ^{\frac{p}{2}} \bigr)^{2}\,dx = \int _{{R}^{n}}\varLambda ^{2} u\cdot u \vert u \vert ^{p-2}\,dx. \end{aligned}$$
(11)

Lemma 2 is well-known in the theory of sub-Markovian operators, its statement and the proof are given in [46].

Lemma 3

([7])

Suppose that \(u\in L^{2}({R}^{2})\cap W^{1,p}({R}^{2})\). For all \(p>1\), one has

$$\begin{aligned} \Vert u \Vert _{L^{\infty }}\leq C(1+ \Vert \nabla u \Vert _{L^{2}} \bigl(1+\log ^{+}\bigl( \Vert \nabla u \Vert _{L^{p}}\bigr) \bigr)^{\frac{1}{2}}+C \Vert u \Vert _{L^{2}}, \end{aligned}$$
(12)

where \(C>0\) is a constant.

3 Proof of Theorem 1

The goal of this section is to prove Theorem 1. The proof is divided into two main parts showing global existence and uniqueness.

3.1 Global existence

The proof of global existence is based on several steps of careful energy estimates. First, we start with estimates of \(\|u(t)\|\) and \(\|\theta (t)\|\).

Lemma 4

Under the assumptions of Theorem 1, one has

$$\begin{aligned} & \bigl\Vert u(t) \bigr\Vert \in C \bigl(0,+\infty;L^{2}(\varOmega ) \bigr)\cap L^{2} \bigl(0,+ \infty;H^{\alpha }(\varOmega ) \bigr), \end{aligned}$$
(13)
$$\begin{aligned} & \bigl\Vert \theta (t) \bigr\Vert \in C \bigl(0,+\infty;L^{2}( \varOmega ) \bigr)\cap L^{2} \bigl(0,+\infty;H^{\beta }(\varOmega ) \bigr). \end{aligned}$$
(14)

Moreover, there exist positive constant λ independents of t and such that

$$\begin{aligned} \bigl\Vert \theta (t) \bigr\Vert ^{2}\leq \Vert \theta _{0} \Vert ^{2}e^{-2\kappa \lambda ^{2\beta }t}, \end{aligned}$$
(15)

as well as

$$\begin{aligned} & \bigl\Vert u(t) \bigr\Vert ^{2}\leq e^{-\nu \lambda ^{2\alpha }t} \Vert u_{0} \Vert ^{2}+\frac{1}{ \nu \lambda ^{2\alpha }} \biggl\vert \frac{e^{-\nu \lambda ^{2\alpha }t}-e ^{-\kappa \lambda ^{2\beta }t}}{\nu \lambda ^{2\alpha }-\kappa \lambda ^{2\beta }} \biggr\vert \Vert \theta _{0} \Vert ^{2}, \\ &\nu \lambda ^{2\alpha }\neq \kappa \lambda ^{2\beta }, \end{aligned}$$
(16)
$$\begin{aligned} & \bigl\Vert u(t) \bigr\Vert ^{2}\leq e^{-\nu \lambda ^{2\alpha }t} \Vert u_{0} \Vert ^{2}+\frac{t}{ \nu \lambda ^{2\alpha }} e^{-\nu \lambda ^{2\alpha }t} \Vert \theta _{0} \Vert ^{2}, \\ & \nu \lambda ^{2\alpha }=\kappa \lambda ^{2\beta }. \end{aligned}$$
(17)

Proof

Taking \(L^{2}\)-inner product of (1)3 with θ, and integrating by parts, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert \theta \Vert ^{2}+\kappa \bigl\Vert \varLambda ^{\beta } \theta \bigr\Vert ^{2} =0. \end{aligned}$$
(18)

Since \(\theta (x,t)|_{\partial \varOmega }=0\), using Poincaré inequality, we find

$$\begin{aligned} \frac{d}{dt} \Vert \theta \Vert ^{2}+2\kappa \lambda ^{2\beta } \Vert \theta \Vert ^{2}=0, \end{aligned}$$
(19)

where λ is the first eigenvalue of Λ. Then, we can obtain that, for all \(t\in [0,+\infty )\),

$$\begin{aligned} \bigl\Vert \theta (t) \bigr\Vert ^{2}\leq \Vert \theta _{0} \Vert e^{-2\kappa \lambda ^{2\beta }t}. \end{aligned}$$
(20)

Integrating (18) in time gives

$$\begin{aligned} \bigl\Vert \theta (t) \bigr\Vert ^{2}+2\kappa \int _{0}^{t} \bigl\Vert \varLambda ^{\beta }\theta ( \tau ) \bigr\Vert ^{2} \,d\tau \leq \Vert \theta _{0} \Vert ^{2}. \end{aligned}$$
(21)

Similarly, we can also deduce a uniform \(L^{p}\) estimate of θ, for all \(p\in [2,+\infty )\),

$$\begin{aligned} \bigl\Vert \theta (t) \bigr\Vert _{L^{p}}\leq e^{-\frac{\kappa \lambda ^{2\beta }t}{p}} \Vert \theta _{0} \Vert _{L^{p}}. \end{aligned}$$
(22)

Multiplying (1)1 by u and integrating the resulting equation by parts, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert u \Vert ^{2}+\nu \bigl\Vert \varLambda ^{\alpha }u \bigr\Vert ^{2} & \leq \int _{\varOmega }\theta e_{2}\cdot u\,dx \\ &\leq \int _{\varOmega } \bigl\vert \varLambda ^{-\alpha }\theta \bigr\vert \cdot \bigl\vert \varLambda ^{\alpha }u \bigr\vert \,dx \\ &\leq \frac{1}{2\nu } \bigl\Vert \varLambda ^{-\alpha }\theta \bigr\Vert ^{2}+ \frac{\nu }{2} \bigl\Vert \varLambda ^{\alpha }u \bigr\Vert ^{2}. \end{aligned}$$
(23)

Hence,

$$\begin{aligned} \frac{d}{dt} \Vert u \Vert ^{2}+\nu \bigl\Vert \varLambda ^{\alpha }u \bigr\Vert ^{2} \leq \frac{1}{ \nu } \bigl\Vert \varLambda ^{-\alpha }\theta \bigr\Vert ^{2}. \end{aligned}$$
(24)

By Poincaré inequality, we have

$$\begin{aligned} \frac{d}{dt} \Vert u \Vert ^{2}+\nu \lambda ^{2\alpha } \Vert u \Vert ^{2} \leq \frac{1}{ \nu \lambda ^{2\alpha }} \Vert \theta \Vert ^{2}. \end{aligned}$$
(25)

Integrating in time and using (20), we have, in the case when \(\nu \lambda ^{2\alpha }\neq \kappa \lambda ^{2\beta }\),

$$\begin{aligned} \bigl\Vert u(t) \bigr\Vert ^{2}\leq e^{-\nu \lambda ^{2\alpha }t} \Vert u_{0} \Vert ^{2}+\frac{1}{ \nu \lambda ^{2\alpha }} \biggl\vert \frac{e^{-\nu \lambda ^{2\alpha }t}-e ^{-\kappa \lambda ^{2\beta }t}}{\nu \lambda ^{2\alpha }-\kappa \lambda ^{2\beta }} \biggr\vert \Vert \theta _{0} \Vert ^{2} , \end{aligned}$$
(26)

and in the case when \(\nu \lambda ^{2\alpha }=\kappa \lambda ^{2\beta }\),

$$\begin{aligned} \bigl\Vert u(t) \bigr\Vert ^{2}\leq e^{-\nu \lambda ^{2\alpha }t} \Vert u_{0} \Vert ^{2}+\frac{t}{ \nu \lambda ^{2\alpha }} e^{-\nu \lambda ^{2\alpha }t} \Vert \theta _{0} \Vert ^{2}. \end{aligned}$$
(27)

After integration (24) in time and by (20), we obtain

$$\begin{aligned} \bigl\Vert u(t) \bigr\Vert ^{2}+\nu \int _{0}^{t} \bigl\Vert \varLambda ^{\alpha }u(\tau ) \bigr\Vert ^{2} \,d \tau \leq \Vert u_{0} \Vert ^{2}+\frac{1}{2\nu \kappa \lambda ^{2(\alpha + \beta )}} \Vert \theta _{0} \Vert ^{2}, \end{aligned}$$
(28)

completing the proof. □

In the next lemma, we shall obtain estimates of \(\|\nabla u(t)\|\) and \(\|\nabla \theta (t)\|\).

