Throughout the paper, we will assume conditions (1.3)–(1.6), (1.11), and \(g\in L^{2}(\varOmega )\). By [10] (see also [9]), the following holds.
Lemma 3.1
For any
\(T >0\)and every
\(z_{0}\in \mathcal{L}_{2}\), Eq. (1.13) with initial-boundary conditions (1.14) admits a unique weak solution
$$\begin{aligned} &u\in L^{\infty } (0, T; H )\cap L^{2} (0, T; V )\cap L ^{p} \bigl(0, T; L^{p}(\varOmega ) \bigr), \\ &\eta ^{t}\in L^{\infty } \bigl(0, T; L^{2}_{\mu } \bigl(\mathbb{R}^{+}, V \bigr) \bigr) \end{aligned}$$
(3.1)
such that
$$ z_{t}=\mathcal{Q}z +\mathcal{G}(z),\qquad z|_{t=0}=0 $$
in the weak sense.
Furthermore,
$$ z\in C\bigl([0,T], \mathcal{L}_{2}\bigr), $$
and the mapping
$$ z_{0}\mapsto z(t)\in C(\mathcal{L}_{2}, \mathcal{L}_{2}),\quad \forall t\in [0,T]. $$
By Lemma 3.1, we can define a semigroup \(\{S(t)\}_{t\ge 0}\) in \(\mathcal{L}_{2}\) as follows:
$$\begin{aligned} &S(t): \mathbb{R}^{+}\times \mathcal{L}_{2}\rightarrow \mathcal{L} _{2}, \\ &z_{0} \rightarrow z(t)= S(t)z_{0}, \end{aligned}$$
and \(\{S(t)\}_{t\geq 0}\) is a strongly continuous semigroup on the phase space \(\mathcal{L}_{2}\).
We now deal with the dissipative feature of the semigroup \(\{S(t)\} _{t\geq 0}\). Namely, we show that the trajectories originating from any given bounded set \(B \subset \mathcal{L}_{2}\) eventually, uniformly in time, into a bounded absorbing set \(B_{0}\subset \mathcal{L}_{p}\). For further use, let us write down explicitly the bounded absorbing set \(E_{0} \subset \mathcal{L}_{2}\) of the semigroup \(\{S(t)\}_{t\geq 0}\).
Lemma 3.2
For any
\(\mathrm{R} \geq 0\)given, there exist constants
\(\mathcal{R} _{0} > 0\)and
\(t_{0}=t_{0}(\mathrm{R})\)such that, whenever
$$ \Vert z_{0} \Vert _{\mathcal{L}_{2}}\leq \mathrm{R}, $$
it follows that
$$ \bigl\Vert S(t)z_{0} \bigr\Vert _{\mathcal{L}_{2}}\leq \mathcal{R}_{0},\quad \forall t\geq t_{0}. $$
Consequently, the
$$ E_{0}= \bigl\{ z\in \mathcal{L}_{2}: \Vert z \Vert _{\mathcal{L}_{2}}\leq \mathcal{R}_{0} \bigr\} $$
is an
\((\mathcal{L}_{2}, \mathcal{L}_{2})\)-bounded absorbing set for the semigroup
\(\{S(t)\}_{t\geq 0}\), that is, for any bounded set
\(B\subset \mathcal{L}_{2} \), there is
\(t_{0}=t_{0}(B)\)such that
\(S(t)B\subset E_{0}\)for every
\(t \geq t_{0}\).
Proof
Multiplying the first equation of (1.13) by u and then integrating over Ω, we get
$$ \frac{1}{2}\frac{d}{{dt}} \vert u \vert _{2}^{2}+ \Vert u \Vert _{0}^{2} + \int _{0}^{+\infty }{\mu (s) \bigl\langle {-\Delta { \eta ^{t}}(s),u(t)} \bigr\rangle \,ds} + \bigl\langle {f(u),u} \bigr\rangle = \langle {g,u} \rangle. $$
(3.2)
Using (1.7) and transforming the integral term in (3.2), we have
$$ \int _{0}^{ + \infty } {\mu (s) \bigl\langle { - \Delta {\eta ^{t}}(s),u(t)} \bigr\rangle \,ds} =\frac{1}{2} \frac{d}{ {dt}} \bigl\Vert \eta ^{t} \bigr\Vert _{\mu, 0}^{2} - \frac{1}{2} \int _{0}^{ + \infty } {\mu '(s) \bigl\Vert {{\eta ^{t}}(s)} \bigr\Vert _{0} ^{2}\,ds}. $$
(3.3)
From (1.6), it follows that
$$\begin{aligned} - \frac{1}{2} \int _{0}^{ + \infty } {\mu '(s) \bigl\Vert {{\eta ^{t}}(s)} \bigr\Vert _{0}^{2} \,ds} \ge \frac{\delta }{2} \int _{0}^{ + \infty } {\mu (s) \bigl\Vert {{\eta ^{t}}(s)} \bigr\Vert _{0}^{2}\,ds} = \frac{ \delta }{2} \bigl\Vert \eta ^{t} \bigr\Vert _{\mu, 0}^{2}. \end{aligned}$$
