Problem statement
In this section, we utilize the adaptive sliding mode control technique to obtain projective synchronization of fractional-order multiple chaotic systems in the presence of uncertain parameters and disturbances.
Here the aim is that more slave systems synchronize with one master system, i.e., the synchronization error moves toward zero.
A master system is given as follows:
$$ \textstyle\begin{cases} D^{q} x_{11} ( t ) = g_{11} ( x_{11} ( t ), \dots , x_{1n} ( t ) ) + G_{11} ( x_{11} ( t ), \dots , x_{1n} ( t ) ) \xi _{11} + d_{11} (t), \\ D^{q} x_{12} ( t ) = g_{12} ( x_{11} ( t ), \dots , x_{1n} ( t ) ) + G_{12} ( x_{11} ( t ),\dots , x_{1n} ( t ) ) \xi _{12} + d_{12} (t), \\ \vdots \\ D^{q} x_{1n} ( t ) = g_{1n} ( x_{11} ( t ), \dots , x_{1n} ( t ) ) + G_{1n} ( x_{11} ( t ),\dots , x_{1n} ( t ) ) \xi _{1n} + d_{1n} (t), \end{cases} $$
(7)
where \(0< q<1\). \(x_{1} ( t ) = [ x_{11} ( t ), \dots , x_{1n} ( t ) ]^{T}\) and \(d_{1} ( t ) = [ d_{11} ( t ), \dots , d_{1n} (t) ]^{T}\) are the vectors of the states and disturbances of the master system, respectively. \(g_{1} ( x_{1} ( t ) ) = [ g _{11}, \dots , g_{1n} ]^{T}\) is a continuous nonlinear function, \(G_{1} ( x_{1} ( t ) ) = [ G_{11}, \dots , G_{1n} ]^{T}\) is a continuous nonlinear function matrix, and \(\xi _{1} = [ \xi _{11}, \dots , \xi _{1n} ]^{T}\) is the uncertain parameter vector of the master system.
Remark 3
Most of the famous fractional-order chaotic systems, such as fractional-order Lorenz system, fractional-order Chen system, fractional-order Rossler system, fractional-order Lu system, fractional-order Liu system, fractional-order Arneodo system, fractional-order Genesio system, fractional-order Duffing oscillator, and fractional-order Van der Pol oscillator, as paradigms in the research of chaos can be expressed by Eq. (7).
We describe the other \(N -1\) slave systems with control signals as follows:
$$\begin{aligned}& \textstyle\begin{cases} D^{q} x_{j1} ( t ) = g_{j1} ( x_{j1} ( t ), \dots , x_{jn} ( t ) ) + G_{j1} ( x_{j1} ( t ), \dots , x_{jn} ( t ) ) \xi _{j1} + d_{j1} ( t ) + u_{j-1,1}, \\ D^{q} x_{j2} ( t ) = g_{j2} ( x_{j1} ( t ), \dots , x_{jn} ( t ) ) + G_{j2} ( x_{j1} ( t ), \dots , x_{jn} ( t ) ) \xi _{j2} + d_{j2} ( t ) + u_{j-1,2}, \\ \vdots \\ D^{q} x_{jn} ( t ) = g_{jn} ( x_{j1} ( t ), \dots , x_{jn} ( t ) ) + G_{jn} ( x_{j1} ( t ),\dots , x_{jn} ( t ) ) \xi _{jn} + d_{jn} ( t ) + u_{j-1,n}, \end{cases}\displaystyle \\& \quad j=2, \dots , N, \end{aligned}$$
(8)
where \(0< q<1\). \(x_{j} (t)= [ x_{j1} ( t ), \dots , x _{jn} ( t ) ]^{T}\) and \(d_{j} ( t ) = [ d_{j1} ( t ), \dots , d_{jn} ( t ) ]^{T}\) are the vectors of the states and disturbances of the slave system, respectively. \(g_{j} ( x_{j} (t))= [ g_{j1},\dots , g_{jn} ]^{T}\) is a continuous nonlinear function, \(G_{j} ( x_{j} (t) )= [ G_{j1},\dots , G_{jn} ]^{T}\) is a continuous nonlinear function matrix, \(\xi _{j} = [ \xi _{j1},\dots , \xi _{jn} ]^{T}\) is the uncertain parameter vector of the slave system, and \(u_{j-1} = [ u_{j-1,1},\dots , u_{j-1,n} ]^{T}\) is the vector of the control inputs. The fractional-order multiple chaotic systems can be rewritten in the general form
$$ \textstyle\begin{cases} D^{q} x_{1} (t)= g_{1} ( x_{1} ( t ) ) + G _{1} ( x_{1} ( t ) ) \xi _{1} + d_{1} ( t ), \\ D^{q} x_{2} (t)= g_{2} ( x_{2} ( t ) ) + G _{2} ( x_{2} ( t ) ) \xi _{2} + d_{2} ( t ) + u_{1}, \\ \vdots \\ D^{q} x_{N} (t)= g_{N} ( x_{N} ( t ) ) + G _{N} ( x_{N} ( t ) ) \xi _{N} + d_{N} ( t ) + u_{N-1}, \end{cases} $$
(9)
Remark 4
If \(x_{j} ( t ) =0\), \(j=2, \dots ,N \), so the synchronization issue of fractional-order multiple chaotic systems (7) is converted to the stabilization issue.