Lemma 5

Under the assumptions of Theorem 1, one has

$$\begin{aligned} & \bigl\Vert u(t) \bigr\Vert \in C \bigl(0,+\infty;H^{1}( \varOmega ) \bigr)\cap L^{2} \bigl(0,+ \infty;H^{1+\alpha }(\varOmega ) \bigr), \end{aligned}$$
(29)
$$\begin{aligned} & \bigl\Vert \theta (t) \bigr\Vert \in C \bigl(0,+\infty;H^{1}( \varOmega ) \bigr)\cap L^{2} \bigl(0,+\infty;H^{1+\beta }(\varOmega ) \bigr). \end{aligned}$$
(30)

Moreover, there exist positive constants λ and C independent of t and such that

$$\begin{aligned} \bigl\Vert \nabla u(t) \bigr\Vert \leq C, \qquad\bigl\Vert \nabla \theta (t) \bigr\Vert \leq C. \end{aligned}$$
(31)

Proof

In order to complete the proof, we need to use vorticity formulation. Taking the curl of (1)1, we have

$$\begin{aligned} \omega _{t}+\nu \varLambda ^{2\alpha }\omega +u\cdot \nabla \omega = \theta _{x_{1}}, \end{aligned}$$
(32)

where \(\omega =\partial _{x_{1}}u_{2}-\partial _{x_{2}}u_{1}\), with the Dirichlet boundary condition

$$\begin{aligned} \omega =0, \quad\text{on } \partial \varOmega. \end{aligned}$$

Taking \(L^{2}\)-inner product of (32) with ω, we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert \omega \Vert ^{2}+\nu \bigl\Vert \varLambda ^{\alpha }\omega \bigr\Vert ^{2} &= \int _{\varOmega }\theta _{x_{1}}\cdot \omega \,dx \\ &\leq \biggl\vert \int _{\varOmega }\varLambda ^{1-\alpha }\theta \cdot \varLambda ^{\alpha }\omega \,dx \biggr\vert \\ &\leq \frac{1}{2\nu } \bigl\Vert \varLambda ^{1-\alpha }\theta \bigr\Vert ^{2}+\frac{ \nu }{2} \bigl\Vert \varLambda ^{\alpha } \omega \bigr\Vert ^{2}, \end{aligned}$$
(33)

from which it follows that

$$\begin{aligned} \frac{d}{dt} \Vert \omega \Vert ^{2}+\nu \bigl\Vert \varLambda ^{\alpha }\omega \bigr\Vert ^{2} \leq \frac{1}{\nu } \bigl\Vert \varLambda ^{1-\alpha }\theta \bigr\Vert ^{2}. \end{aligned}$$
(34)

Then Poincaré inequality implies

$$\begin{aligned} \frac{d}{dt} \Vert \omega \Vert ^{2}+\nu \lambda ^{2\alpha } \Vert \omega \Vert ^{2} \leq \frac{1}{\nu } \bigl\Vert \varLambda ^{1-\alpha }\theta \bigr\Vert ^{2}. \end{aligned}$$
(35)

Since \(\alpha,\beta \in (\frac{2}{3},1)\), we know that \(1-\alpha < \beta \), and so, using the interpolation inequality and by (21), we have

$$\begin{aligned} \int _{0}^{t} \bigl\Vert \varLambda ^{1-\alpha }\theta (\tau ) \bigr\Vert ^{2}\,d\tau \leq \int _{0}^{t} \bigl\Vert \varLambda ^{\beta }\theta (\tau ) \bigr\Vert ^{2}\,d\tau \leq C. \end{aligned}$$
(36)

Applying a variant of the uniform Gronwall lemma, and by the Biot–Savart law and (36), we have a uniform estimate \(\|u(t)\|_{H ^{1}}\) for all \(t\in [0,+\infty )\). Furthermore, integrating (34) in time, we can get, for all \(t\in [0,+\infty )\),

$$\begin{aligned} \bigl\Vert \omega (t) \bigr\Vert ^{2}+\nu \int _{0}^{t} \bigl\Vert \varLambda ^{\alpha }\omega (\tau ) \bigr\Vert ^{2}\,d\tau \leq \Vert \omega _{0} \Vert ^{2}+\frac{1}{\nu } \int _{0}^{t} \bigl\Vert \varLambda ^{1-\alpha }\theta (\tau ) \bigr\Vert ^{2}\,d\tau. \end{aligned}$$
(37)

As an immediate consequence, and by Sobolev embedding theorem, we have a uniform \(L^{p}\) estimate for u, that is, for all \(1< p<+\infty \),

$$\begin{aligned} \Vert u \Vert _{L^{p}}\leq C(p) \end{aligned}$$
(38)

and

$$\begin{aligned} \int _{0}^{t} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert \,d\tau \leq C\bigl( \Vert \nabla u_{0} \Vert , \Vert \theta _{0} \Vert \bigr), \end{aligned}$$
(39)

where the constant \(C(p)>0\) only depends on p and \(C(\|\nabla u_{0} \|,\|\theta _{0}\|)\) only depends the initial data \(\|\nabla u_{0}\|\) and \(\|\theta _{0}\|\).

Taking \(L^{2}\)-inner product of (1)3 with Δθ, we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert \nabla \theta \Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+ \beta }\theta \bigr\Vert ^{2} &={-} \int _{\varOmega }(u\cdot \nabla \theta )\cdot \Delta \theta \,dx \\ &\leq \int _{\varOmega } \bigl\vert \varLambda ^{1-\beta }(u\cdot \nabla \theta ) \bigr\vert \bigl\vert \varLambda ^{1+\beta }\theta \bigr\vert \,dx. \end{aligned}$$
(40)

Since u is divergence-free, \(u\cdot \nabla \theta =\nabla \cdot (u \theta )\), and so, using Cauchy–Schwarz inequality, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \Vert \nabla \theta \Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+ \beta }\theta \bigr\Vert ^{2} &\leq \int _{\varOmega } \bigl\vert \varLambda ^{2-\beta }(u \theta ) \bigr\vert \bigl\vert \varLambda ^{1+\beta }\theta \bigr\vert \,dx \\ &\leq \frac{1}{\kappa } \bigl\Vert \varLambda ^{2-\beta }(u\theta ) \bigr\Vert ^{2}+\frac{ \kappa }{4} \bigl\Vert \varLambda ^{1+\beta }\theta \bigr\Vert ^{2}. \end{aligned}$$
(41)

Using Lemma 1, and by (22) and (38), we have

$$\begin{aligned} \bigl\Vert \varLambda ^{2-\beta }(u\theta ) \bigr\Vert ^{2} & \leq C \bigl\Vert \varLambda ^{2-\beta }u \bigr\Vert ^{2}_{L^{4}} \Vert \theta \Vert ^{2}_{L^{4}}+C \Vert u \Vert ^{2}_{L^{6}} \bigl\Vert \varLambda ^{2- \beta }\theta \bigr\Vert ^{2}_{L^{3}} \\ &\leq C \bigl\Vert \varLambda ^{2-\beta }u \bigr\Vert ^{2}_{L^{4}}+C \bigl\Vert \varLambda ^{2-\beta } \theta \bigr\Vert ^{2}_{L^{3}}, \end{aligned}$$
(42)

so by Sobolev embedding theorem, and applying Gagliardo–Nirenberg and Young inequalities, we can obtain

$$\begin{aligned} & \bigl\Vert \varLambda ^{2-\beta }(u\theta ) \bigr\Vert ^{2} \\ &\quad\leq C \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2}+C \bigl\Vert \varLambda ^{-\alpha } \theta \bigr\Vert ^{2(3\alpha +3\beta -4)/3(1+2\alpha )} \bigl\Vert \varLambda ^{1+\alpha }\theta \bigr\Vert ^{2(7+3\alpha -3\beta )/3(1+2\alpha )} \\ &\quad\leq C \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2}+a_{1}C \bigl\Vert \varLambda ^{-\alpha } \theta \bigr\Vert ^{2}+\frac{\kappa }{4} \bigl\Vert \varLambda ^{1+\alpha }\theta \bigr\Vert ^{2}, \end{aligned}$$
(43)

where \(a_{1}=\frac{3\alpha +3\beta -4}{3(1+2\alpha )} (\frac{3 \kappa (1+2\alpha )}{4(7+3\alpha -3\beta )} )^{(7+3\alpha -3\beta )/(4-3\alpha -3\beta )}\). Inserting (43) into (41), we can obtain that

$$\begin{aligned} \frac{d}{dt} \Vert \nabla \theta \Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+\beta }\theta \bigr\Vert ^{2} \leq C \bigl( \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{-\alpha } \theta \bigr\Vert ^{2} \bigr). \end{aligned}$$
(44)

Then Poincaré inequality implies

$$\begin{aligned} \frac{d}{dt} \Vert \nabla \theta \Vert ^{2}+\kappa \lambda ^{2\beta } \Vert \nabla \theta \Vert ^{2} \leq C \biggl( \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2}+ \frac{1}{ \lambda ^{2\alpha }} \Vert \theta \Vert ^{2} \biggr). \end{aligned}$$
(45)

By (20) and (39), we know that

$$\begin{aligned} \int _{0}^{t} \bigl( \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2}+ \Vert \theta \Vert ^{2} \bigr)\,d \tau \leq C. \end{aligned}$$
(46)

Applying a variant of the uniform Gronwall lemma again and (46), we have a uniform estimate of \(\|\nabla \theta (t)\|\) for all \(t\in [0,+ \infty )\). Integrating over \([0,t]\), we obtain, for all \(t\in [0,+ \infty )\),

$$\begin{aligned} \bigl\Vert \nabla \theta (t) \bigr\Vert ^{2}+\kappa \int _{0}^{t} \bigl\Vert \varLambda ^{1+\beta } \theta (\tau ) \bigr\Vert ^{2}\,d\tau \leq \Vert \nabla \theta _{0} \Vert ^{2}+ C, \end{aligned}$$
(47)

where C only depends on p and the initial data. □

Now let us focus on the persistence in \(H^{1+s}({R}^{2})\times H^{1+s}( {R}^{2})\), \(s\in (0,1)\).

