The results of existence and uniqueness
Now, we begin by showing Theorem 2, which is the main results of this paper. But the proof of this theorem needs a lot of supporting propositions, so it will be presented later.
Theorem 2
Let assumptions (A1)–(A3) be satisfied. Then BSDE (2.1) has a unique solution
\({\{ (Y_{t}, Z_{t}, U_{t}, W_{t})\}_{0\leq t\leq T}}\)such that
$$\begin{aligned} & \mathbb{E} \int _{\tau }^{T} \vert Z_{s} \vert ^{2} \,ds +\mathbb{E} \biggl(\sum_{j \in I} \int _{\tau }^{T} \bigl\vert W_{s}(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j \}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr)\leq C \varPhi _{1}(\tau, T), \end{aligned}$$
(3.1a)
$$\begin{aligned} & \mathbb{E} \Bigl(\sup_{\tau \leq t \leq T } \vert Y_{t} \vert ^{2} \Bigr)\leq C \varPhi _{1}(\tau, T), \end{aligned}$$
(3.1b)
$$\begin{aligned} & \mathbb{E} \phi (Y_{\tau })\leq C \varPhi _{2}(\tau, T), \end{aligned}$$
(3.1c)
$$\begin{aligned} & \mathbb{E} \int _{\tau }^{T} \vert U_{s} \vert ^{2} \,ds \leq C \varPhi _{2}(\tau, T), \end{aligned}$$
(3.1d)
where
\(\tau \in [0,T]\)is a stopping time,
$$\begin{aligned} & \varPhi _{1} (\tau, T)=\mathbb{E} \biggl( \vert \xi \vert ^{2} + \sum_{i\in I} \int _{\tau }^{T} \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2}\,ds \biggr), \end{aligned}$$
(3.2a)
$$\begin{aligned} & \varPhi _{2} (\tau, T)=\mathbb{E} \biggl( \vert \xi \vert ^{2} + \phi (\xi )+ \int _{\tau }^{T} \bigl\vert \varphi (s) \bigr\vert ^{2}\,ds \biggr). \end{aligned}$$
(3.2b)
Proposition 3
Let assumptions (A1)–(A3) be satisfied. If
\((Y,Z,U,W)\in \operatorname{BSDE} (\xi,T;\phi,f)\)and
\((\tilde{Y}, \tilde{Z},\tilde{U},\tilde{W})\in \operatorname{BSDE} (\tilde{\xi },T; \phi,\tilde{f})\), we have
$$\begin{aligned} & \mathbb{E} \int _{0}^{T} \vert Z_{s}- \tilde{Z_{s}} \vert ^{2} \,ds +\mathbb{E} \biggl( \sum _{j\in I} \int _{0}^{T} \bigl\vert W_{s}(j)- \tilde{W}_{s}(j) \bigr\vert ^{2}\mathbf{1} _{\{\alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr)\leq C \Delta (T), \end{aligned}$$
(3.3a)
$$\begin{aligned} & \mathbb{E} \Bigl(\sup_{0 \leq t \leq T } \vert Y_{t}- \tilde{Y}_{t} \vert ^{2} \Bigr)\leq C \Delta (T), \end{aligned}$$
(3.3b)
where
(3.4)
Corollary 4
Let assumptions (A1)–(A3) be satisfied. There exists a unique quadruple
\((Y,Z,U,W)\)which satisfies BSDE (2.1) such that
$$\begin{aligned} & \lim_{t\rightarrow \infty } \mathbb{E} \vert Y_{t} \vert ^{2}=0, \end{aligned}$$
(3.5a)
$$\begin{aligned} & (Y_{t},U_{t})\in \partial \phi,\qquad dP \times dt, \quad\textit{a.e. on } [0,T]. \end{aligned}$$
(3.5b)
Moreover,
$$\begin{aligned} & \mathbb{E} \biggl(\sup_{t\geq 0} \vert Y_{t} \vert ^{2} + \int _{0}^{\infty } \vert Z_{s} \vert ^{2} \,ds + \sum_{j\in I} \int _{0}^{\infty } \bigl\vert W _{s}(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad \leq C \mathbb{E} \sum_{i\in I} \int _{0}^{\infty } \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2} \,ds, \end{aligned}$$
(3.6a)
$$\begin{aligned} & \sup_{t\geq 0 }\mathbb{E}\phi (Y_{t})+ \mathbb{E} \int _{0}^{\infty } \vert U _{s} \vert ^{2} \,ds \leq C\mathbb{E} \int _{0}^{\infty } \bigl\vert \varphi (s) \bigr\vert ^{2} \,ds. \end{aligned}$$
(3.6b)
A priori estimates
Before proving the previous results, we firstly give some a priori estimates on the solution. For \(x\in \mathbb{R}\), we define a convex \(C'\)-function \(\phi _{\delta },\delta >0\),