(3.4)
From hypothesis (1.2) and Hölder’s inequality, we obtain
$$\begin{aligned} \bigl\langle {f(u),u} \bigr\rangle \ge {\alpha _{1}} \vert u \vert _{p}^{p} -{\beta _{1}} \vert \varOmega \vert \end{aligned}$$
(3.5)
and
$$\begin{aligned} \langle {g,u} \rangle \le \frac{1}{{2{\lambda _{1}}}} \vert g \vert _{2}^{2} + \frac{{{\lambda _{1}}}}{2} \vert u \vert _{2}^{2}. \end{aligned}$$
(3.6)
Bringing (3.3)–(3.6) into (3.2) and combining with Poincaré’s inequality, we have
$$\begin{aligned} \frac{d}{{dt}} \bigl( { \vert u \vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu, 0}}^{2}} \bigr) + {\lambda _{1}} \vert u \vert _{2}^{2} + \delta \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu, 0}} ^{2} + 2{\alpha _{1}} \vert u \vert _{p}^{p} \le \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert , \end{aligned}$$
(3.7)
where \(|\varOmega |\) is the Lebesgue measure of Ω. Taking
$$\begin{aligned} {\gamma _{1}} = \min \{ {\lambda _{1}},\delta \}, \end{aligned}$$
then
$$\begin{aligned} \frac{d}{{dt}} \bigl( { \vert u \vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu, 0}}^{2}} \bigr) + {\gamma _{1}} \bigl( { \vert u \vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{ {\mu, 0}}^{2}} \bigr) \le \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert . \end{aligned}$$
Applying Gronwall’s lemma, we obtain
$$\begin{aligned} \bigl\vert {u(t)} \bigr\vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}(s)} \bigr\Vert _{{\mu, 0}}^{2} \le \bigl( { \bigl\vert {{u_{0}}(x)} \bigr\vert _{2}^{2} + \bigl\Vert {{\eta ^{0}}(s)} \bigr\Vert _{{\mu, 0}}^{2}} \bigr){e^{ - {\gamma _{1}}t}} + \frac{1}{{{\gamma _{1}}}} \biggl( {\frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert } \biggr). \end{aligned}$$
Therefore
$$\begin{aligned} \bigl\Vert {z(t)} \bigr\Vert _{\mathcal{L}_{2}}^{2} \le \Vert {z_{0}} \Vert _{\mathcal{L}_{2}}^{2}{e^{ - {\gamma _{1}}t}} + \frac{1}{ {{\gamma _{1}}}} \biggl( {\frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert } \biggr). \end{aligned}$$
(3.8)
Making \(\mathcal{R}^{2} _{0} = \frac{2}{{{\gamma _{1}}}} ( {\frac{1}{ {{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert } )\), when \(t \ge {t_{0}} = \frac{1}{{{\gamma _{1}}}}\ln \frac{{{\gamma _{1}}{\lambda _{1}}\mathrm{R}^{2}}}{{ \vert g \vert _{2}^{2} + 2{\lambda _{1}}{\beta _{1}} \vert \varOmega \vert }}\), we obtain
$$ \bigl\Vert {z(t)} \bigr\Vert _{\mathcal{L}_{2}} \le \mathcal{R} _{0}. $$
□
Lemma 3.3
There exists a constant
\(\mathcal{R}_{1} > 0 \)for given any
\(\mathrm{R} \geq 0\)such that, whenever
\(\|z_{0}\|_{\mathcal{L}_{2}} \le \mathrm{R}\), the corresponding solution
\(z(t)= (u(t), \eta ^{t})\)fulfills
$$\begin{aligned} \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert _{\mathcal{L}_{p}}^{2}\,ds = \int _{t}^{t + 1} \bigl( \bigl\vert u(s) \bigr\vert _{p}^{p} + \bigl\Vert \eta ^{s} \bigr\Vert _{\mu,0}^{2} \bigr) \,ds \le \mathcal{R}_{1} \end{aligned}$$
and
$$\begin{aligned} \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert _{\mathcal{M}_{1}}^{2}\,ds = \int _{t}^{t + 1} \bigl( \bigl\Vert u(s) \bigr\Vert _{0}^{2} + \bigl\Vert \eta ^{s} \bigr\Vert _{\mu,0}^{2} \bigr) \,ds \le \mathcal{R}_{1} \end{aligned}$$
for all
\(t \geq t_{0}\)hold.