Lemma 6

Under the assumptions of Theorem 1, one has

$$\begin{aligned} & \bigl\Vert u(t) \bigr\Vert \in C \bigl(0,+\infty;H^{1+s}( \varOmega ) \bigr)\cap L^{2} \bigl(0,+ \infty;H^{1+s+\alpha }(\varOmega ) \bigr), \end{aligned}$$
(48)
$$\begin{aligned} & \bigl\Vert \theta (t) \bigr\Vert \in C \bigl(0,+\infty;H^{1+s}( \varOmega ) \bigr)\cap L^{2} \bigl(0,+\infty;H^{1+s+\beta }(\varOmega ) \bigr). \end{aligned}$$
(49)

Moreover, in the case when \(\min \{\nu \lambda ^{2\alpha }, \kappa \lambda ^{2\beta }\}>\frac{1}{2}\), there exist positive constants λ and C independent of t, and it holds that

$$\begin{aligned} \bigl\Vert \varLambda ^{1+s}\theta (t) \bigr\Vert ^{2} \leq C,\qquad \bigl\Vert \varLambda ^{1+s} u(t) \bigr\Vert ^{2} \leq C. \end{aligned}$$
(50)

Proof

Taking \(L^{2}\)-inner product of (1)3 with \(\varLambda ^{2+2s}\theta \), we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt} \bigl\Vert \varLambda ^{1+s} \theta \bigr\Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+s+\beta } \theta \bigr\Vert ^{2} =- \int _{\varOmega }(u\cdot \nabla \theta )\cdot \varLambda ^{2+2s}\theta \,dx. \end{aligned}$$
(51)

Since u is divergence-free, \(u\cdot \nabla \theta =\nabla \cdot (u \theta )\), using Lemma 1 and (22) with (38), we obtain

$$\begin{aligned} &{-} \int _{\varOmega }(u\cdot \nabla \theta )\cdot \varLambda ^{2+2s}\theta \,dx \\ &\quad\leq \biggl\vert \int _{\varOmega }\varLambda ^{2+s-\beta }(u\theta )\cdot \varLambda ^{1+s+\beta }\theta \,dx \biggr\vert \\ &\quad\leq \bigl\Vert \varLambda ^{2+s-\beta }(u\theta ) \bigr\Vert \bigl\Vert \varLambda ^{1+s+\beta }\theta \bigr\Vert \\ &\quad\leq C \bigl( \bigl\Vert \varLambda ^{2+s-\beta }u \bigr\Vert _{L^{3}} \Vert \theta \Vert _{L^{6}} + \Vert u \Vert _{L^{6}} \bigl\Vert \varLambda ^{2+s-\beta }\theta \bigr\Vert _{L^{3}} \bigr) \bigl\Vert \varLambda ^{1+s+\beta }\theta \bigr\Vert \\ &\quad\leq \frac{C}{\kappa } \bigl( \bigl\Vert \varLambda ^{2+s-\beta }u \bigr\Vert ^{2}_{L^{3}} + \bigl\Vert \varLambda ^{2+s-\beta } \theta \bigr\Vert ^{2}_{L^{3}} \bigr)+\frac{\kappa }{4} \bigl\Vert \varLambda ^{1+s+\beta }\theta \bigr\Vert ^{2}. \end{aligned}$$
(52)

Applying Gagliardo–Nirenberg and Young inequalities, we can get

$$\begin{aligned} \bigl\Vert \varLambda ^{2+s-\beta }u \bigr\Vert ^{2}_{L^{3}} &\leq C \bigl\Vert \varLambda ^{-\beta }u \bigr\Vert ^{2(3\alpha +3\beta -4)/3(1+s+\alpha +\beta )} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2(7+3s)/3(1+s+\alpha +\beta )} \\ &\leq a_{2}C \bigl\Vert \varLambda ^{-\beta }u \bigr\Vert ^{2}+\frac{\nu }{4} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2} \end{aligned}$$
(53)

and

$$\begin{aligned} \bigl\Vert \varLambda ^{2+s-\beta }\theta \bigr\Vert ^{2}_{L^{3}} &\leq C \bigl\Vert \varLambda ^{-\beta }\theta \bigr\Vert ^{4(3\beta -2)/3(1+s+2\beta )} \bigl\Vert \varLambda ^{1+s+\beta }\theta \bigr\Vert ^{2(7+3s)/3(1+s+2\beta )} \\ &\leq a_{3}C \bigl\Vert \varLambda ^{-\beta }\theta \bigr\Vert ^{2}+\frac{\kappa }{4} \bigl\Vert \varLambda ^{1+s+\beta } \theta \bigr\Vert ^{2}, \end{aligned}$$
(54)

where \(a_{2}=\frac{3\alpha +3\beta -4}{3(1+s+\alpha +\beta )} (\frac{3 \nu (1+s+\alpha +\beta )}{4(7+3s)} )^{(7+3s)/(4-3\alpha -3\beta )}\) and \(a_{3}=\frac{2(3\beta -2)}{3(1+s+2\beta )} (\frac{3\kappa (1+s+2 \beta )}{4(7+3s)} )^{(7+3s)/2(2-3\beta )}\). Inserting (52)–(54) into (51), we arrive at

$$\begin{aligned} &\frac{d}{dt} \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+s+ \beta }\theta \bigr\Vert ^{2} \\ &\quad\leq \frac{\nu }{2} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2}+C \bigl\Vert \varLambda ^{- \beta }u \bigr\Vert ^{2}+C \bigl\Vert \varLambda ^{-\beta }\theta \bigr\Vert ^{2}. \end{aligned}$$
(55)

Applying the operator \(\varLambda ^{1+s}\) to (1)1, and taking the scalar product of both sides with \(\varLambda ^{1+s} u\), and then integrating the result by parts, we get

$$\begin{aligned} &\frac{1}{2}\frac{d}{dt} \bigl\Vert \varLambda ^{1+s} u \bigr\Vert ^{2}+\nu \bigl\Vert \varLambda ^{1+s+\alpha } u \bigr\Vert ^{2} \\ &\quad = - \int _{\varOmega }\varLambda ^{1+s}(u_{j}\partial _{j} u_{k})\varLambda ^{1+s} u_{k} \,dx+ \int _{\varOmega }\varLambda ^{1+s}(\theta e_{2}) \varLambda ^{1+s} u\,dx. \end{aligned}$$
(56)

Using Lemma 1 and applying fractional embedding theorems together with Young inequality again, we obtain

$$\begin{aligned} &{-} \int _{\varOmega }\varLambda ^{1+s}(u_{j}\partial _{j} u_{k})\varLambda ^{1+s} u _{k} \,dx \\ &\quad\leq \biggl\vert \int _{\varOmega }\varLambda ^{1+s-\alpha }(u_{j}\partial _{j} u _{k})\varLambda ^{1+s+\alpha } u_{k} \,dx \biggr\vert \\ &\quad\leq C \bigl( \bigl\Vert \varLambda ^{1+s-\alpha }u \bigr\Vert _{L^{3}} \Vert \nabla u \Vert _{L^{6}}+ \Vert u \Vert _{L^{6}} \bigl\Vert \varLambda ^{2+s-\alpha }u \bigr\Vert _{L^{3}} \bigr) \bigl\Vert \varLambda ^{1+s+\alpha } u \bigr\Vert \\ &\quad\leq \frac{\nu }{4} \bigl\Vert \varLambda ^{1+s+\alpha } u \bigr\Vert ^{2}+\frac{C}{\nu } \bigl( \bigl\Vert \varLambda ^{1+s-\alpha }u \bigr\Vert ^{2}_{L^{4}} \Vert \nabla u \Vert ^{2}_{L^{4}}+ \bigl\Vert \varLambda ^{2+s-\alpha }u \bigr\Vert ^{2}_{L^{3}} \bigr). \end{aligned}$$
(57)

Applying Gagliardo–Nirenberg and Young inequalities, we can get

$$\begin{aligned} \bigl\Vert \varLambda ^{1+s-\alpha }u \bigr\Vert ^{2}_{L^{3}} \Vert \nabla u \Vert ^{2}_{L^{6}}\leq {}& \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{4(3\alpha -2)/3(1+s+2\alpha )} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2(7+3s)/3(1+s+2\alpha )} \\ &{}\times \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{2(1+3\alpha )/3(1+2\alpha )} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{2(2+3\alpha )/3(1+2\alpha )} \\ \leq{}& a_{4}C \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{b_{2}} +\frac{\nu }{8} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2} \end{aligned}$$
(58)

and

$$\begin{aligned} \bigl\Vert \varLambda ^{2+s-\alpha }u \bigr\Vert ^{2}_{L^{3}} &\leq C \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{4(3\alpha -2)/3(1+s+2\alpha )} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2(7+3s)/3(1+s+2 \alpha )} \\ &\leq a_{5}C \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{2}+\frac{\nu }{8} \bigl\Vert \varLambda ^{1+s+\alpha }u \bigr\Vert ^{2}, \end{aligned}$$
(59)

where \(a_{4}=a_{5}=\frac{2(3\alpha -2)}{3(1+s+2\alpha )} (\frac{3 \nu (1+s+2\alpha )}{8(7+3s)} )^{(7+3s)/2(2-3\alpha )}\), \(b_{1}=2+\frac{(1+3 \alpha )(1+s+2\alpha )}{(1+2\alpha )(3\alpha -2)}\), and \(b_{2}=\frac{(2+3 \alpha )(1+s+2\alpha )}{(1+2\alpha )(3\alpha -2)}\). Using Hölder and Cauchy–Schwarz inequalities, we can get

$$\begin{aligned} \int _{\varOmega }\varLambda ^{1+s}(\theta e_{2}) \varLambda ^{1+s} u\,dx \leq \frac{1}{2} \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+\frac{1}{2} \bigl\Vert \varLambda ^{1+s}u \bigr\Vert ^{2}. \end{aligned}$$
(60)