$$\begin{aligned} \phi _{\delta }(u) &= \inf \biggl\{ \frac{1}{2} \vert u-v \vert ^{2} + \delta \phi (v): v\in \mathbb{R} \biggr\} \\ &=\frac{1}{2} \vert u-J_{\delta }u \vert ^{2} + \delta \phi (J_{\delta }u), \end{aligned}$$
(3.7)
where \(J_{\delta }u = (I+\delta \partial \phi )^{-1}(u)\). Now we recall some properties of this approximation that appeared in [10]:
$$\begin{aligned} & \frac{1}{\delta } D \phi _{\delta }(u)= \frac{1}{\delta } \partial \phi _{\delta }(u)=\frac{1}{\delta }(u-J_{\delta }u) \in \partial \phi (J_{\delta }u), \end{aligned}$$
(3.8a)
$$\begin{aligned} & \vert J_{\delta }u-J_{\delta }v \vert \leq \vert u-v \vert ,\qquad \lim_{\delta \searrow 0} J_{\delta }u = {\Pr} _{\overline{ \operatorname{Dom} \phi }}(u) \end{aligned}$$
(3.8b)
for \(u,v \in \mathbb{R},\delta >0\). For the convexity of \(\phi _{ \delta }\), we have
$$ \phi _{\delta }(0) \geq \phi _{\delta }(u)+ \bigl(D\phi _{\delta }(u), -u \bigr). $$
Hence, for \(u\in \mathbb{R}\), it holds that
$$ 0 \leq \phi _{\delta }(u)\leq \bigl(D\phi _{\delta }(u), u \bigr). $$
By the monotonicity of ∂ϕ and (3.8a), we obtain
$$\begin{aligned} 0\leq{}& \biggl(\frac{1}{\delta }D \phi _{\delta }(u)- \frac{1}{\varepsilon }D \phi _{\varepsilon }(v), J_{\delta }u-J_{\varepsilon }v \biggr) \\ ={}& \biggl(\frac{1}{\delta }D \phi _{\delta }(u)- \frac{1}{\varepsilon }D \phi _{\varepsilon }(v), u-D\phi _{\delta }(u)-v+D\phi _{\varepsilon }(v) \biggr) \\ ={}& \biggl(\frac{1}{\delta }D \phi _{\delta }(u)- \frac{1}{\varepsilon }D \phi _{\varepsilon }(v), u-v \biggr)-\frac{1}{\delta } \bigl\vert D\phi _{\delta }(u) \bigr\vert ^{2} \\ &{} -\frac{1}{\varepsilon } \bigl\vert D\phi _{\varepsilon }(v) \bigr\vert ^{2}+ \biggl(\frac{1}{ \delta }+\frac{1}{\varepsilon } \biggr) \bigl(D\phi _{\delta }(u),D \phi _{\varepsilon }(v) \bigr). \end{aligned}$$
Then, for \(\delta,\varepsilon >0\), it holds that
$$\begin{aligned} \biggl(\frac{1}{\delta }D \phi _{\delta }(u)- \frac{1}{\varepsilon }D \phi _{\varepsilon }(v), u-v \biggr)\geq - \biggl(\frac{1}{\delta }+\frac{1}{ \varepsilon } \biggr) \bigl\vert D\phi _{\delta }(u) \bigr\vert \bigl\vert D\phi _{\varepsilon }(v) \bigr\vert .& \end{aligned}$$
(3.9)
Now, we consider the approximating equation
$$\begin{aligned} Y_{t}^{\delta }= {}&\xi + \int _{t}^{T} f \bigl(s,\alpha _{s},Y_{s}^{\delta },Z _{s}^{\delta },W_{s}^{\delta } \bigr)\,ds -\frac{1}{\delta } \int _{t}^{T} D \phi _{\delta } \bigl(Y_{s}^{\delta } \bigr)\,ds \\ &{}- \int _{t}^{T} Z_{s}^{\delta } \,dB_{s}- \sum_{j \in I} \int _{t} ^{T} W_{s}^{\delta }(j) \,d\tilde{\mathcal{V}}_{s}(j). \end{aligned}$$
(3.10)
From Crépey and Moutoussi [11], \((Y^{\delta },Z ^{\delta },U^{\delta },W^{\delta })\) is the unique solution of equation (3.10).
Proposition 5
Let assumptions (A1)–(A3) be satisfied and
\(\tau \in [0,T]\)be a stopping time. Then
$$\begin{aligned} & \mathbb{E} \biggl(\sup_{\tau \leq t \leq T} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} + \int _{\tau }^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2} \,ds + \sum_{j\in I} \int _{\tau } ^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad \leq C \varPhi _{1}(\tau,T), \end{aligned}$$
(3.11)
where
\(\varPhi _{1}\)is defined by (3.2a).