Proof
From (3.2)–(3.6), we obtain
$$\begin{aligned} \frac{d}{{dt}} \bigl( { \vert u \vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu,0}}^{2}} \bigr) + \Vert u \Vert _{0}^{2} +\delta \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu,0}}^{2} + 2 {\alpha _{1}} \vert u \vert _{p}^{p} \le \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert . \end{aligned}$$
(3.9)
We integrate (3.9) about t from t to \(t+ 1\) and use Lemma 3.2, then we have
$$\begin{aligned} & \int _{t}^{t + 1} { \bigl\Vert {u(s)} \bigr\Vert _{0}^{2}\,ds} +\delta \int _{t}^{t + 1} { \bigl\Vert {{\eta ^{s}}} \bigr\Vert _{{\mu,0}}^{2}\,ds} + 2{\alpha _{1}} \int _{t}^{t + 1} { \bigl\vert {u(s)} \bigr\vert _{p}^{p}\,ds} \\ &\quad\le \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert + \bigl\vert {u(t)} \bigr\vert _{2}^{2} + \bigl\Vert {{\eta ^{t}}(s)} \bigr\Vert _{{\mu,0}}^{2} \\ &\quad\le \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert + \bigl\Vert z(t) \bigr\Vert _{\mathcal{L}_{2}}^{2}. \end{aligned}$$
(3.10)
If we make \(\mathcal{R}_{1} = \frac{1}{\min \{1, \delta, 2\alpha _{1} \}} ( \frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2 {\beta _{1}} \vert \varOmega \vert + \mathcal{R}_{0}^{2} )\), then when \(t\geq t_{0}\), we obtain
$$\begin{aligned} \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert _{\mathcal{L}_{p}}^{2}\,ds = \int _{t}^{t + 1} \bigl( \bigl\vert u(s) \bigr\vert _{p}^{p} + \bigl\Vert \eta ^{s} \bigr\Vert _{\mu,0}^{2} \bigr) \,ds \le \mathcal{R}_{1} \end{aligned}$$
and
$$\begin{aligned} \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert _{\mathcal{M}_{1}}^{2}\,ds = \int _{t}^{t + 1} \bigl( \bigl\Vert u(s) \bigr\Vert _{0}^{2} + \bigl\Vert \eta ^{s} \bigr\Vert _{\mu,0}^{2} \bigr) \,ds \le \mathcal{R}_{1}. \end{aligned}$$
□
Corollary 3.4
Given any
\(\mathrm{R} \geq 0\), there exist constants
\(\mathcal{K} = \mathcal{K}(\mathrm{R}) > 0 \)such that, whenever
\(\|z_{0}\|_{ \mathcal{M}_{0}} \le \mathrm{R}\), the corresponding solution
\(z(t)= (u(t), \eta ^{t})\)fulfills
$$ \int _{t}^{t + 1} \bigl( \bigl\vert u(s) \bigr\vert _{p}^{p}+ \bigl\Vert u(s) \bigr\Vert _{0}^{2}+ \bigl\Vert \eta ^{s} \bigr\Vert _{\mu, 0}^{2} \bigr) \,ds \le \mathcal{K} $$
for all
\(t \geq 0 \)holds.
Proof
By (3.8), we find the uniform estimate
$$ \bigl\Vert {z(t)} \bigr\Vert _{\mathcal{L}_{2}}^{2} \le \Vert {z_{0}} \Vert _{\mathcal{L}_{2}}^{2}+ \frac{1}{{{\gamma _{1}}}} \biggl( {\frac{1}{{{\lambda _{1}}}} \vert g \vert _{2}^{2} + 2{\beta _{1}} \vert \varOmega \vert } \biggr),\quad \forall t\ge 0. $$
The thesis then follows from (3.10). □
Lemma 3.5
The semigroup
\(\{S(t)\}_{t\geq 0}\)possesses an
\((\mathcal{L}_{2}, \mathcal{L}_{p})\)-bounded absorbing set, that is, there are positive constants
\(\rho _{0}, C_{\rho _{0}}\)such that, for any bounded subset
\(B\subset \mathcal{L}_{2}\)and given any
\(\mathrm{R} \geq 0\), there exists
\(t_{1}\ (=t_{1}(\mathrm{R}))\)such that, whenever
$$ \Vert z_{0} \Vert _{\mathcal{L}_{2}}\leq \mathrm{R}, $$
it follows that
$$ \bigl\Vert S(t)z_{0} \bigr\Vert ^{2}_{\mathcal{L}_{p}} \leq \rho _{0},\qquad \bigl\Vert S(t)z_{0} \bigr\Vert ^{2}_{\mathcal{M}_{1}} \leq \rho _{0}, $$
and
$$ \int _{t}^{t+1} \bigl\vert u_{t}(s) \bigr\vert _{2}^{2} \,ds \le C_{\rho _{0}} $$
hold for any
\(t\geq t_{1} \).
Proof
Multiplying the first equation of (1.13) by \(u_{t}\) and then integrating over Ω, we get
$$ \vert {{u_{t}}} \vert _{2}^{2} + \frac{d}{{dt}} \biggl( { \Vert u \Vert _{0}^{2} + {{ \bigl\langle {{\eta ^{t}}(s),u} \bigr\rangle } _{\mu,0}} + \int _{\varOmega }{F(u)} - \int _{\varOmega }{gu} } \biggr) = \int _{0}^{ + \infty } {\mu (s) \bigl\langle {\nabla \eta _{t}^{t}(s), \nabla u} \bigr\rangle } \,ds. $$
(3.11)
Combining with (1.8) and (1.10), we have