Remark 5
If the functions \(g_{r} ( x_{r} ) = g _{z} ( x_{z} )\) (\(r,z=1,2, \dots ,N\), \(r\neq z\)) and \(G_{r} ( x_{r} ) = G_{z} ( x_{z} )\) (\(r,z=1,2, \dots ,N\), \(r\neq z\)), the projective synchronization of different fractional-order multiple chaotic systems is converted into the projective synchronization of identical fractional-order multiple chaotic systems with different initial conditions.
Definition 4
The aim of the control issue is to choose a suitable controller \(u_{1}, u_{2}, \dots , u_{n-1}\) which \(\lim_{t\rightarrow \infty } \Vert e_{j-1} (t) \Vert = \lim_{t\rightarrow \infty } \Vert x_{1} ( t ) - C _{j} x_{j} ( t ) \Vert =0\), \(j =2, \dots , N\), i.e., the state of more slave systems (8) tends to that of one master system (7). This kind of synchronization is called projective synchronization [47].
The dynamics of the error system are formed by
(10)
Remark 6
The definition of the desired scaling factor C means that there exists projective synchronization among N chaotic systems, then it is easy to know that complete synchronization [48], anti-synchronization [49], and another proposed synchronization [50] can be considered as special cases in our model.
The error system dynamics can be rewritten as follows:
$$\begin{aligned} D^{q} e_{j-1,i} ( t ) =& g_{1i} ( x_{1i} ) + G_{1i} ( x_{1i} ) \xi _{1} + d_{1i} ( t ) - C _{j} g_{ji} ( x_{ji} ) \\ &{}- C_{j} G_{ji} ( x_{ji} ) \xi _{j} - C_{j} d_{ji} ( t ) - C_{j} u_{j-1,i}. \end{aligned}$$
(11)
Considering the above discussion, it can be said that the synchronization issue has been converted into stabilization of error system. The purpose of this section is to design a proper control signal in such a way that the asymptotic stability of the error system ensures the convergence to zero.
Assumption 1
We can assume that \(d_{1i} ( t ) \) and \(C_{j} d_{ji} ( t ) \) are bounded by some positive constants, i.e., \(\vert d_{1i} ( t ) \vert < \sigma _{1i} \) and \(\vert C_{j} d_{ji} ( t ) \vert < \vartheta _{ji}\).
So, one obtains
$$ \bigl\vert d_{1i} ( t ) - C_{j} d_{ji} ( t ) \bigr\vert \leq \rho _{i}. $$
(12)
Assumption 2
The constants \(\sigma _{1i}\), \(\vartheta _{ji}\), and \(\rho _{i}\) are unknown positive.