Proof
Using Itô’s formula for \(|Y_{t}^{\delta }|^{2}\) yields that
$$\begin{aligned} & \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} + \int _{t}^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2} \,ds + \sum_{j \in I} \int _{t}^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2}\mathbf{1}_{\{ \alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \\ &\qquad{} + \frac{2}{\delta } \int _{t}^{T} \bigl(D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr),Y _{s}^{\delta } \bigr)\,ds \\ &\quad= \vert \xi \vert ^{2} + 2 \int _{t}^{T} \bigl( f \bigl(s, \alpha _{s}, Y_{s}^{\delta }, Z_{s}^{\delta }, W_{s}^{\delta } \bigr), Y_{s}^{\delta } \bigr)\,ds \\ &\qquad{} -2 \int _{t}^{T} \bigl(Y_{s}^{\delta },Z_{s}^{\delta } \,dB_{s} \bigr) - 2\sum_{j \in I} \int _{t}^{T} \bigl(Y_{s}^{\delta }, W_{s}^{\delta }(j)\,d\tilde{V} _{s}(j) \bigr). \end{aligned}$$
Let us start with some terms in the equation above. On the one hand, according to the previous assumption, we have \(( \frac{1}{\delta } D\phi _{\delta }(Y_{s}^{\delta }),Y_{s}^{\delta } )\geq 0\). On the other hand, from Schwarz’s inequality, we get
$$\begin{aligned} & 2 \bigl( f(s,\alpha _{s},y,z,w), y \bigr) \\ &\quad\leq 2\beta \vert y \vert ^{2}+ 2\mu \vert y \vert \vert z \vert +2L \vert y \vert \vert w \vert +2 \vert y \vert \bigl\vert f(s,\alpha _{s}, 0,0,0) \bigr\vert \\ &\quad\leq \bigl(2\beta + (1+r)\mu ^{2} + (1+r)L^{2} +r \bigr) \vert y \vert ^{2} \\ &\qquad{} + \frac{1}{1+r} \bigl( \vert z \vert ^{2}+ \vert w \vert ^{2} \bigr)+\frac{1}{r} \bigl\vert f(s,\alpha _{s},0,0,0) \bigr\vert ^{2}. \end{aligned}$$
Hence,
$$\begin{aligned} & \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} + \frac{r}{1+r} \int _{t}^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2} \,ds +\frac{r}{1+r} \sum _{j \in I} \int _{t}^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \\ &\quad\leq \vert \xi \vert ^{2} + \bigl(2\beta + \mu ^{2} + L^{2}+ \bigl(1+\mu ^{2}+L^{2} \bigr)r \bigr) \int _{t}^{T} \bigl\vert Y_{s}^{\delta } \bigr\vert ^{2} \,ds-2 \int _{t}^{T} \bigl(Y_{s}^{ \delta },Z_{s}^{\delta } \,dB_{s} \bigr) \\ &\qquad{} +\frac{1}{r} \int _{t}^{T} \bigl\vert f(s,\alpha _{s}, 0,0,0) \bigr\vert ^{2}\,ds - 2 \sum _{j \in I} \int _{t}^{T} \bigl(Y_{s}^{\delta }, W_{s}^{\delta }(j)\,d \tilde{V}_{s}(j) \bigr). \end{aligned}$$
According to the main ideas of Proposition 2.1 in [12], we take the expectation in the above inequality. So
$$\begin{aligned} & \mathbb{E} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} + \frac{r}{1+r} \biggl( \mathbb{E} \int _{t}^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2} \,ds +\mathbb{E} \sum_{j \in I} \int _{t} ^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad \leq \mathbb{E} \biggl( \vert \xi \vert ^{2} + \frac{1}{r} \int _{t}^{T} \bigl\vert f(s, \alpha _{s}, 0,0,0) \bigr\vert ^{2}\,ds \biggr)+ \widetilde{C} \mathbb{E} \int _{t}^{T} \bigl\vert Y_{s}^{\delta } \bigr\vert ^{2} \,ds, \end{aligned}$$
where C̃ is a positive constant.
Then, by Gronwall’s lemma, we get
$$ \mathbb{E} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} \leq \bar{C}, $$
where C̄ is also a positive constant.