$$\begin{aligned} & \int _{0}^{ + \infty } {\mu (s) \bigl\langle {\nabla \eta _{t}^{t}(s), \nabla u} \bigr\rangle } \,ds \\ &\quad= \int _{0}^{ + \infty } {\mu (s) \langle {\nabla u,\nabla u} \rangle } \,ds- \int _{0}^{ + \infty } {\mu (s) \bigl\langle {\nabla \eta _{s}^{t}(s),\nabla u} \bigr\rangle } \,ds \\ &\quad\leq \frac{5m_{0} }{4} \bigl\Vert u(t) \bigr\Vert _{0}^{2} + \int _{0} ^{ + \infty } \mu (s) \bigl\Vert {{\eta _{s}^{t}}(s)} \bigr\Vert _{0}^{2} \,ds, \end{aligned}$$
(3.12)
$$\begin{aligned} &\int _{0}^{ + \infty } \mu (s) \bigl\Vert \eta _{s}^{t}(s) \bigr\Vert _{0}^{2} \,ds \\ &\quad = \int _{0}^{ + \infty } \mu (s) \bigl\Vert u(t-s) \bigr\Vert _{0}^{2} \,ds \\ &\quad= \int _{0}^{ t } \mu (t-s) \bigl\Vert u(s) \bigr\Vert _{0}^{2} \,ds+ \int _{0}^{ + \infty } \mu (t+s) \bigl\Vert u(-s) \bigr\Vert _{0}^{2} \,ds \\ &\quad\leq e^{-\delta ( t-t_{0})}e^{-\delta t_{0}} \int _{0}^{ t_{0} }e^{- \delta s} \bigl\Vert u(s) \bigr\Vert _{0}^{2}\,ds + e^{-\delta t} \int _{t_{0}}^{t }e^{ \delta s} \bigl\Vert u(s) \bigr\Vert _{0}^{2}\,ds+e^{-\delta t}\Re \\ &\quad\leq C e^{-\delta t} \bigl(e^{\delta t_{0}}\mathcal{K}+\Re \bigr) + C \mathcal{R}_{1}, \end{aligned}$$
(3.13)
where ℜ from (1.11). By (3.12), we get
$$\begin{aligned} &\frac{d}{{dt}} \biggl( { \Vert u \Vert _{0}^{2} + {{ \bigl\langle {{\eta ^{t}}(s),u} \bigr\rangle }_{\mu,0}} + \int _{\varOmega }{F(u)} - \int _{\varOmega }{gu} } \biggr) \\ & \quad\le\frac{5m_{0} }{4} \bigl\Vert z(t) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+Ce^{-\delta t} \bigl(e^{\delta t_{0}}\mathcal{K}+\Re \bigr) +C\mathcal{R}_{1}. \end{aligned}$$
(3.14)
Setting
$$ E(t)= \Vert u \Vert _{0}^{2} + {{ \bigl\langle {{ \eta ^{t}}(s),u} \bigr\rangle } _{\mu,0}} + \int _{\varOmega }{F(u)} - \int _{\varOmega }{gu}, $$
then from (1.4) we get
$$\begin{aligned} E(t) &\leq 2 \Vert u \Vert _{0}^{2} + \frac{m_{0}}{2} \bigl\Vert \eta ^{t} \bigr\Vert ^{2}_{\mu, 0}+ {\tilde{\alpha }_{2}} { \vert u \vert _{p}^{p}} + {\tilde{\beta } _{2}} \vert \varOmega \vert +\frac{1}{2\lambda _{1}} \vert g \vert _{2}^{2} \\ &\leq C \bigl( 1+ \bigl\Vert z(t) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+ \bigl\Vert z(t) \bigr\Vert ^{2}_{ \mathcal{L}_{p}} \bigr) \end{aligned}$$
(3.15)
and
$$\begin{aligned} E(t) &\geq \frac{1}{2} \Vert u \Vert _{0}^{2} - m_{0} \bigl\Vert \eta ^{t} \bigr\Vert ^{2}_{\mu, 0}+ {\tilde{\alpha }_{1}} { \vert u \vert _{p}^{p}} - { \tilde{\beta } _{1}} \vert \varOmega \vert -\frac{1}{\lambda _{1}} \vert g \vert _{2}^{2} \\ &\geq C \bigl( \bigl\Vert z(t) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+ \bigl\Vert z(t) \bigr\Vert ^{2}_{ \mathcal{L}_{p}} \bigr) -C \bigl(1+ \bigl\Vert z(t) \bigr\Vert ^{2}_{\mathcal{L}_{2}} \bigr). \end{aligned}$$
(3.16)
Integrating (3.14) about t from \(s (s\geq t)\) to \(t+1\), we obtain
$$ E(t+1)\le C \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert ^{2}_{\mathcal{M}_{1}} \,ds +\frac{C}{ \delta }e^{-\delta s} \bigl(e^{\delta t_{0}}\mathcal{K}+\Re \bigr) + C\mathcal{R}_{1}+ E(s). $$
(3.17)
Integrating (3.17) about s from t to \(t+1\), we get
$$ E(t+1)\le C \int _{t}^{t + 1} \bigl\Vert z(s) \bigr\Vert ^{2}_{\mathcal{M}_{1}} \,ds +\frac{C}{ \delta ^{2}}e^{-\delta t} \bigl(e^{\delta t_{0}}\mathcal{K}+\Re \bigr) + C\mathcal{R}_{1}+ \int ^{t+1}_{t} E(s)\,ds. $$
(3.18)
Combining with (3.15) and (3.16), it follows that
$$\begin{aligned} & \bigl\Vert z(t+1) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+ \bigl\Vert z(t+1) \bigr\Vert ^{2}_{\mathcal{L}_{p}} \\ &\quad\leq C \int _{t}^{t + 1} \bigl( \bigl\Vert z(s) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+ \bigl\Vert z(s) \bigr\Vert ^{2}_{\mathcal{L}_{p}} \bigr)\,ds +C \bigl(1+ \bigl\Vert z(t+1) \bigr\Vert ^{2}_{ \mathcal{L}_{p}} \bigr) \\ &\qquad{}+\frac{C}{\delta ^{2}}e^{-\delta t} \bigl(e^{\delta t_{0}} \mathcal{K}+ \Re \bigr) + C\mathcal{R}_{1}. \end{aligned}$$
(3.19)
By Lemma 3.2 and Lemma 3.3, there is a positive constant \(\rho _{0}\) such that
$$ \bigl\Vert z(t) \bigr\Vert ^{2}_{\mathcal{M}_{1}}+ \bigl\vert u(t) \bigr\vert _{p}^{p}\leq \rho _{0} $$
(3.20)
for all \(t\geq t_{1}=t_{0}+\frac{1}{\delta }\ln (\frac{e^{\delta t_{0}}\mathcal{K}+\Re }{\delta ^{2}\mathcal{R}_{1}} )\) holds.