Design of controller
Sliding mode controller design consists of two steps: 1) suitable sliding surface design 2) designing a controller to assure that the system’s state tends to the sliding surface.
$$ S_{j-1} = D^{q-1} e_{j-1} ( t ) + D^{-1} \sum_{j=2}^{N} l _{j-1,i} e_{j-1,i} ( t ), $$
(13)
where \(S_{j-1} = [ S_{j-1,1}, S_{j-1,2}.,\dots , S_{j-1,n} ]^{T}\) and \(l_{j-1} =\operatorname{diag} ( l_{j-1,1}, \dots , l_{j-1,n} ) >0\), \(j=2, \dots ,N\).
When the system is in sliding mode, it is clear that
$$ S_{j-1,i} = D^{q-1} e_{j-1,i} ( t ) + D^{-1} \sum_{j=2} ^{N} l_{j-1,i} e_{j-1,i} ( t ) =0 $$
(14)
and
$$ \dot{S}_{j-1,i} = D^{q} e_{j-1,i} ( t ) + \sum _{j=2}^{N} l_{j-1,i} e_{j-1,i} ( t ) =0. $$
(15)
So, the control rule is as follows:
$$\begin{aligned} u_{j-1,i} ( t ) =& C_{j}^{-1} \Biggl[ g_{1i} ( x _{1i} ) + G_{1i} ( x_{1i} ) \hat{\xi }_{1} - C _{j} g_{ji} ( x_{ji} ) - C_{j} G_{ji} ( x_{ji} ) \hat{\xi }_{j} \\ &{} + ( \hat{\rho }_{j-1,i} + \hat{\delta } _{j-1,i} ) \operatorname{sgn} ( S_{j-1,i} ) + \sum_{j=2}^{N} l_{j-1,i} e_{j-1,i} ( t ) \Biggr], \end{aligned}$$
(16)
where \(\hat{\xi }_{1} >0\), \(\hat{\xi }_{j} >0\), \(\hat{\rho }_{j-1,i} >0\), and \(\hat{\delta }_{j-1,i} >0\) are the adaptive parameters to overcome the uncertain parameters \(\xi _{1}\), \(\xi _{j}\), \(\rho _{j-1,i}\), and \(\delta _{j-1,i}\), respectively.
The adaptive rules are designed as follows:
$$\begin{aligned}& \dot{\hat{\xi }}_{1} = G_{1}^{T} \bigl( x_{1} ( t ) \bigr) S_{j-1}, \qquad \hat{\xi }_{1} ( 0 ) = \hat{\xi }_{10} >0, \end{aligned}$$
(17)
$$\begin{aligned}& \dot{\hat{\xi }}_{j} =- C_{j} G_{j}^{T} \bigl( x_{j} ( t ) \bigr) S_{j-1}, \qquad \hat{\xi }_{j} ( 0 ) = \hat{\xi }_{j0} >0, \end{aligned}$$
(18)
$$\begin{aligned}& \dot{\hat{\rho }}_{j-1,i} = \vert S_{j-1,i} \vert , \end{aligned}$$
(19)
$$\begin{aligned}& \dot{\hat{\delta }}_{j-1,i} = \vert S_{j-1,i} \vert . \end{aligned}$$
(20)
The initial values of the adaptive parameters \(\hat{\xi }_{1}\), \(\hat{\xi }_{j}\), \(\hat{\rho }_{j}\), and \(\hat{\delta }_{j}\) are \(\hat{\xi }_{10}\), \(\hat{\xi }_{j0}\), \(\hat{\rho }_{j0}\), and \(\hat{\delta }_{j0}\), respectively.
Theorem 2
By using controller (16) and adaptive rules (17)–(20), the projective synchronization error converges to zero, i.e., the slave system trajectories (8) converge to the master system trajectory (7).