Thus, we have
$$\begin{aligned} &\mathbb{E} \biggl( \int _{0}^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2}\,ds + \sum_{j \in I} \int _{0}^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr)\leq C. \end{aligned}$$
In addition,
$$\begin{aligned} \sup_{\tau \leq t \leq T} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2}\leq{} &\vert \xi \vert ^{2} + \frac{1}{r}\sum_{i \in I} \int _{\tau }^{T} \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2} \,ds \\ &{} + 2\sup_{\tau \leq t \leq T} \biggl\vert \sum _{j \in I} \int _{t}^{T} \bigl(Y_{s} ^{\delta }, W_{s}^{\delta }(j)\,d\tilde{V}_{s}(j) \bigr) \biggr\vert \\ &{} +2\sup_{\tau \leq t \leq T} \biggl\vert \int _{t}^{T} \bigl(Y_{s}^{\delta },Z_{s} ^{\delta }\,dB_{s} \bigr) \biggr\vert . \end{aligned}$$
We obtain
$$\begin{aligned} & 2\mathbb{E} \biggl(\sup_{\tau \leq t \leq T} \biggl\vert \int _{t}^{T} \bigl(Y_{s} ^{\delta },Z_{s}^{\delta }\,dB_{s} \bigr) \biggr\vert \biggr) \\ &\quad\leq \frac{1}{4} \mathbb{E} \Bigl(\sup_{\tau \leq t \leq T} \bigl\vert Y_{t} ^{\delta } \bigr\vert ^{2} \Bigr) + C_{1} \mathbb{E} \biggl( \int _{\tau }^{T} \bigl\vert Z _{s}^{\delta } \bigr\vert ^{2} \,ds \biggr), \\ & 2\mathbb{E} \biggl(\sup_{\tau \leq t \leq T} \biggl\vert \sum _{j \in I} \int _{t}^{T} \bigl(Y_{s}^{\delta }, W_{s}^{\delta }(j)\,d\tilde{V}_{s}(j) \bigr) \biggr\vert \biggr) \\ &\quad\leq \frac{1}{4} \mathbb{E} \Bigl(\sup_{\tau \leq t \leq T} \bigl\vert Y_{t} ^{\delta } \bigr\vert ^{2} \Bigr)+C_{2} \mathbb{E} \biggl( \sum_{j \in I} \int _{\tau }^{T} \bigl\vert W_{s}^{\delta }(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j \}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr). \end{aligned}$$
Thus, we get
$$\begin{aligned} \mathbb{E} \Bigl(\sup_{\tau \leq t \leq T} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} \Bigr)\leq{}& \mathbb{E} \biggl( \vert \xi \vert ^{2} +\frac{1}{r}\sum _{i \in I} \int _{ \tau }^{T} \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2} \,ds \biggr) \\ &{} +\frac{1}{2}\mathbb{E} \Bigl(\sup_{\tau \leq t \leq T} \bigl\vert Y_{t}^{\delta } \bigr\vert ^{2} \Bigr)+C_{1} \mathbb{E} \biggl( \int _{ \tau }^{T} \bigl\vert Z_{s}^{\delta } \bigr\vert ^{2} \,ds \biggr) \\ &{} +C_{2} \mathbb{E} \biggl( \sum_{j \in I} \int _{\tau }^{T} \bigl\vert W_{s}^{ \delta }(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \biggr). \end{aligned}$$
□
Proposition 6
Let assumptions (A1)–(A3) be satisfied. For
\(C>0\), we have
$$\begin{aligned} & \mathbb{E} \int _{\tau }^{T} \biggl(\frac{1}{\delta } \bigl\vert D \phi _{ \delta } \bigl(Y_{s}^{\delta } \bigr) \bigr\vert \biggr)^{2}\,ds \leq C \varPhi _{2} ( \tau,T), \end{aligned}$$
(3.12a)
$$\begin{aligned} & \mathbb{E}\phi \bigl(J_{\delta }Y_{\tau }^{\delta } \bigr)\leq C \varPhi _{2} (\tau,T), \end{aligned}$$
(3.12b)
$$\begin{aligned} & \mathbb{E} \bigl\vert Y_{\tau }^{\delta }-J_{\delta } \bigl(Y_{\tau }^{\delta } \bigr) \bigr\vert ^{2} \leq \delta ^{2} C \varPhi _{2}(\tau,T ), \end{aligned}$$
(3.12c)
where
\(\varPhi _{2}(\tau,T)\)is given by (3.2b), and
\(\tau \in [0,T]\)is a stopping time.
Proof
Borrowing the ideas in Proposition 2.2 in [6], we just briefly show the result as follows.
The subdifferential inequality can be written as
$$ \phi _{\delta } \bigl(Y_{r}^{\delta } \bigr) \geq \phi _{\delta } \bigl(Y_{r'}^{\delta } \bigr) + \bigl(D\phi _{\delta } \bigl(Y_{r'}^{\delta } \bigr),Y_{r}^{\delta }-Y_{r'}^{\delta } \bigr) $$
for \(r=t_{j+1}\wedge T, r'=t_{j} \wedge T\), where \(t=t_{0} < t_{1} <t _{2} <\cdots\) , and \(t_{j+1}-t_{j}=1/n\). Summing up over j, and n goes to ∞, we get
$$\begin{aligned} & \phi _{\delta } \bigl(Y_{t}^{\delta } \bigr)+\frac{1}{\delta } \int _{t}^{T} \bigl\vert D \phi _{\delta } \bigl(Y_{s}^{\delta } \bigr) \bigr\vert ^{2} \,ds \\ &\quad \leq \phi _{\delta }(\xi )+ \int _{t}^{T} \bigl( D\phi _{\delta } \bigl(Y_{s} ^{\delta } \bigr),f \bigl(s,\alpha _{s},Y_{s}^{\delta },Z_{s}^{\delta },W_{s}^{ \delta } \bigr) \bigr)\,ds- \int _{t}^{T} \bigl( D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr),Z_{s}^{\delta } \,dB_{s} \bigr) \\ &\qquad{}-\sum_{j \in I} \int _{t}^{T} \bigl(D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr),W _{s}^{\delta }(j) \,d\tilde{V}_{s}(j) \bigr),\quad \forall t\geq 0, \text{ a.s.} \end{aligned}$$
(3.13)