By (3.11) and (3.12), we have
$$ \int _{t}^{t + 1} \bigl\vert u_{t}(s) \bigr\vert _{2}^{2} \,ds + E(t+1)\leq C_{0} \int ^{t+1} _{t} \bigl\Vert z(s) \bigr\Vert ^{2}_{\mathcal{M}_{1}}\,ds+E(t). $$
(3.21)
Associating with (3.15), (3.16), and (3.20), we obtain that there exists a positive constant \(C_{\rho _{0}}\) such that
$$ \int ^{t+1}_{t} \bigl\vert u_{t}(s) \bigr\vert ^{2}_{2} \,ds\leq C_{\rho _{0}} $$
(3.22)
for all \(t\geq t_{1}\) holds. □
Remark 3.6
By Lemma 3.5, we can obtain that the semigroup \(\{S(t)\} _{t\ge 0}\) corresponding to Eq. (1.13) possesses an \(( \mathcal{L}_{2}, \mathcal{L}_{p})\)-bounded absorbing set \(B_{0}\):
$$ B_{0} = \bigl\{ {\bigl(u,{\eta ^{t}} \bigr) \in H_{0}^{1}(\varOmega )\cap L^{p}( \varOmega ) \times L_{\mu }^{2}\bigl({\mathbb{R}^{+} },H_{0}^{1}(\varOmega )\bigr): \Vert u \Vert _{0}^{2} + \bigl\Vert {{\eta ^{t}}} \bigr\Vert _{{\mu,0}}^{2} + \vert u \vert _{p}^{p} \le \rho _{0} } \bigr\} . $$
(3.23)
It is obvious that \(B_{0}\) is also an \((\mathcal{L}_{2}, \mathcal{M} _{1})\)-bounded absorbing set of the semigroup \(\{S(t)\}_{t\geq 0}\).
Lemma 3.7
There exist constants
\(\mathcal{K}_{1}, \mathcal{K}_{2} > 0 \), for given any
\(z_{0}\in {B_{0}}\) (from
3.23), the corresponding solution
\(z(t)= (u(t), \eta ^{t})\)fulfills
$$ \bigl\vert u_{t}(t) \bigr\vert _{2}^{2}\le \mathcal{K}_{1} $$
(3.24)
and
$$ \int _{t}^{t + 1} { \bigl\Vert {{u_{t}}(s)} \bigr\Vert _{0}^{2}} \,ds \le \mathcal{K}_{2} $$
(3.25)
for all
\(t > 0\)hold.
Proof
Differentiating about t for Eq. (1.13), and using (1.8), (1.10), we obtain
$$\begin{aligned} \textstyle\begin{cases} {u_{tt}} - \Delta {u_{t}}- \int _{0}^{ + \infty } {\mu (s)\Delta \eta _{t} ^{t}(s)\,ds} + f'(u){u_{t}} = 0, \\ u_{t}= \eta _{tt}^{t}+\eta _{ts}^{t}. \end{cases}\displaystyle \end{aligned}$$
(3.26)
Multiplying the first equation of (3.26) by \(u_{t}\) and then integrating over Ω, it follows that
$$ \frac{d}{{dt}} \bigl( { \vert {{u_{t}}} \vert _{2}^{2} + \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2}} \bigr) + \Vert {{u_{t}}} \Vert _{0}^{2} + \delta \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{{\mu,0}}^{2} \leq 2l \vert {{u _{t}}} \vert _{2}^{2}. $$
(3.27)
Now, we investigate the estimate of \(\| \eta ^{t}_{t}\|_{\mu, 0}^{2}\):
$$\begin{aligned} \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2} &= \int ^{\infty }_{0}\mu (s) \bigl\Vert u(t)-u(t-s) \bigr\Vert _{0}^{2}\,ds \\ & \leq 2m_{0} \bigl\Vert u(t) \bigr\Vert _{0}^{2}+2 \int ^{\infty }_{0}\mu (s) \bigl\Vert u(t-s) \bigr\Vert _{0}^{2}\,ds. \end{aligned}$$
And
$$\begin{aligned} \int ^{\infty }_{0}\mu (s) \bigl\Vert u(t-s) \bigr\Vert _{0}^{2}\,ds &= \int ^{\infty }_{-t} \mu (t+s) \bigl\Vert u(-s) \bigr\Vert _{0}^{2}\,ds \\ & = \int ^{0}_{-t}\mu (t+s) \bigl\Vert u(-s) \bigr\Vert _{0}^{2}\,ds+ \int ^{\infty }_{0} \mu (t+s) \bigl\Vert u(-s) \bigr\Vert _{0}^{2}\,ds \\ & = \int ^{t}_{0}\mu (t-s) \bigl\Vert u(s) \bigr\Vert _{0}^{2}\,ds+ \int ^{\infty }_{0}\mu (t+s) \bigl\Vert u(-s) \bigr\Vert _{0}^{2}\,ds \\ &\leq \frac{1}{\delta }\rho _{0}+e^{-\delta t}\Re. \end{aligned}$$