Inserting (58)–(60) into (56), we arrive at

$$\begin{aligned} &\frac{d}{dt} \bigl\Vert \varLambda ^{1+s} u \bigr\Vert ^{2}+\frac{3\nu }{2} \bigl\Vert \varLambda ^{1+s+\alpha } u \bigr\Vert ^{2} \\ &\quad\leq \frac{1}{2}\bigl( \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}u \bigr\Vert ^{2}\bigr)+C\bigl( \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{b_{2}}\bigr). \end{aligned}$$
(61)

Summing up (55) and (61), we obtain that

$$\begin{aligned} &\frac{d}{dt}\bigl( \bigl\Vert \varLambda ^{1+s} u \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}\bigr)+ \nu \bigl\Vert \varLambda ^{1+s+\alpha } u \bigr\Vert ^{2}+\kappa \bigl\Vert \varLambda ^{1+s+\beta } \theta \bigr\Vert ^{2} \\ &\quad\leq \frac{1}{2}\bigl( \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}u \bigr\Vert ^{2}\bigr) +C\bigl( \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{-\beta }u \bigr\Vert ^{2} \\ &\qquad{}+ \bigl\Vert \varLambda ^{-\beta }\theta \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{-\alpha }u \bigr\Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{b_{2}}\bigr). \end{aligned}$$
(62)

Then Poincaré inequality implies

$$\begin{aligned} &\frac{d}{dt}\bigl( \bigl\Vert \varLambda ^{1+s} u \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}\bigr)+ \nu \lambda ^{2\alpha } \bigl\Vert \varLambda ^{1+s} u \bigr\Vert ^{2}+\kappa \lambda ^{2\beta } \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2} \\ &\quad\leq \frac{1}{2}\bigl( \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}u \bigr\Vert ^{2}\bigr) \\ &\qquad{}+C\biggl(\frac{1}{\lambda ^{2\alpha }} \Vert u \Vert ^{2}+ \frac{1}{\lambda ^{2\beta }} \Vert u \Vert ^{2}+\frac{1}{\lambda ^{2\beta }} \Vert \theta \Vert ^{2} +\frac{1}{\lambda ^{b_{1}}} \Vert u \Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+ \alpha }u \bigr\Vert ^{b_{2}}\biggr). \end{aligned}$$
(63)

Hence

$$\begin{aligned} \frac{d}{dt}X(t)+ \biggl(c_{1}-\frac{1}{2} \biggr)X(t) \leq C\bigl( \Vert u \Vert ^{2}+ \Vert \theta \Vert ^{2} + \Vert u \Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+\alpha }u \bigr\Vert ^{b_{2}}\bigr), \end{aligned}$$
(64)

where \(X(t)=\|\varLambda ^{1+s} u\|^{2}+\|\varLambda ^{1+s}\theta \|^{2}\) and \(c_{1}=\min \{\nu \lambda ^{2\alpha }, \kappa \lambda ^{2\beta }\}\). By (20), (26), (27), and (39), we know that

$$\begin{aligned} \int _{0}^{t}\bigl( \Vert u \Vert ^{2}+ \Vert \theta \Vert ^{2} + \Vert u \Vert ^{b_{1}} \bigl\Vert \varLambda ^{1+ \alpha }u \bigr\Vert ^{b_{2}}\bigr)\,d\tau \leq C. \end{aligned}$$
(65)

Applying a variant of the uniform Gronwall lemma again and (65), in the case \((c_{1}-\frac{1}{2} )>0\), we have uniform estimates of \(\|\varLambda ^{1+s} u\|^{2}\) and \(\|\varLambda ^{1+s}\theta \|^{2}\), for all \(t\in [0,+\infty )\). Integrating (62) over \([0,t]\), we have

$$\begin{aligned} & \bigl\Vert \varLambda ^{1+s} u(t) \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}\theta (t) \bigr\Vert ^{2}+\nu \int _{0}^{t} \bigl\Vert \varLambda ^{1+s+\alpha } u(\tau ) \bigr\Vert ^{2}\,d\tau \\ &\qquad{}+\kappa \int _{0}^{t} \bigl\Vert \varLambda ^{1+s+\beta }\theta (\tau ) \bigr\Vert ^{2}\,d \tau \\ &\quad\leq \bigl\Vert \varLambda ^{1+s} u_{0} \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}\theta _{0} \bigr\Vert ^{2}+C+ \frac{1}{2} \int _{0}^{t}\bigl( \bigl\Vert \varLambda ^{1+s}\theta \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}u \bigr\Vert ^{2}\bigr)\,d\tau. \end{aligned}$$
(66)

Using Gronwall inequality, we find that, for all \(t\in [0,T]\),

$$\begin{aligned} & \bigl\Vert \varLambda ^{1+s} u(t) \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s}\theta (t) \bigr\Vert ^{2}+\nu \int _{0}^{t} \bigl\Vert \varLambda ^{1+s+\alpha } u(\tau ) \bigr\Vert ^{2}\,d\tau \\ &\qquad{}+\kappa \int _{0}^{t} \bigl\Vert \varLambda ^{1+s+\beta }\theta (\tau ) \bigr\Vert ^{2}\,d \tau \\ &\quad\leq e^{\frac{t}{2}} \bigl( \bigl\Vert \varLambda ^{1+s} u_{0} \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s} \theta _{0} \bigr\Vert ^{2}+C \bigr) \\ &\quad\leq e^{\frac{T}{2}} \bigl( \bigl\Vert \varLambda ^{1+s} u_{0} \bigr\Vert ^{2}+ \bigl\Vert \varLambda ^{1+s} \theta _{0} \bigr\Vert ^{2}+C \bigr) \\ &\quad\leq C, \end{aligned}$$
(67)

where \(C=C(\|\varLambda ^{1+s} u_{0}\|,\|\varLambda ^{1+s} \theta _{0}\|, \nu,\kappa,s,T)\) is a positive constant. □

3.2 Uniqueness

With the global regularity established in Lemmas 4–6, we are able to prove the uniqueness of the solution.

Lemma 7

Under the assumptions of Theorem 1, the solution of Boussinesq equations (1) is unique.

Proof

For any fixed \(T>0\), suppose there are two solutions \((u_{1},\theta _{1},P_{1})\) and \((u_{2},\theta _{2},P_{2})\) to Boussinesq equations (1). Setting \(\tilde{u}=u_{1}-u_{2}\), \(\tilde{\theta }= \theta _{1}-\theta _{2}\) and \(\tilde{P}=P_{1}-P_{2}\), we get that \((\tilde{u},\tilde{\theta },\tilde{P})\) satisfies

$$\begin{aligned} &\tilde{u}_{t}+ \nu \varLambda ^{2\alpha } \tilde{u}+u_{1} \cdot \nabla \tilde{u}+\tilde{u}\cdot \nabla u_{2}+\nabla \tilde{P}= \tilde{\theta } e_{2},\quad e_{2}=(0,1), \end{aligned}$$
(68)
$$\begin{aligned} &\operatorname{div} \tilde{u}=0, \end{aligned}$$
(69)
$$\begin{aligned} &\tilde{\theta }_{t}+\kappa \varLambda ^{2\beta } \tilde{\theta }+u_{1} \cdot \nabla \tilde{\theta }+\tilde{u}\cdot \nabla \theta _{2} =0, \end{aligned}$$
(70)
$$\begin{aligned} &\tilde{u}(x,0)=0,\qquad \tilde{\theta }(x,0)=0. \end{aligned}$$
(71)

Taking the \(L^{2}\)-inner product of (68) with ũ and (70) with θ̃, respectively, we get

$$\begin{aligned} &\frac{1}{2}\frac{d}{dt}\bigl( \Vert \tilde{u} \Vert ^{2}+ \Vert \tilde{\theta } \Vert ^{2}\bigr)+ \nu \Vert \nabla \tilde{u} \Vert ^{2}+\kappa \Vert \nabla \tilde{\theta } \Vert ^{2} \\ &\quad \leq \int _{\varOmega }\tilde{\theta }e_{2}\cdot \tilde{u}\,dx- \int _{ \varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx- \int _{\varOmega } \tilde{u}\cdot \nabla \theta _{2}\tilde{ \theta }\,dx. \end{aligned}$$
(72)