From (3.7), (3.8a), we get
$$\begin{aligned} & \frac{1}{2} \bigl\vert D\phi _{\delta }(y) \bigr\vert ^{2}+\delta \phi (J_{\delta }y)= \phi _{\delta }(y),\qquad \delta \phi (J_{\delta }y)\leq \phi _{\delta }(y), \\ & \phi _{\delta }(\xi ) \leq \delta \phi (\xi ),\qquad y-J_{\delta }y=D \phi _{\delta }(y). \end{aligned}$$
According to the previous assumption (A3), we have
$$\begin{aligned} & \bigl( D\phi _{\delta }(y), f(s,\alpha,y,z,w) \bigr) \\ &\quad\leq \frac{1}{2\delta } \bigl\vert D\phi _{\delta }(y) \bigr\vert ^{2} +\frac{\delta }{2} \bigl\vert f(s,\alpha,y,z,w) \bigr\vert ^{2} \\ &\quad \leq \frac{1}{2\delta } \bigl\vert D\phi _{\delta }(y) \bigr\vert ^{2}+3\delta \bigl(\mu ^{2} \vert z \vert ^{2}+L ^{2} \vert w \vert ^{2}+ \sigma ^{2} \vert y \vert ^{2} + \varphi ^{2}(t) \bigr). \end{aligned}$$
The result follows. □
Proposition 7
Let assumptions (A1)–(A3) be satisfied. For
\(\delta, \varepsilon >0\), we have
(3.14a)
(3.14b)
where
(3.15)
Proof
By Itô’s formula,we obtain
$$\begin{aligned} & \bigl\vert Y_{t}^{\delta }-Y_{t}^{\varepsilon } \bigr\vert ^{2} + \sum_{j \in I} \int _{t} ^{T} \bigl\vert W_{s}^{\delta }(j)-W_{s}^{\varepsilon }(j) \bigr\vert ^{2}\mathbf{1}_{\{ \alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \\ &\qquad{} + \int _{t}^{T} \bigl\vert Z_{s}^{\delta }-Z_{s}^{\varepsilon } \bigr\vert ^{2} \,ds+ 2 \int _{t}^{T} \biggl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, \frac{1}{\delta }D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr)-\frac{1}{\varepsilon }D \phi _{\varepsilon } \bigl(Y_{s}^{\varepsilon } \bigr) \biggr)\,ds \\ &\quad= 2 \int _{t}^{T} \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, f \bigl(s, \alpha _{s}, Y_{s}^{\delta }, Z_{s}^{\delta }, W_{s}^{\delta } \bigr)-f \bigl(s, \alpha _{s}, Y_{s}^{\varepsilon }, Z_{s}^{\varepsilon }, W_{s}^{\varepsilon } \bigr) \bigr)\,ds \\ &\qquad{} -2 \int _{t}^{T} \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, \bigl(Z_{s}^{\delta }-Z _{s}^{\varepsilon } \bigr)\,dB_{s} \bigr) \\ & \qquad{}- 2\sum_{j \in I} \int _{t}^{T} \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, \bigl(W_{s}^{\delta }(j)-W_{s}^{\varepsilon }(j) \bigr)\,d\tilde{V}_{s}(j) \bigr). \end{aligned}$$
Moreover,
$$\begin{aligned} & 2 \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, f \bigl(s, \alpha _{s}, Y_{s} ^{\delta }, Z_{s}^{\delta }, W_{s}^{\delta } \bigr)-f \bigl(s, \alpha _{s}, Y_{s} ^{\varepsilon }, Z_{s}^{\varepsilon }, W_{s}^{\varepsilon } \bigr) \bigr) \\ &\quad\leq 2\beta \bigl\vert Y_{s}^{\delta }-Y_{s}^{\varepsilon } \bigr\vert ^{2}+2 \bigl\vert Y_{s}^{ \delta }-Y_{s}^{\varepsilon } \bigr\vert \mu \bigl\vert Z_{s}^{\delta }-Z_{s}^{\varepsilon } \bigr\vert +2 \bigl\vert Y_{s}^{\delta }-Y_{s}^{\varepsilon } \bigr\vert L \bigl\vert W_{s}^{\delta }-W_{s} ^{\varepsilon } \bigr\vert \\ &\quad\leq \bigl(2\beta +\mu ^{2}+L^{2}+ \bigl(\mu ^{2}+L^{2} \bigr)r \bigr) \bigl\vert Y_{s}^{\delta }-Y_{s} ^{\varepsilon } \bigr\vert ^{2}+\frac{1}{1+r} \bigl( \bigl\vert Z_{s}^{\delta }-Z_{s}^{ \varepsilon } \bigr\vert ^{2}+ \bigl\vert W_{s}^{\delta }-W_{s}^{\varepsilon } \bigr\vert ^{2} \bigr). \end{aligned}$$
By (3.9), it holds that
$$\begin{aligned} & \bigl(1-T \bigl(2\beta +\mu ^{2}+L^{2}+ \bigl(\mu ^{2}+L^{2} \bigr)r \bigr) \bigr)\sup _{t\leq s \leq T} \bigl\vert Y _{s}^{\delta }-Y_{s}^{\varepsilon } \bigr\vert ^{2} +\frac{r}{1+r} \int _{t}^{T} \bigl\vert Z _{s}^{\delta }-Z_{s}^{\varepsilon } \bigr\vert ^{2}\,ds \\ &\qquad{}+\frac{r}{1+r}\sum_{j \in I} \int _{t}^{T} \bigl\vert W_{s}^{\delta }(j)-W_{s} ^{\varepsilon }(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \\ &\quad\leq 2 \biggl( \frac{1}{\delta }+\frac{1}{\varepsilon } \biggr) \int _{t}^{T} \bigl\vert D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr) \bigr\vert \bigl\vert D\phi _{\varepsilon } \bigl(Y _{s}^{\varepsilon } \bigr) \bigr\vert \,ds -2 \int _{t}^{T} \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, \bigl(Z_{s}^{\delta }-Z_{s}^{\varepsilon } \bigr) \,dB_{s} \bigr) \\ &\qquad{}- 2\sum_{j \in I} \int _{t}^{T} \bigl(Y_{s}^{\delta }-Y_{s}^{\varepsilon }, \bigl(W_{s}^{\delta }(j)-W_{s}^{\varepsilon }(j) \bigr)\,d\tilde{V}_{s}(j) \bigr). \end{aligned}$$
(3.16)
From (3.12a), we get the following inequality, which shows the desired result, and Φ is given by (3.15).