Hence, for any \(t\geq 0\), we get
$$ \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2} \leq C\rho _{0}+2e^{-\delta t} \Re $$
(3.28)
and
$$ \eta ^{t}_{t}\in L^{2}_{\mu } \bigl(\mathbb{R}, H^{1}_{0}(\varOmega )\bigr). $$
Integrating (3.27) about t from s to \(t\ (0 < s\leq t \leq 1 )\), we obtain
$$ \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} + \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2} \leq 2l \int ^{1} _{0} \bigl\vert u_{t}(s) \bigr\vert _{2}^{2}\,ds + \bigl\vert u_{t}(s) \bigr\vert _{2}^{2} + \bigl\Vert \eta ^{s}_{t} \bigr\Vert _{\mu, 0}^{2}. $$
(3.29)
Then integrating (3.29) about s from 0 to 1, for any \(0 < t\leq 1\), it follows that
$$ \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} \leq (2l+1) \int ^{1}_{0} \bigl\vert u_{t}(s) \bigr\vert _{2}^{2}\,ds+C\rho _{0}+2\Re. $$
(3.30)
By Lemma 3.5, for all \(0< t\leq 1\), we get
$$ \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} \leq (2l+1)C_{\rho _{0}}+C\rho _{0}+2\Re. $$
(3.31)
Let \(s\in (0,1]\), using Gronwall’s lemma to (3.27) and combining with (3.30), for any \(t\geq s\), we have
$$\begin{aligned} \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} + \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2} \leq {}& \bigl( \bigl\vert u _{t}(s) \bigr\vert _{2}^{2} + \bigl\Vert \eta ^{s}_{t} \bigr\Vert _{\mu, 0}^{2} \bigr)e^{-\delta (t-s)} +(2l+\delta )e^{-\delta t} \int ^{t}_{0}e^{ \delta s} \bigl\vert u_{t}(s) \bigr\vert _{2}^{2}\,ds \\ \leq{}& (2l+\delta )C_{\rho _{0}}+C\rho _{0}+2\Re + \frac{(2l+\delta )e}{1-e ^{-\delta }}. \end{aligned}$$
(3.32)
Setting
$$ \mathcal{K}_{1}=(2l+1)C_{\rho _{0}}+C\rho _{0}+2 \Re +\frac{(2l+\delta )e}{1-e ^{-\delta }}, $$
then for any \(t > 0\), it follows that
$$ \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} \leq \mathcal{K}_{1}. $$
For any \(t > 0\), we integrate (3.27) about t on \([t, t+1]\), then
$$ \int _{t}^{t + 1} { \bigl\Vert {{u_{t}}(s)} \bigr\Vert _{0}^{2}} \,ds \le 2l \int _{t}^{t + 1} \bigl\vert {{u_{t}}(s)} \bigr\vert _{2}^{2}\,ds + \bigl\vert u_{t}(t) \bigr\vert _{2}^{2} + \bigl\Vert \eta ^{t}_{t} \bigr\Vert _{\mu, 0}^{2}. $$
Using Lemma 3.5 and (3.32) and letting \(\mathcal{K} _{2} = 2lC_{\rho _{0}}+\mathcal{K}_{1} \), we obtain
$$\begin{aligned} \int _{t}^{t + 1} { \bigl\Vert {{u_{t}}(s)} \bigr\Vert _{0}^{2}} \,ds \le \mathcal{K}_{2}. \end{aligned}$$
In order to prove the existence of an \((\mathcal{L}_{2}, \mathcal{L} _{p})\)-global attractor for \(\{S(t)\}_{t\geq 0}\), and for further purposes, we first have to verify that the semigroup \(\{S(t)\}_{t \ge 0}\) is asymptotically compact on \(\mathcal{L}_{2}\). □
Lemma 3.8
The semigroup
\(\{S(t)\}_{t\geq 0}\)associated with problem (1.13) with initial and boundary values (1.14) is
\((\mathcal{L}_{2}, \mathcal{L}_{2})\)-asymptotically compact.