Using Hölder and Cauchy–Schwarz inequalities, a standard calculation gives us the following:

$$\begin{aligned} &\int _{\varOmega }\tilde{\theta }e_{2}\cdot \tilde{u}\,dx \leq \frac{1}{2} \Vert \tilde{\theta } \Vert ^{2}+ \frac{1}{2} \Vert \tilde{u} \Vert ^{2}, \end{aligned}$$
(73)
$$\begin{aligned} &{-} \int _{\varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx\leq \biggl\vert - \int _{\varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx \biggr\vert \\ &\phantom{{-} \int _{\varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx}\leq \Vert \nabla u_{2} \Vert \Vert \tilde{u} \Vert ^{2}_{L^{4}} \\ &\phantom{{-} \int _{\varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx}\leq C \Vert \nabla u_{2} \Vert \Vert \tilde{u} \Vert \Vert \nabla \tilde{u} \Vert \\ &\phantom{{-} \int _{\varOmega }\tilde{u}\cdot \nabla u_{2}\cdot \tilde{u} \,dx}\leq C \Vert \nabla u_{2} \Vert ^{2} \Vert \tilde{u} \Vert ^{2}+\frac{\nu }{4} \Vert \nabla \tilde{u} \Vert , \end{aligned}$$
(74)

and

$$\begin{aligned} &{-} \int _{\varOmega }\tilde{u}\cdot \nabla \theta _{2}\cdot \tilde{\theta }\,dx \\ &\quad\leq \biggl\vert - \int _{\varOmega }\tilde{u}\cdot \nabla \theta _{2}\cdot \tilde{\theta }\,dx \biggr\vert \\ &\quad\leq \Vert \nabla \theta _{2} \Vert \Vert \tilde{\theta } \Vert _{L^{4}} \Vert \tilde{u} \Vert _{L^{4}} \\ &\quad\leq C \Vert \nabla \theta _{2} \Vert \Vert \tilde{\theta } \Vert ^{1/2} \Vert \nabla \tilde{\theta } \Vert ^{1/2} \Vert \tilde{u} \Vert ^{1/2} \Vert \nabla \tilde{u} \Vert ^{1/2} \\ &\quad\leq C\bigl( \Vert \nabla \theta _{2} \Vert \Vert \tilde{ \theta } \Vert \Vert \nabla \tilde{\theta } \Vert + \Vert \nabla \theta _{2} \Vert \Vert \tilde{u} \Vert \Vert \nabla \tilde{u} \Vert \bigr) \\ &\quad\leq C \Vert \nabla \theta _{2} \Vert ^{2} \Vert \tilde{\theta } \Vert ^{2}+ \frac{\nu }{4} \Vert \nabla \tilde{ \theta } \Vert +C \Vert \nabla \theta _{2} \Vert ^{2} \Vert \tilde{u} \Vert ^{2} +\frac{\kappa }{2} \Vert \nabla \tilde{u} \Vert ^{2}. \end{aligned}$$
(75)

Inserting (73)–(75) into (72), we obtain

$$\begin{aligned} &\frac{d}{dt}\bigl( \Vert \tilde{u} \Vert ^{2}+ \Vert \tilde{\theta } \Vert ^{2}\bigr)+\nu \Vert \nabla \tilde{u} \Vert ^{2}+\kappa \Vert \nabla \tilde{\theta } \Vert ^{2} \\ &\quad \leq C\bigl( \Vert \nabla \theta _{2} \Vert ^{2}+ \Vert \nabla u_{2} \Vert ^{2}+1\bigr) \bigl( \Vert \tilde{\theta } \Vert ^{2}+ \Vert \tilde{u} \Vert ^{2} \bigr). \end{aligned}$$
(76)

Using Gronwall inequality and the estimates for \(\theta _{2}\) and \(u_{2}\), (76) implies that, for any \(t\geq 0\),

$$\begin{aligned} e^{-CT}\bigl( \Vert \tilde{u} \Vert ^{2}+ \Vert \tilde{ \theta } \Vert ^{2}\bigr) \leq \bigl\Vert \tilde{u}(0) \bigr\Vert ^{2}+ \bigl\Vert \tilde{\theta }(0) \bigr\Vert ^{2} =0, \end{aligned}$$

i.e., \(\tilde{u}=0, \tilde{\theta }=0, \theta _{1}=\theta _{2}, u _{1}=u_{2}\). So the solution of Boussinesq equations (1) is unique. □

4 Proof of Theorem 2

The goal of this section is to prove Theorem 2. First of all, we multiply the first equation in (1) with \(u|u|^{p-2}\) (\(p>2\)) and, integrating it over \({R}^{2}\), have

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt} \Vert u \Vert ^{p}_{L^{p}}+ \int _{\varOmega }\varLambda ^{2}u \cdot u \vert u \vert ^{p-2}\,dx \\ &\quad=- \int _{\varOmega }(u\cdot \nabla u)\cdot u \vert u \vert ^{p-2}\,dx- \int _{\varOmega } \nabla P\cdot u \vert u \vert ^{p-2} \,dx \\ &\qquad{}+ \int _{\varOmega }\theta e_{2}\cdot u \vert u \vert ^{p-2}\,dx. \end{aligned}$$
(77)

Since u is divergence-free, by Lemma 2 and using Hölder inequality, we can get

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert u \Vert ^{p}_{L^{p}}+ \frac{4(p-2)}{p^{2}} \bigl\Vert \nabla \vert u \vert ^{\frac{p}{2}} \bigr\Vert ^{2}_{L^{2}} &\leq \Vert \nabla P \Vert _{L^{p}} \Vert u \Vert ^{p-1} _{L^{p}}+ \Vert \theta \Vert _{L^{p}} \Vert u \Vert ^{p-1}_{L^{p}}. \end{aligned}$$
(78)

Taking the divergence of the first equation in (1), we can obtain

$$\begin{aligned} -\Delta P = \operatorname{div} (u\cdot \nabla u)-\partial _{x_{2}} \theta. \end{aligned}$$
(79)

Hence

$$\begin{aligned} \nabla P = \nabla (-\Delta )^{-1} \bigl(\operatorname{div} (u\cdot \nabla u)-\partial _{x_{2}}\theta \bigr). \end{aligned}$$
(80)

Applying Calderón–Zygmund theorem, we get

$$\begin{aligned} \Vert \nabla P \Vert _{L^{p}} &\leq C\bigl( \Vert u\cdot \nabla u \Vert _{L^{p}}+ \Vert \theta \Vert _{L^{p}}\bigr) \\ &\leq C\bigl( \Vert u \Vert _{L^{\infty }} \Vert \nabla u \Vert _{L^{p}}+ \Vert \theta \Vert _{L^{p}}\bigr) \\ &\leq C\bigl( \Vert u \Vert _{W^{1,p}} \Vert \nabla u \Vert _{L^{p}}+ \Vert \theta \Vert _{L^{p}}\bigr) \\ &\leq C\bigl( \Vert u \Vert _{L^{p}} + \Vert \nabla u \Vert _{L^{p}}\bigr) \Vert \nabla u \Vert _{L^{p}}+C \Vert \theta \Vert _{L^{p}} \\ &\leq C\bigl( \Vert u \Vert _{L^{p}} + \Vert \omega \Vert _{L^{p}}\bigr) \Vert \omega \Vert _{L^{p}}+C \Vert \theta \Vert _{L^{p}}. \end{aligned}$$
(81)

Multiplying the third equation in (1) with \(\theta |\theta |^{p-2}\) (\(p>2\)) and integrating it over \({R}^{2}\), we deduce that

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert \theta \Vert ^{p}_{L^{p}}+ \int _{\varOmega } \varLambda ^{2\beta }\theta \cdot \theta \vert \theta \vert ^{p-2}\,dx =0, \end{aligned}$$
(82)

where we have used the divergence-free condition again. By Lemma 2 and integrating over \([0,t]\), we have, for all \(t\in [0,T]\),

$$\begin{aligned} \Vert \theta \Vert ^{p}_{L^{p}}+\frac{4(p-2)}{p} \int _{0}^{t} \bigl\Vert \varLambda ^{\beta } \vert \theta \vert ^{\frac{p}{2}} \bigr\Vert ^{2}_{L^{2}}\,d\tau = \Vert \theta _{0} \Vert ^{p}_{L ^{p}}. \end{aligned}$$
(83)

Combining (78) with (81) and (83) leads to

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert u \Vert ^{p}_{L^{p}}+ \frac{4(p-2)}{p^{2}} \bigl\Vert \nabla \vert u \vert ^{\frac{p}{2}} \bigr\Vert ^{2}_{L^{2}} \leq C\bigl( \Vert u \Vert _{L^{p}} \Vert \omega \Vert _{L ^{p}}+ \Vert \omega \Vert _{L^{p}}^{2}+1\bigr) \Vert u \Vert _{L^{p}}^{p-1}. \end{aligned}$$
(84)

Taking the \(L^{p}\)-inner product of (27) with \(\omega |\omega |^{p-2}\) (\(p>2\)) and integrating it over \({R}^{2}\), we arrive at

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert \omega \Vert ^{p}_{L^{p}}+ \int _{\varOmega } \varLambda ^{2\alpha }\omega \cdot \omega \vert \omega \vert ^{p-2}\,dx = \int _{ \varOmega }\partial _{x_{1}}\theta \cdot \omega \vert \omega \vert ^{p-2}\,dx. \end{aligned}$$
(85)