$$\begin{aligned} &2 \biggl( \frac{1}{\delta }+\frac{1}{\varepsilon } \biggr)\mathbb{E} \int _{t}^{T} \bigl\vert D\phi _{\delta } \bigl(Y_{s}^{\delta } \bigr) \bigr\vert \bigl\vert D\phi _{\varepsilon } \bigl(Y _{s}^{\varepsilon } \bigr) \bigr\vert \,ds\leq C(\delta +\varepsilon ) \varPhi. \end{aligned}$$
□
Proof of the results of existence and uniqueness
With the a priori estimates in the previous section, the main purpose of this section is the proof of Theorem 2. Before that, we should start with the proof of Proposition 3.
Proof of Proposition 3
Using Itô’s formula, we get
$$\begin{aligned} & \vert Y_{t}-\tilde{Y}_{t} \vert ^{2} + \int _{t}^{T} \vert Z_{s}- \tilde{Z}_{s} \vert ^{2} \,ds + \sum _{j \in I} \int _{t}^{T} \bigl\vert W_{s}(j)- \tilde{W}_{s}(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \\ &\qquad{} + 2 \int _{t}^{T} (U_{s}- \tilde{U}_{s},Y_{s}-\tilde{Y}_{s} )\,ds \\ &\quad= \vert \xi -\tilde{\xi } \vert ^{2}+ 2 \int _{t}^{T} \bigl(Y_{s}- \tilde{Y}_{s}, f(s, \alpha _{s}, Y_{s}, Z_{s}, W_{s} )-\tilde{f}(s, \alpha _{s}, \tilde{Y}_{s}, \tilde{Z}_{s}, \tilde{W}_{s}) \bigr)\,ds \\ &\qquad{} -2 \int _{t}^{T} \bigl(Y_{s}- \tilde{Y}_{s},(Z_{s}-\tilde{Z}_{s} ) \,dB_{s} \bigr) - 2 \sum_{j \in I} \int _{t}^{T} \bigl(Y_{s}- \tilde{Y}_{s}, \bigl(W_{s} (j)- \tilde{W}_{s}(j) \bigr)\,d\tilde{V}_{s}(j) \bigr). \end{aligned}$$
By the method similar to Proposition 5, we obtain
$$\begin{aligned} & 2 (U_{s}-\tilde{U}_{s}, Y_{s}- \tilde{Y}_{s})\geq 0,\quad dP\times ds \text{ a.e.}, \\ & 2 \bigl(Y_{s}-\tilde{Y}_{s}, f(s, \alpha _{s}, Y_{s}, Z_{s}, W_{s} )- \tilde{f}(s, \alpha _{s}, \tilde{Y}_{s}, \tilde{Z}_{s}, \tilde{W}_{s}) \bigr) \\ &\quad \leq 2 \bigl(Y_{s}-\tilde{Y}_{s}, f(s, \alpha _{s}, Y_{s}, Z_{s}, W _{s} )- \tilde{f}(s, \alpha _{s}, Y_{s}, Z_{s}, W_{s}) \bigr) \\ &\qquad{} + 2 \vert Y_{s}-\tilde{Y}_{s} \vert \tilde{L} \vert W_{s}-\tilde{W}_{s} \vert +2 \vert Y_{s}- \tilde{Y}_{s} \vert \tilde{\mu } \vert Z_{s}-\tilde{Z}_{s} \vert +2\tilde{\beta } \vert Y_{s}- \tilde{Y}_{s} \vert ^{2} \\ &\quad= \bigl(2\tilde{\beta }+\tilde{L}^{2}+\tilde{\mu }^{2}+ \bigl(1+\tilde{L}^{2}+ \tilde{\mu }^{2} \bigr)r \bigr) \vert Y_{s}-\tilde{Y}_{s} \vert ^{2}+ \frac{1}{1+r} \bigl( \vert Z_{s}- \tilde{Z}_{s} \vert ^{2}+ \vert W_{s}-\tilde{W}_{s} \vert ^{2} \bigr) \\ &\qquad{} +\frac{1}{r} \bigl\vert f(s, \alpha _{s}, Y_{s}, Z_{s}, W_{s} )-\tilde{f}(s, \alpha _{s}, Y_{s}, Z_{s}, W_{s}) \bigr\vert ^{2}, \end{aligned}$$
where \(\beta, \mu, L\) are replaced by \(\tilde{\beta }, \tilde{\mu }, \tilde{L}\). Taking the expectation and using Gronwall’s lemma, we have (3.3a) and (3.3b). □
Proof of Theorem 2
Uniqueness can be obtained simply by Proposition 3. The existence of the solution \((Y,Z,U,W)\) can be drawn from the limit of the quadruple \((Y_{s}^{\delta }, Z_{s}^{\delta },\frac{1}{ \delta }D\phi _{\delta }(Y_{s}^{\delta }),W_{s}^{\delta })\).