Proof
Let \(z^{1}(t)=(u^{1}(t), \eta ^{t}_{1}), z^{2}(t)=(u ^{2}, \eta ^{t}_{2})\) be two solutions of (1.13) corresponding to the initial data \(z_{0}^{1}=(u^{1}_{0}, \eta ^{0}_{1}), z^{2}_{0}=(u _{0}^{2}, \eta ^{0}_{2})\) respectively. Set \(z(t)=(\omega (t), \theta ^{t})=(u^{1}(t)-u^{2}(t), \eta ^{t}_{1}-\eta ^{t}_{2})\), then \(z(t)\) satisfies the following equation:
$$ {\omega _{t}} - \Delta \omega - \int _{0}^{ + \infty } {\mu (s)\Delta {\theta ^{t}}(s)\,ds} + f\bigl({u^{1}}\bigr) - f \bigl({u^{2}}\bigr) = 0, $$
(3.33)
with initial-boundary conditions
$$\begin{aligned} \textstyle\begin{cases} \omega (x,t)|_{\partial \varOmega }=0,\qquad \theta ^{t}(x,s)|_{\partial \varOmega \times \mathbb{R}^{+}}=0, \\ \omega (x,0)=u^{1}_{0}-u^{2}_{0},\qquad \theta ^{0}(x,s)=\eta ^{0}_{1}-\eta ^{0}_{2}. \end{cases}\displaystyle \end{aligned}$$
(3.34)
Multiplying (3.33) by ω and then integrating in Ω, we get
$$ \frac{1}{2}\frac{d}{{dt}} \bigl( { \vert \omega \vert _{2}^{2} + \bigl\Vert {{\theta ^{t}}} \bigr\Vert _{{\mu,0}}^{2}} \bigr) + \Vert \omega \Vert _{0}^{2} + \frac{\delta }{2} \bigl\Vert {{\theta ^{t}}} \bigr\Vert _{{\mu,0}}^{2} \le l \vert \omega \vert _{2}^{2}. $$
(3.35)
Making \({\gamma } = \min \{ {2{\lambda _{1}},\delta } \} \), by Gronwall’s lemma, we obtain
$$\begin{aligned} \bigl\vert {\omega (T)} \bigr\vert _{2}^{2} + \bigl\Vert {{\theta ^{T}}} \bigr\Vert _{{\mu, 0}}^{2} \le \bigl( \bigl\vert {\omega (0)} \bigr\vert _{2}^{2} + \bigl\Vert {{\theta ^{0}}} \bigr\Vert _{{\mu, 0}}^{2} \bigr)e^{-\gamma T} +2l \int _{0}^{T} \bigl\vert \omega (s) \bigr\vert _{2}^{2}\,ds. \end{aligned}$$
For any \(\varepsilon > 0\), let \(T=\frac{1}{\gamma }\ln \frac{| {\omega (0)}|_{2} ^{2} + \| {{\theta ^{0}}}\|_{{\mu, 0}}^{2}}{\varepsilon ^{2}}\), then we get
$$ \bigl\Vert S(T)z^{1}-S(T)z^{2} \bigr\Vert _{\mathcal{L}_{2}}\leq \varepsilon +\phi _{T}\bigl(z ^{1}, z^{2}\bigr), $$
where
$$ \phi _{T}\bigl(z^{1}, z^{2}\bigr)= \biggl(2l \int _{t_{1}}^{T} \bigl\vert u^{1}(s)-u^{2}(s) \bigr\vert _{2} ^{2}\,ds \biggr)^{1/2}. $$
By Lemma 3.5, using Lemma 2.11, then \(\phi _{T}\) is a contractive function on \(B_{0}\). □
Corollary 3.9
The semigroup
\(\{S(t)\}_{t\geq 0}\)possesses an
\((\mathcal{L}_{2}, \mathcal{L}_{2})\)-global attractor
\(\mathscr{A}_{0}\).
Lemma 3.10
The semigroup
\(\{S(t)\}_{t\geq 0}\)associated with problem (1.13) with initial and boundary values (1.14) is
\((\mathcal{L}_{2}, \mathcal{L}_{p})\)-asymptotically compact.
Proof
Applying once more Theorem 2.14, Lemma 3.1, and Lemma 3.2, we only prove that, for any \(\varepsilon >0\) and bounded (with respect to \(\|\cdot \|_{ \mathcal{L}_{2}}\)) subset B, there exist positive constants \(M=M(\varepsilon, B)\) and \(T=T(B, \varepsilon )\) such that
$$\begin{aligned} \int _{\varOmega ( \vert u \vert \geq M)} \vert u \vert ^{p}< \varepsilon\quad \text{for any }z_{0}\in B, t\geq T, \end{aligned}$$
where \(u=u(t)=\varPi _{1} z(t)\).
From Lemma 3.3 and Remark 3.6, there exist positive constants \(M_{1}=M_{1}(\varepsilon, B)\) and \(T_{0}=T_{0}(B, \varepsilon )\) such that
$$ m \bigl(\varOmega \bigl( \vert u \vert \geq M_{1}\bigr) \bigr) \leq \varepsilon $$
and
$$ \int _{\varOmega ( \vert u \vert \geq M_{1})} \vert g \vert ^{2}\leq \varepsilon, $$
where \(m(e)\) denote the Lebesgue measure of \(e\subset \varOmega \) and \((\varOmega (|u|\geq M_{1}))=\{x\in \varOmega: |u(x)|\geq M_{1}\}\).