Proof
We select the Lyapunov function candidate \(V_{j-1} ( t )\) as follows:
$$\begin{aligned} V_{j-1} ( t ) =& \frac{1}{2} \sum _{i=1}^{n} \bigl[ S_{j-1,i} ^{2} + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} )^{2} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} )^{2} \bigr] \\ &{} + \frac{1}{2} \bigl[ \Vert \hat{\xi }_{1} - \xi _{1} \Vert _{2}^{2} + \Vert \hat{\xi } _{j} - \xi _{j} \Vert _{2}^{2} \bigr]. \end{aligned}$$
(21)
Differentiating (21), we get
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) =& \sum_{i=1}^{n} \bigl[ S_{j-1,i} \dot{S}_{j-1,i} + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \dot{\hat{\rho }}_{j-1,i} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} ) \dot{\hat{\delta }}_{j-1,i} \bigr] + ( \hat{\xi }_{1} - \xi _{1} )^{T} \dot{\hat{\xi }}_{1} \\ &{} + ( \hat{\xi }_{j} - \xi _{j} )^{T} \dot{\hat{\xi }}_{j}. \end{aligned}$$
(22)
Introducing (15) into (22), we obtain
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) =& \sum_{i=1}^{n} \Biggl[ S_{j-1,i} \Biggl( D^{q} e_{j-1,i} ( t ) + \sum_{j=2}^{N} l_{j-1,i} e_{j-1,i} ( t ) \Biggr) \\ &{} + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \dot{\hat{\rho }}_{j-1,i} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} ) \dot{\hat{\delta }} _{j-1,i} \Biggr] \\ &{}+ ( \hat{\xi }_{1} - \xi _{1} )^{T} \dot{\hat{\xi }}_{1} + ( \hat{\xi }_{j} - \xi _{j} )^{T} \dot{\hat{\xi }}_{j}. \end{aligned}$$
(23)
Combining (11), (16), and (23), we get
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) =& \sum_{i=1}^{n} \Biggl[ S_{j-1,i} \Biggl( - G_{1i} ( x_{1i} ) ( \hat{\xi }_{1} - \xi _{1} ) + C_{j} G_{ji} ( x_{ji} ) ( \hat{\xi }_{j} - \xi _{j} ) \\ &{} + \bigl( d_{1i} ( t ) - C_{j} d_{ji} ( t ) \bigr) - ( \hat{\rho }_{j-1,i} + \hat{\delta }_{j-1,i} ) \operatorname{sgn} ( S_{j-1} )- \sum_{j=2}^{N} l_{j-1,i} e_{j-1,i} ( t ) \\ &{} + \sum_{j=2}^{N} l_{j-1,i} e_{j-1,i} ( t ) \Biggr) + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \dot{\hat{\rho }} _{j-1,i} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} ) \dot{\hat{\delta }}_{j-1,i} \Biggr] \\ &{} + ( \hat{\xi }_{1} - \xi _{1} )^{T} \dot{\hat{\xi }}_{1} + ( \hat{\xi }_{j} - \xi _{j} )^{T} \dot{\hat{\xi }}_{j}. \end{aligned}$$
(24)
It is clear that
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) \leq& \sum_{i=1}^{n} \bigl[ \vert S _{j-1,i} \vert \bigl\vert d_{1i} ( t ) - C_{j} d _{ji} ( t ) \bigr\vert \\ &{} + S_{j-1,i} \bigl( - G_{1i} ( x_{1i} ) ( \hat{\xi }_{1} - \xi _{1} ) + C _{j} G_{ji} ( x_{ji} ) ( \hat{\xi }_{j} - \xi _{j} ) \\ &{} - ( \hat{\rho }_{j-1,i} + \hat{\delta }_{j-1,i} ) \operatorname{sgn} ( S_{j-1} ) \bigr) + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \dot{\hat{\rho }}_{j-1,i} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} ) \dot{\hat{\delta }}_{j-1,i} \bigr] \\ &{} + ( \hat{\xi }_{1} - \xi _{1} )^{T} \dot{\hat{\xi }}_{1} + ( \hat{\xi }_{j} - \xi _{j} )^{T} \dot{\hat{\xi }}_{j}. \end{aligned}$$
(25)