From Proposition 7, we have
$$ \lim_{\delta \searrow 0}Y^{\delta }=Y, \qquad\lim_{\delta \searrow 0}Z^{\delta }=Z,\qquad \lim_{\delta \searrow 0}W^{\delta }=W. $$
Passing to the limit in (3.11), we can get (3.1a) and (3.1b). From (3.12a) and (3.12c), we have
$$ \lim_{\delta \searrow 0}J_{\delta } \bigl(Y^{\delta } \bigr) =Y, \qquad\lim_{\delta \searrow 0}\mathbb{E} \bigl( \bigl\vert J_{\delta } \bigl(Y_{\tau }^{\delta } \bigr)-Y _{\tau } \bigr\vert ^{2} \bigr)=0, $$
in which \(\tau \in [0,T]\) is a stopping time.
Because of (3.12b), (3.14b), we get (3.1c) and (iii). For each \(\delta >0\), define \(U_{t}^{\delta }=\frac{1}{\delta } D\phi _{\delta }(Y_{t}^{\delta })\) and \(\bar{U}_{t}^{\delta }=\int _{0}^{t} U_{s}^{\delta }\,ds\). Consider (3.10) and convergence results, there exists a progressively measurable process \(\{\bar{U} _{t}, 0\leq t \leq T\}\) such that
$$ \mathbb{E} \Bigl( \sup_{0 \leq t \leq T} \bigl\vert \bar{U}_{t}^{\delta }- \bar{U}_{t} \bigr\vert ^{2} \Bigr)\rightarrow 0,\quad \delta \rightarrow 0. $$
Moreover, from (3.12a), we obtain \(\sup_{\delta > 0}\mathbb{E} \int _{0}^{T} |U_{t}^{\delta }|^{2} \,dt < \infty \). Then we get (3.1d).
For \(0\leq a < b \leq T\), \([ \mathbb{E} \int _{0}^{T} |V|^{2}\,ds ]^{1/2}<\infty \),
$$ \int _{a}^{b} \bigl(U_{t}^{\delta },V_{t}-Y_{t}^{\delta } \bigr)\,dt \rightarrow \int _{a}^{b} (U_{t}, V_{t}-Y_{t})\,dt. $$
From equation (3.12a), we have \(\int _{a}^{b} (U_{t}^{\delta },J _{\delta }(Y_{t}^{\delta })-Y_{t}^{\delta })\,dt \rightarrow 0\).
Since \(U_{t}^{\delta }\in \partial \phi (J_{\delta }(Y_{t}^{\delta }))\),
$$ \int _{a}^{b} \bigl(U_{t}^{\delta },V_{t} -J_{\delta } \bigl(Y_{t}^{\delta } \bigr) \bigr)\,dt+ \int _{a}^{b} \phi \bigl(J_{\delta } \bigl(Y_{t}^{\delta } \bigr) \bigr)\,dt \leq \int _{a}^{b} \phi (V_{t})\,dt. $$
Then we get
$$ \int _{a}^{b} (U_{t},V_{t} -Y_{t})\,dt+ \int _{a}^{b} \phi (Y_{t})\,dt \leq \int _{a}^{b} \phi (V_{t})\,dt. $$
The proof of Theorem 2 has been completed. □
Proof of Corollary 4
Let \((Y^{n},Z^{n},U^{n},W^{n})\in \operatorname{BSDE}(0,n;\phi,f)\) for each \(n\geq 1\). According to (3.1a)–(3.1d) in Theorem 2, we have
$$\begin{aligned} & \mathbb{E} \biggl( \int _{0}^{n} \bigl\vert Z_{s}^{n} \bigr\vert ^{2} \,ds + \sum_{j\in I} \int _{0}^{n} \bigl\vert W_{s}^{n}(j) \bigr\vert ^{2}\mathbf{1}_{\{\alpha _{s-} \neq j\}} \lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad\leq C_{1} \mathbb{E} \biggl(\sum_{i\in I} \int _{0}^{\infty } \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2}\,ds \biggr), \\ & \mathbb{E} \Bigl( \sup_{0\leq s \leq n} \bigl\vert Y_{s}^{n} \bigr\vert ^{2} \Bigr)\leq C _{1} \mathbb{E} \biggl(\sum_{i\in I} \int _{0}^{\infty } \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2}\,ds \biggr), \\ & \mathbb{E} \phi \bigl(Y_{t}^{n} \bigr) \leq C_{2} \mathbb{E} \int _{0}^{\infty } \bigl\vert \varphi (s) \bigr\vert ^{2} \,ds, \\ & \mathbb{E} \int _{0}^{n} \bigl\vert U_{s}^{n} \bigr\vert ^{2}\,ds \leq C_{2} \mathbb{E} \int _{0}^{\infty } \bigl\vert \varphi (s) \bigr\vert ^{2} \,ds, \end{aligned}$$
and \(Y_{s}^{n}=Y_{n}^{n}=0, Z_{s}^{n}=0, U_{s}^{n}=0, W_{s}^{n}=0\) for \(s>n\).