Let \(\varOmega _{1}=\varOmega (|u|\geq M_{1}))\) and denote
$$ (u-M_{1})_{+}= \textstyle\begin{cases}u-M_{1} &\text{as } u\geq M_{1},\\ 0 &\text{as } u < M_{1}. \end{cases}\displaystyle \qquad (u+M_{1})_{-}= \textstyle\begin{cases} u+M_{1} &\text{as } u\leq - M_{1},\\ 0 &\text{as } u >- M_{1}. \end{cases} $$
Multiplying the first equation of (1.13) by \((u-M_{1})_{+}\) and integrating over Ω, we have
$$\begin{aligned} \begin{aligned} &\frac{1}{2}\frac{d}{{dt}} \biggl( \bigl\vert (u-M_{1})_{+} \bigr\vert _{2}^{2}+ \int ^{\infty }_{0}\mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds \biggr)+ \int _{\varOmega _{1}} \vert \nabla u \vert ^{2} \\ &\quad{}+ \frac{\delta }{2} \int ^{\infty }_{0} \mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds, \\ & \int _{\varOmega _{1}}f(u) (u-M_{1})_{+} = \int _{\varOmega _{1}}g(u-M_{1})_{+}. \end{aligned} \end{aligned}$$
(3.36)
For \(M_{1}\) large enough, we get
$$ f(u) (u-M_{1})_{+}\geq 0. $$
By Hölder’s inequality and Cauchy’s inequality, we know that
$$\begin{aligned} &\frac{1}{2}\frac{d}{{dt}} \biggl( \bigl\vert (u-M_{1})_{+} \bigr\vert _{2}^{2}+ \int ^{\infty }_{0}\mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds \biggr) \\ &\quad {}+C \biggl( \int _{\varOmega _{1}} \bigl\vert (u-M_{1})_{+} \bigr\vert ^{2} + \int ^{\infty }_{0} \mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds \biggr)\leq C \varepsilon. \end{aligned}$$
Thus there exists \(T_{1}>0\), for any \(t\geq T_{1}\), we get
$$ \bigl\vert (u-M)_{+} \bigr\vert _{2}^{2}+ \int ^{\infty }_{0}\mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds\leq C\varepsilon. $$
(3.37)
Combining with (3.37), integrating (3.36) from t to \(t+1\), yields
$$\begin{aligned} \int ^{t+1}_{t} \biggl( \int _{\varOmega _{1}} \vert \nabla u \vert ^{2} + \int ^{\infty } _{0}\mu (s) \int _{\varOmega _{1}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds+ \int _{\varOmega _{1}}f(u) (u-M_{1})_{+} \biggr) \leq C\varepsilon. \end{aligned}$$
(3.38)
Hence, for any \(t\geq T_{1}\),
$$\begin{aligned} \int ^{t+1}_{t} \biggl( \int _{\varOmega _{2}} \vert \nabla u \vert ^{2} + \int ^{\infty } _{0}\mu (s) \int _{\varOmega _{2}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds+ \int _{\varOmega _{2}}f(u)u \biggr)\leq C\varepsilon, \end{aligned}$$
(3.39)
where \(\varOmega _{2}=\varOmega (u\geq 2M_{1}))\).
Furthermore, we multiply the first equation of (1.13) by \((u-2M_{1})_{+t}\) and integrating over Ω, then we get
$$\begin{aligned} \frac{d}{{dt}} \biggl(\frac{1}{2} \int _{\varOmega _{2}} \vert \nabla u \vert _{2}^{2}+ \int _{\varOmega _{2}}F(u) \biggr)\leq {}& \Vert u_{t} \Vert _{0} \biggl( \int ^{\infty }_{0}\mu (s) \int _{\varOmega _{2}} \bigl\vert \nabla \eta ^{t}(s) \bigr\vert ^{2}\,ds \biggr)^{1/2} + C\varepsilon \\ \leq {}&C\bigl( \Vert u_{t} \Vert _{0}+1\bigr) \varepsilon. \end{aligned}$$
Hence, we have
$$\begin{aligned} \int _{\varOmega _{2}}F(u)\leq{}& \int ^{t+1}_{t} \biggl(\frac{1}{2} \int _{\varOmega _{2}} \bigl\vert \nabla u(s) \bigr\vert _{2}^{2}+ \int _{\varOmega _{2}}F\bigl(u(s)\bigr) \biggr)\,ds \\ &{}+ C \biggl( \biggl( \int ^{t+1}_{t} \bigl\Vert u_{t}(s) \bigr\Vert _{0}\,ds \biggr)^{1/2}+1 \biggr) \varepsilon. \end{aligned}$$
(3.40)
From (1.2), (1.4), (3.39), and Lemma 3.7, we obtain that
$$ \int _{\varOmega (u\geq 2M_{1})} \vert u \vert ^{p}\leq C \varepsilon. $$
Repeating the steps above, just replacing \((u-M_{1})_{+}, (u-2M_{1})_{+}\) with \((u+M_{1})_{-}, (u+2M_{1})_{-}\) respectively, we deduce that
$$ \int _{\varOmega (u\leq -2M_{1})} \vert u \vert ^{p}\leq C \varepsilon. $$
Let \(T=\max \{T_{0}, T_{1}\}\) and \(M=2M_{1}\), then we have that
$$ \int _{\varOmega ( \vert u \vert \geq M)} \vert u \vert ^{p}\leq C \varepsilon $$
for any \(t\geq T\) holds. □
It follows that \(\{S(t)\}_{t \geq 0}\) is a norm-to-weak continuous semigroup on \(\mathcal{L}_{p}\) with a bounded absorbing set \(B_{0}\) and \((\mathcal{L}_{2}, \mathcal{L}_{p})\)-asymptotically compact. Then, obviously, by the standard method for dynamical systems, see for example [2, 5, 20], we know that \(\mathscr{A}\) is invariant, compact in \(\mathcal{L}_{p}\), and attracts every bounded subset of \(\mathcal{L}_{2}\) with respect to the \(\mathcal{L}_{p}\)-norm. Furthermore, by Remark 2.10, Lemma 3.8, and Lemma 3.10,
$$ \mathscr{A}_{0}=\mathscr{A}. $$