Using Lemma 2 again, we know that

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert \omega \Vert ^{p}_{L^{p}}+ \frac{4(p-2)}{p^{2}} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2} \leq \int _{\varOmega }\partial _{x _{1}}\theta \cdot \omega \vert \omega \vert ^{p-2}\,dx. \end{aligned}$$
(86)

By Hölder and Young inequalities, and using Lemma 2 with \(m=2\), we have

$$\begin{aligned} \int _{\varOmega }\partial _{x_{1}}\theta \cdot \omega \vert \omega \vert ^{p-2}\,dx & \leq (p-1) \biggl\vert \int _{\varOmega }\theta \cdot \partial _{x_{1}}\omega \vert \omega \vert ^{p-2}\,dx \biggr\vert \\ &\leq (p-1) \biggl\vert \int _{\varOmega }\theta \cdot \nabla \omega \vert \omega \vert ^{ \frac{p-2}{2}} \vert \omega \vert ^{\frac{p-2}{2}}\,dx \biggr\vert \\ &\leq \frac{2(p-1)}{p} \Vert \theta \Vert _{L^{p}} \bigl\Vert \nabla \vert \omega \vert ^{ \frac{p}{2}} \bigr\Vert _{L^{2}} \Vert \omega \Vert ^{\frac{p-2}{2}}_{L^{p}} \\ &\leq \frac{2(p-1)}{p^{2}} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2}_{L ^{2}}+C \Vert \theta \Vert ^{2}_{L^{p}} \Vert \omega \Vert ^{p-2}_{L^{p}}, \end{aligned}$$
(87)

where constant C depends on p. Inserting (87) into (86), we can obtain

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert \omega \Vert ^{p}_{L^{p}}+ \frac{2(p-2)}{p^{2}} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2} \leq C \Vert \theta \Vert ^{2}_{L^{p}} \Vert \omega \Vert ^{p-2}_{L^{p}}. \end{aligned}$$
(88)

Hence, by Young inequality, we get

$$\begin{aligned} \frac{d}{dt} \Vert \omega \Vert ^{p}_{L^{p}}+ \frac{2(p-2)}{p} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2} \leq C \bigl( \Vert \theta \Vert ^{p}_{L^{p}}+ \Vert \omega \Vert ^{p}_{L^{p}} \bigr). \end{aligned}$$
(89)

Integrating over \([0,t]\), we have, for all \(t\in [0,T]\),

$$\begin{aligned} & \Vert \omega \Vert ^{p}_{L^{p}}+\frac{2(p-2)}{p} \int _{0}^{t} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2}\,d\tau \\ &\quad\leq \Vert \omega _{0} \Vert ^{p}_{L^{p}}+C \int _{0}^{t} \bigl( \Vert \theta \Vert ^{p} _{L^{p}}+ \Vert \omega \Vert ^{p}_{L^{p}} \bigr)\,d\tau \\ &\quad\leq \Vert \omega _{0} \Vert ^{p}_{L^{p}}+CT \Vert \theta _{0} \Vert ^{p}_{L^{p}}+C \int _{0}^{t} \Vert \omega \Vert ^{p}_{L^{p}}\,d\tau. \end{aligned}$$
(90)

Using Gronwall inequality, we find from (90) that, for all \(t\in [0,T]\),

$$\begin{aligned} \Vert \omega \Vert ^{p}_{L^{p}}+\frac{2(p-2)}{p} \int _{0}^{t} \bigl\Vert \nabla \vert \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2}\,d\tau &\leq e^{Ct} \bigl( \Vert \omega _{0} \Vert ^{p}_{L ^{p}}+CT \Vert \theta _{0} \Vert ^{p}_{L^{p}} \bigr) \\ &\leq e^{CT} \bigl( \Vert \omega _{0} \Vert ^{p}_{L^{p}}+CT \Vert \theta _{0} \Vert ^{p} _{L^{p}} \bigr) \\ &\leq C. \end{aligned}$$
(91)

Then inequality (84), together with (91), implies that

$$\begin{aligned} \Vert u \Vert ^{p}_{L^{p}}+\frac{4(p-2)}{p^{2}} \int _{0}^{t} \bigl\Vert \nabla \vert u \vert ^{ \frac{p}{2}} \bigr\Vert ^{2}_{L^{2}}\,d\tau \leq C. \end{aligned}$$
(92)

Taking the derivative \(D=(\partial _{x_{1}},\partial _{x_{2}})\) of both sides of (27), and then multiplying the result equation array by \(D\omega |D\omega |^{p-2}\), after integration by parts, we obtain

$$\begin{aligned} \frac{1}{p}\frac{d}{dt} \Vert D\omega \Vert ^{p}_{L^{p}}+\frac{4(p-2)}{p^{2}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2}\leq{}& {-} \int _{\varOmega }D(u \cdot \nabla \omega )\cdot D\omega \vert D \omega \vert ^{p-2}\,dx \\ &{}{-} \int _{\varOmega }D\theta _{x_{1}}\cdot D\omega \vert D\omega \vert ^{p-2}\,dx. \end{aligned}$$
(93)

Using Hölder and Cauchy–Schwarz inequalities, a standard calculation gives us the following:

$$\begin{aligned} & {-} \int _{\varOmega }D(u\cdot \nabla \omega )\cdot D\omega \vert D\omega \vert ^{p-2}\,dx \\ &\quad\leq C \biggl\vert \int _{\varOmega }u\cdot \nabla \omega \cdot D^{2}\omega \vert D \omega \vert ^{p-2}\,dx \biggr\vert \\ &\quad\leq (p-1) \biggl\vert \int _{\varOmega }u\cdot \nabla \omega \cdot D^{2}\omega \vert D\omega \vert ^{\frac{p-2}{2}} \vert D\omega \vert ^{\frac{p-2}{2}} \,dx \biggr\vert \\ &\quad\leq \frac{2(p-1)}{p} \Vert u \Vert _{L^{p}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert _{L^{2}} \Vert D \omega \Vert _{L^{p}}^{\frac{p-2}{2}} \\ &\quad\leq \frac{p-1}{p^{2}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert _{L^{2}} ^{2}+C \Vert u \Vert _{L^{p}}^{2} \Vert D\omega \Vert _{L^{p}}^{p-2} \end{aligned}$$
(94)

and

$$\begin{aligned} &{-} \int _{\varOmega }D\theta _{x_{1}}\cdot D\omega \vert D\omega \vert ^{p-2}\,dx \\ &\quad\leq \biggl\vert \int _{\varOmega }D\theta _{x_{1}}\cdot D\omega \vert D\omega \vert ^{p-2}\,dx \biggr\vert \\ &\quad\leq (p-1) \biggl\vert \int _{\varOmega }D\theta _{x_{1}}\cdot D\omega \vert D\omega \vert ^{p-2}\,dx \biggr\vert \\ &\quad\leq \frac{2(p-1)}{p} \Vert D\theta \Vert _{L^{p}} \bigl\Vert \partial _{x_{1}} \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert _{L^{2}} \Vert D\omega \Vert _{L^{p}}^{\frac{p-2}{2}} \\ &\quad\leq \frac{p-1}{p^{2}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert _{L^{2}} ^{2}+C \Vert D\theta \Vert _{L^{p}}^{2} \Vert D\omega \Vert _{L^{p}}^{p-2} \\ &\quad\leq \frac{p-1}{p^{2}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert _{L^{2}} ^{2}+C\bigl( \Vert \nabla \theta \Vert _{L^{p}}^{p}+ \Vert D\omega \Vert _{L^{p}}^{p}\bigr). \end{aligned}$$
(95)

Inserting (94) and (95) into (93), we obtain

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt} \Vert D\omega \Vert ^{p}_{L^{p}}+ \frac{2(p-2)}{p^{2}} \bigl\Vert \nabla \vert D \omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2} \\ &\quad\leq C\bigl( \Vert u \Vert _{L^{p}}^{p}+ \Vert \nabla \theta \Vert _{L^{p}}^{p}+ \Vert D\omega \Vert _{L^{p}}^{p}\bigr). \end{aligned}$$
(96)

Taking the derivative \(\nabla ^{\bot }=(-\partial _{x_{2}},\partial _{x _{1}})\) of both sides of (1)3, we can show that

$$\begin{aligned} \nabla ^{\bot }\theta _{t}+\kappa \varLambda ^{2\beta } \nabla ^{\bot }\theta +\nabla ^{\bot }(u\cdot \nabla \theta ) =0. \end{aligned}$$
(97)

Multiplying (96) by \(\nabla ^{\bot }\theta |\nabla ^{\bot }\theta |^{p-2}\), after integration by parts, we obtain

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt} \bigl\Vert \nabla ^{\bot }\theta \bigr\Vert ^{p}_{L^{p}}+ \int _{\varOmega }\varLambda ^{2\beta }\nabla ^{\bot }\theta \cdot \nabla ^{ \bot }\theta \bigl\vert \nabla ^{\bot }\theta \bigr\vert ^{p-2}\,dx \\ &\quad =- \int _{\varOmega }\nabla ^{\bot }(u\cdot \nabla \theta )\cdot \nabla ^{\bot }\theta \bigl\vert \nabla ^{\bot }\theta \bigr\vert ^{p-2}\,dx. \end{aligned}$$
(98)