Let \(m>n\), then we get
$$\begin{aligned} Y_{t}^{m}={}&Y_{n}^{m}+ \int _{t}^{n} f \bigl(s,\alpha _{s},Y_{s}^{m},Z _{s}^{m},W_{s}^{m} \bigr)\,ds - \int _{t}^{n} U_{s}^{m} \,ds \\ &{} - \int _{t}^{n} Z_{s}^{m} \,dB_{s}- \sum_{j \in I} \int _{t}^{n} W_{s}^{m}(j) \,d \tilde{\mathcal{V}}_{s}(j) \end{aligned}$$
for \(t\in [0,n]\). From Proposition 3, we have
$$\begin{aligned} & \mathbb{E} \biggl( \int _{0}^{n} \bigl\vert Z_{s}^{n} -Z_{s}^{m} \bigr\vert ^{2}\,ds+\sum _{j \in I} \int _{0}^{n} \bigl\vert W_{s}^{n}(j)-W_{s}^{m}(j) \bigr\vert ^{2} \mathbf{1}_{\{ \alpha _{s-} \neq j\}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad\leq C\mathbb{E} \bigl\vert Y_{n}^{m} \bigr\vert ^{2} , \\ & \mathbb{E} \Bigl( \sup_{0\leq s \leq n} \bigl\vert Y_{s}^{n} -Y_{s}^{m} \bigr\vert ^{2} \Bigr)\leq C \mathbb{E} \bigl\vert Y_{n}^{m} \bigr\vert ^{2}. \end{aligned}$$
From (3.1b), we obtain
$$ \mathbb{E} \bigl\vert Y_{T}^{m} \bigr\vert ^{2} \leq \mathbb{E} \Bigl(\sup_{T\leq t \leq m} \bigl\vert Y _{t}^{m} \bigr\vert ^{2} \Bigr) \leq C \mathbb{E} \biggl(\sum_{i\in I} \int _{T} ^{\infty } \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2}\,ds \biggr)\rightarrow 0,\quad T=n\rightarrow \infty. $$
There exists \((Y,Z,U,W)\) satisfying (i) for all \(T>0\), as \(n\rightarrow \infty \), we obtain
$$\begin{aligned} Y^{n} \rightarrow Y,\qquad \mathbb{E} \vert Y_{T} \vert ^{2}\leq C \mathbb{E} \biggl( \sum_{i\in I} \int _{T}^{\infty } \bigl\vert f(s,i,0,0,0) \bigr\vert ^{2}\,ds \biggr),\qquad Z^{n} \rightarrow Z,\qquad \bar{U}^{n}\rightarrow \bar{U}, \end{aligned}$$
where \(\bar{U}_{t}^{n}=\int _{0}^{t} U_{s}^{n} \,ds\), and Ū is absolutely continuous. \((Y,Z,U,W)\) satisfies Corollary 4, in which \(U=d\bar{U}/dt\).
If \((Y,Z,U,W)\) and \((Y',Z',U',W')\) are two solutions of BSDE (2.1) satisfying (3.5a) and (3.5b), then
$$\begin{aligned} & \mathbb{E} \Bigl(\sup_{0\leq s \leq n} \bigl\vert Y_{s}-Y'_{s} \bigr\vert ^{2} \Bigr) \\ &\qquad{}+\mathbb{E} \biggl( \int _{0}^{n} \bigl\vert Z_{s} -Z'_{s} \bigr\vert ^{2}\,ds+\sum _{j \in I} \int _{0}^{n} \bigl\vert W_{s}(j)-W'_{s}(j) \bigr\vert ^{2} \mathbf{1}_{\{\alpha _{s-} \neq j \}}\lambda _{\alpha _{s-},j}(s)\,ds \biggr) \\ &\quad\leq C_{1}\mathbb{E} \bigl\vert Y_{n}-Y'_{n} \bigr\vert ^{2} , \end{aligned}$$
we get \(Y=Y', Z=Z', W=W'\) for \(n\rightarrow \infty \); U is uniquely defined by BSDE (2.1). □