Since u is divergence-free, using Lemma 2 again, we know that

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt} \bigl\Vert \nabla ^{\bot }\theta \bigr\Vert ^{p}_{L^{p}}+\frac{4(p-2)}{p ^{2}} \bigl\Vert \varLambda ^{\beta } \bigl\vert \nabla ^{\bot }\theta \bigr\vert ^{\frac{p}{2}} \bigr\Vert ^{2} _{L^{2}} \\ &\quad\leq - \int _{\varOmega }\nabla u\cdot \nabla ^{\bot }\theta \cdot \nabla ^{\bot }\theta \bigl\vert \nabla ^{\bot }\theta \bigr\vert ^{p-2}\,dx \\ &\quad\leq \Vert \nabla u \Vert _{L^{\infty }} \bigl\Vert \nabla ^{\bot }\theta \bigr\Vert ^{p}_{L ^{p}}. \end{aligned}$$
(99)

By Lemma 3, we know that

$$\begin{aligned} \Vert \nabla u \Vert _{L^{\infty }} &\leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) \bigl(1+ \log ^{+}\bigl( \Vert D\omega \Vert ^{p}_{L^{p}}\bigr) \bigr)+C \Vert \omega \Vert _{L^{2}}. \end{aligned}$$
(100)

By (91) for \(p=2\), and inserting (100) into (99), we obtain

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt} \bigl\Vert \nabla ^{\bot }\theta \bigr\Vert ^{p}_{L^{p}}+\frac{4(p-2)}{p ^{2}} \bigl\Vert \varLambda ^{\beta } \bigl\vert \nabla ^{\bot }\theta \bigr\vert ^{\frac{p}{2}} \bigr\Vert ^{2} _{L^{2}} \\ &\quad\leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) \bigl(1+\log ^{+}\bigl( \Vert D\omega \Vert ^{p} _{L^{p}}\bigr) \bigr) \bigl\Vert \nabla ^{\bot }\theta \bigr\Vert ^{p}_{L^{p}}. \end{aligned}$$
(101)

Using the obvious identity \(\|\nabla \theta \|_{L^{p}}=\|\nabla ^{ \bot }\theta \|_{L^{p}}\), and summing up (96) and (101), we obtain that

$$\begin{aligned} &\frac{1}{p}\frac{d}{dt}\bigl( \Vert D\omega \Vert ^{p}_{L^{p}}+ \Vert \nabla \theta \Vert ^{p}_{L^{p}}\bigr)+\frac{2(p-2)}{p^{2}} \bigl\Vert \nabla \vert D\omega \vert ^{\frac{p}{2}} \bigr\Vert ^{2} + \frac{4(p-2)}{p^{2}} \bigl\Vert \varLambda ^{\beta } \vert \nabla \theta \vert ^{ \frac{p}{2}} \bigr\Vert ^{2}_{L^{2}} \\ &\quad\leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) \bigl(1+\log ^{+}\bigl( \Vert D\omega \Vert ^{p} _{L^{p}}\bigr) \bigr) \bigl( \Vert \nabla \theta \Vert _{L^{p}}^{p}+ \Vert D\omega \Vert _{L^{p}} ^{p}\bigr) \\ &\quad\leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) \bigl(1+\log ^{+}\bigl( \Vert D\omega \Vert ^{p} _{L^{p}}+ \Vert \nabla \theta \Vert _{L^{p}}^{p} \bigr) \bigr) \bigl( \Vert D\omega \Vert _{L^{p}} ^{p}+ \Vert \nabla \theta \Vert _{L^{p}}^{p}\bigr). \end{aligned}$$
(102)

Setting \(X(t)=\|D\omega \|^{p}_{L^{p}}+\|\nabla \theta \|^{p}_{L^{p}}\), we easily show that

$$\begin{aligned} \frac{d}{dt}X \leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) \bigl(1+\log ^{+}X \bigr)X. \end{aligned}$$
(103)

Setting \(Y=\log ^{+}X\), we know that

$$\begin{aligned} \frac{d}{dt}X=X\frac{d}{dt}Y. \end{aligned}$$
(104)

So, inequality (103), along with (104), implies that

$$\begin{aligned} \frac{d}{dt}Y \leq C\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr) (1+Y). \end{aligned}$$
(105)

By (91) for \(p=2\), and integrating over \([0,t]\), we have, for all \(t\in [0,T]\),

$$\begin{aligned} Y(t) \leq Y(0)+C \int _{0}^{t}\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr)\,d\tau +C \int _{0}^{t}\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr)Y\,d\tau. \end{aligned}$$
(106)

Using Gronwall inequality, from (105) we find that, for all \(t\in [0,T]\),

$$\begin{aligned} Y(t) &\leq C \biggl(Y(0)+ \int _{0}^{t}\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr)\,d \tau \biggr) e^{C\int _{0}^{t}(1+ \Vert D\omega \Vert _{L^{2}}^{2})\,d\tau } \\ &\leq C \biggl(Y(0)+ \int _{0}^{T}\bigl(1+ \Vert D\omega \Vert _{L^{2}}^{2}\bigr)\,d\tau \biggr) e^{C\int _{0}^{T}(1+ \Vert D\omega \Vert _{L^{2}}^{2})\,d\tau } \\ &\leq C \bigl(Y(0)+CT \bigr)e^{CT}, \end{aligned}$$
(107)

which implies

$$\begin{aligned} X(t) \leq e^{C (\log ^{+}X(0)+CT )e^{CT}}. \end{aligned}$$
(108)

This thus completes the proof of Theorem 2.

5 Conclusions

In this paper, we study the well-posedness and related problem on Boussinesq equations with fractional dissipation which have recently attracted considerable interest. This paper proves the persistence of global well-posedness of strong solutions and their long-time decay, as well as investigates the existence of the solutions in Sobolev spaces. The obtained results will not only further improve the theory of fractional nonlinear evolution equations, but also provide support for the innovation on research methods and the related properties of fluid dynamics models.

References

  1. Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adhikari, D., Cao, C., Wu, J.: The 2D Boussinesq equation with vertical viscosity and vertical diffusivity. J. Differ. Equ. 249, 1078–1088 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adhikari, D., Cao, C., Wu, J.: Global regularity results for the 2D Boussinesq equation with vertical dissipation. J. Differ. Equ. 251, 1637–1655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boldrini, J.L., Climent-Ezquerra, B., Rojas-Medar, M.D., Rojas-Medar, M.A.: On an iterative method for approximate solutions of a generalized Boussinesq model. J. Math. Fluid Mech. 13(1), 33–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boldrini, J.L., Fernandez-Cara, E., Rojas-Medar, M.A.: An optimal control problem for a generalized Boussinesq model: the time dependent case. Rev. Mat. Complut. 20(2), 339–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boldrini, J.L., Rojas-Medar, M.A., Rocha, M.S.D.: Existence of relaxed weak solutions of a generalized Boussinesq system with restriction on the state variables. SeMA J. 47, 63–72 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5(7), 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cannon, J.R., DiBenedetto, E.: The initial value problem for the boussinesq equation with data in \(L^{p}\). In: Approximation Methods for Navier–Stokes Problems, pp. 129–144. Springer, Berlin (1980)

    Chapter  Google Scholar 

  9. Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equation with vertical dissipation. Arch. Ration. Mech. Anal. 208(3), 985–1004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cattani, C.: Sinc-fractional operator on Shannon wavelet space. Front. Phys. (2018)

  11. Chae, D.: Global regularity for the 2D Boussinesq equation with partial viscosity terms. Adv. Math. 203(2), 497–513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae, D., Kim, S.K., Nam, H.S.: Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equation. Nagoya Math. J. 155, 55–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chae, D., Nam, H.S.: Local existence and blow-up criterion for the Boussinesq equation. Proc. R. Soc. Edinb. 127A, 935–946 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choi, J., Agarwal, P.: A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat 30(7), 1931–1939 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin, P., Doering, C.R.: Infinite Prandtl number convection. J. Stat. Phys. 94, 159–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danchin, R., Paicu, M.: Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Phys. D, Nonlinear Phenom. 237, 1444–1460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21(3), 421–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Engler, H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Fang, D., Qian, C., Zhang, T.: Global well-posedness for 2D Boussinesq system with general supercritical dissipation. Nonlinear Anal., Real World Appl. 27, 326–349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, F.: General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems. Therm. Sci. 21(s1), 11–18 (2017)

    Article  Google Scholar 

  21. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, London (1982)

    Google Scholar 

  22. Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation narray in (\(2+1\)) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 133, 248 (2018)

    Article  Google Scholar 

  23. Hassainia, Z., Hmidi, T.: On the inviscid Boussinesq system with rough initial data. J. Math. Anal. Appl. 430, 777–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hmidi, T., Keraani, S.: On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math. J. 58(4), 1591–1618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation. Commun. Partial Differ. Equ. 36, 420–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equation. Discrete Contin. Dyn. Syst. 12(1), 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equation in a bounded domain. J. Math. Phys. 54(8), 081507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, W., Kukavica, I., Ziane, M.: Persistence of regularity for the viscous Boussinesq equation with zero diffusivity. Asymptot. Anal. 91, 111–134 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Huang, A.: The 2D Euler–Boussinesq equation in planar polygonal domains with Yudovich’s type data. Commun. Math. Stat. 2(3–4), 369–391 (2014). arXiv:1405.2631

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, A.: The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with variable viscosity and thermal diffusivity. Nonlinear Anal. TMA 113, 401–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jia, J., Peng, J., Li, K.: On the global well-posedness of a generalized 2D Boussinesq equation. NoDEA Nonlinear Differ. Equ. Appl. 22, 911–945 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin, L., Fan, J.: Uniform regularity for the 2D Boussinesq system with a slip boundary condition. J. Math. Anal. Appl. 400(1), 96–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The 2D incompressible Boussinesq equation with general dissipation. Soc. Sci. Electron. Publ. 17(4), 1132–1157 (2012) arXiv:1212.3227v1

    Google Scholar 

  34. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The two-dimensional incompressible Boussinesq equation with general critical dissipation. SIAM J. Math. Anal. 46(5), 3426–3454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jiu, Q., Wu, J., Yang, W.: Eventual regularity of the two-dimensional Boussinesq equation with supercritical dissipation. J. Nonlinear Sci. 25, 37–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equation. Commun. Math. Phys. 255(1), 161–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equation. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. KC, D.: A study on the global well-posedness for the two-dimensional Boussinesq and Lans-Alpha magnetohydrodynamics equation, Dissertations and Theses-Gradworks, Oklahoma State University, 2014

  39. KC, D., Regmi, D., Tao, L., Wu, J.: Generalized 2D Euler–Boussinesq equation with a singular velocity. J. Differ. Equ. 257, 82–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kukavica, I., Wang, F., Ziane, M.: Persistence of regularity for solutions of the Boussinesq equation in Sobolev spaces. Adv. Differ. Equ. 21, 1/2 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Lai, M., Pan, R., Zhao, K.: Initial boundary value problem for two-dimensional viscous Boussinesq equation. Arch. Ration. Mech. Anal. 199(3) 739–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Larios, A., Lunasin, E., Titi, E.S.: Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J. Differ. Equ. 255(9), 2636–2654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, H., Pan, R., Zhang, W.: Initial boundary value problem for 2D Boussinesq equation with temperature-dependent heat diffusion. J. Hyperbolic Differ. Equ. 12(3), 469–488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, J., Titi, E.S.: Global well-posedness of the 2D Boussinesq equation with vertical dissipation. Arch. Ration. Mech. Anal. 220(3), 983–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, Y.: Global regularity for the viscous Boussinesq equation. Math. Methods Appl. Sci. 27(3), 363–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liskevich, V.A., Semenov, Y.A.: Some problems on Markov semigroups. Schrodinger operators, Markov semigroups, wavelet analysis, operator algebras. In: Math. Top., vol. 11, pp. 163–217. Akademie Verlag, Berlin (1996)

    Google Scholar 

  47. Lorca, S.A., Boldrini, J.L.: The initial value problem for a generalized Boussinesq model: regularity and global existence of strong solutions. Mat. Contemp. 11, 71–94 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Lorca, S.A., Boldrini, J.L.: The initial value problem for a generalized Boussinesq model. Nonlinear Anal. TMA 36(4), 457–480 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA Nonlinear Differ. Equ. Appl. 18, 707–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Morales-Delgado, V.F., Gomez-Aguilar, J.F., Saad, K.M., AltafKhan, M., Agarwal, P.: Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Phys. A, Stat. Mech. Appl. 523(1), 48–65 (2019)

    Article  MathSciNet  Google Scholar 

  51. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  52. Qin, Y., Su, X., Wang, Y., Zhang, J.: Global regularity for a two-dimensional nonlinear Boussinesq system. Math. Methods Appl. Sci. (2016). https://doi.org/10.1002/mma.4118

    Article  MATH  Google Scholar 

  53. Ruzhansky, M., Je, C.Y., Cho, Y.J., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with Applications. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  54. Saad, K.M., Iyiola, O.S., Agarwal, P.: An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system. AIMS Math. 3(1), 183–194 (2018)

    Article  Google Scholar 

  55. Shi, Q., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. 462(2), 1242–1253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Stefanov, A., Wu, J.: A global regularity result for the 2D Boussinesq equation with critical dissipation. Mathematics 29(1), 195–205 (2014)

    Google Scholar 

  57. Su, X.: The global attractor of the 2D Boussinesq system with fractional vertical dissipation. Bound. Value Probl. 2016(1), 1 (2016)

    Article  MathSciNet  Google Scholar 

  58. Sun, Y., Zhang, Z.: Global regularity for the initial-boundary value problem of the 2D Boussinesq system with variable viscosity and thermal diffusivity. J. Differ. Equ. 255(6), 1069–1085 (2013)

    Article  MATH  Google Scholar 

  59. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equation. Adv. Differ. Equ. 2015, 18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, C., Zhang, Z.: Global well-posedness for the 2D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math. 228(1), 43–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, G., Zheng, X.: Golbal well-posedness for the two-dimensional nonlinear Boussinesq equation with vertical dissipation. J. Differ. Equ. 255, 2891–2926 (2013)

    Article  MATH  Google Scholar 

  62. Wu, J.: Generalized MHD equation. J. Differ. Equ. 195, 284–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wu, J., Xu, X.: Well-posedness and inviscid limits of the Boussinesq equation with fractional Laplacian dissipation. Nonlinearity 27, 2215–2232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xiang, Z., Yan, W.: Global regularity of solutions to the Boussinesq equation with fractional diffusion. Adv. Differ. Equ. 18, 11/12 (2013)

    MathSciNet  Google Scholar 

  65. Xu, F., Yuan, J.: On the global well-posedness for the 2D Euler–Boussinesq system. Nonlinear Anal., Real World Appl. 17, 137–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Xu, X.: Global regularity of solutions of 2D Boussinesq equation with fractional diffusion. Nonlinear Anal. 72, 677–681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Xu, X., Xue, L.: Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation. J. Differ. Equ. 256, 3179–3207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yamazaki, K.: On the global regularity of N-dimensional generalized Boussinesq system. Appl. Math. 60(2), 109–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Yang, A., Yang, H., Li, J., Liu, W.: On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernel. Therm. Sci. 20(suppl. 3), 717–721 (2016)

    Article  Google Scholar 

  70. Yang, W., Jiu, Q., Wu, J.: Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ. Equ. 257, 4188–4213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yang, X.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 19(1), 45–52 (2018)

    MathSciNet  Google Scholar 

  72. Yang, X.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)

    Book  MATH  Google Scholar 

  73. Yang, X., Feng, Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)

    Article  MathSciNet  Google Scholar 

  74. Yang, X., Gao, F., Ju, Y., Zhou, H.: Fundamental solutions of the general fractional-order diffusion equations. Math. Methods Appl. Sci. 41(18), 9312–9320 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yang, X., Gao, F., Srivastava, H.: Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets. Fractals 25(04), 1740002 (2007)

    Article  MathSciNet  Google Scholar 

  76. Yang, X., Gao, F., Srivastava, H.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69(3), 113 (2017)

    Google Scholar 

  77. Yang, X., Gao, F., Srivastava, H.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yang, X., Gao, F., Tenreiro, M., Dumitru, B.: A new fractional derivative involving the normalized sinc function without singular kernel. Eur. Phys. J. Spec. Top. 226(16–18), 3567–3575 (2017)

    Article  Google Scholar 

  79. Yang, X., Machado, J.: A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A, Stat. Mech. Appl. 481, 276–283 (2017)

    Article  MathSciNet  Google Scholar 

  80. Yang, X., Machado, J., Baleanu, D.: On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25(4), 1740006 (2017)

    Article  MathSciNet  Google Scholar 

  81. Yang, X., Mahmoud, A., Cattani, C.: A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 23 1677–1681 (2019)

    Article  Google Scholar 

  82. Yang, X., Srivastava, H., Tenreiro, J.: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20(2), 753–756 (2015)

    Article  Google Scholar 

  83. Ye, Z., Xu, X.: Remarks on global regularity of the 2D Boussinesq equation with fractional dissipation. Nonlinear Anal. TMA 125, 715–724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Ye, Z., Xu, X.: Global regularity results of the 2D Boussinesq equation with fractional Laplacian dissipation. J. Math. Fluid Mech. 260(8), 1–20 (2015)

    Google Scholar 

  85. Zhang, X., Agarwal, P., Liu, Z., Peng, H.: The general solution for impulsive differential equation with Riemann–Liouville fractional-order q \(\in (1,2)\). Open Math. 13(1), 2391–5455 (2015)

    Article  MathSciNet  Google Scholar 

  86. Zhao, K.: 2D inviscid heat conductive Boussinesq equation on a bounded domain. Mich. Math. J. 59, 329–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  87. Zhou, D., Li, Z.: Global well-posedness for the 2D Boussinesq Equation with Zero Viscosity (2016). arXiv:1603.08301v2 [math.AP]

Download references

Funding

The work was in part supported by the NNSF of China (No. 11801133), Natural Science Foundation of Hebei Province of China (No. A2018207030, F2017207010) and Youth Key Program of Hebei University of Economics and Business (2018QZ07).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gangwei Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Wang, G. & Wang, Y. Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation. Adv Differ Equ 2019, 420 (2019). https://doi.org/10.1186/s13662-019-2348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2348-1

Keywords