Utilizing Assumption 1, we get
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) \leq& \sum_{i=1}^{n} \bigl[ \rho _{j-1,i} \vert S_{j-1,i} \vert - S_{j-1,i} G_{1i} ( x_{1i} ) ( \hat{\xi }_{1} - \xi _{1} ) \\ &{} + C _{j} S_{j-1,i} G_{ji} ( x_{ji} ) ( \hat{\xi }_{j} - \xi _{j} ) - ( \hat{\rho }_{j-1,i} + \hat{\delta }_{j-1,i} ) \vert S_{j-1,i} \vert + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \dot{\hat{\rho }}_{j-1,i} \\ &{} + ( \hat{\delta }_{j-1,i} - \delta _{j-1,i} ) \dot{\hat{ \delta }}_{j-1,i} \bigr] + ( \hat{\xi }_{1} - \xi _{1} )^{T} \dot{\hat{\xi }}_{1} + ( \hat{ \xi }_{j} - \xi _{j} )^{T} \dot{\hat{\xi }}_{j}. \end{aligned}$$
(26)
The following equations are equivalent:
$$\begin{aligned}& \sum_{i=1}^{n} \bigl[- S_{j-1,i} G_{1i} ( x_{1i} ) \bigr] ( \hat{\xi }_{1} - \xi _{1} ) =- ( \hat{\xi }_{1} - \xi _{1} )^{T} G_{1}^{T} \bigl( x_{1} ( t ) \bigr) S _{j-1}, \\& \sum_{i=1}^{n} \bigl[ C_{j} S_{j-1,i} G_{ji} ( x_{ji} ) \bigr] ( \hat{\xi }_{j} - \xi _{j} ) = C_{j} ( \hat{\xi } _{j} - \xi _{j} )^{T} G_{j}^{T} \bigl( x_{j} ( t ) \bigr) S_{j-1}. \end{aligned}$$
By replacing adaptive rules (17)–(20) into (26), we have
$$\begin{aligned} \dot{V}_{j-1,i} ( t ) \leq& \sum_{i=1}^{n} \bigl[ - ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \vert S_{j-1,i} \vert - \hat{\delta }_{j-1,i} \vert S _{j-1,i} \vert + ( \hat{\rho }_{j-1,i} - \rho _{j-1,i} ) \vert S_{j-1,i} \vert \\ &{} + ( \hat{\delta } _{j-1,i} - \delta _{j-1,i} ) \vert S_{j-1,i} \vert \bigr] - ( \hat{\xi }_{1} - \xi _{1} )^{T} G_{1}^{T} \bigl( x_{1} ( t ) \bigr) S_{j-1} \\ &{}+ C_{j} ( \hat{\xi }_{j} - \xi _{j} )^{T} G_{j}^{T} \bigl( x_{j} ( t ) \bigr) S_{j-1} + ( \hat{\xi }_{1} - \xi _{1} )^{T} G_{1}^{T} \bigl( x_{1} ( t ) \bigr) S_{j-1} \\ &{} - C_{j} ( \hat{\xi }_{j} - \xi _{j} )^{T} G_{j} ^{T} \bigl( x_{j} ( t ) \bigr) S_{j-1}. \end{aligned}$$
(27)
Thus, (27) implies that
$$ \dot{V}_{j-1,i} ( t ) \leq - \sum_{i=1}^{n} \delta _{j-1,i} \vert S_{j-1,i} \vert \leq 0. $$
(28)
Therefore, one can get
$$ V_{j-1,i} ( 0 ) \geq V_{j-1,i} ( t ) + \int _{0}^{t} \delta _{j-1,i} \bigl\vert S_{j-1,i} ( \tau ) \bigr\vert \,d \tau . $$
(29)
With the help of Barbalat’s lemma [51], it is easily obtained that
$$ \lim_{t\rightarrow \infty } \int _{0}^{t} \delta _{j-1,i} \bigl\vert S _{j-1,i} (\tau ) \bigr\vert \,d \tau =0, $$
(30)
which can conclude that \(S_{j-1,i} ( t ) =0\). So, using the suggested controller, we can correctly obtain the projective synchronization between the first system and the jth system for all initial conditions, i.e., the synchronization error converges to zero. Thus, Theorem 2 is proved. □
Remark 7
Theorem 1 shows the possibility of sliding mode control (13) and adaptive laws (17)–(20), and the designed controller (16) can compensate the disturbances. Then it is easy to get that \(\dot{V}_{j-1,i} ( t ) \leq 0 \) by reducing the inequalities, then we get \(S_{j-1,i} ( t ) =0\), i.e. \(S_{j-1,i} ( t ) \dot{S}_{j-1,i} ( t ) <0 \), i.e., \(e_{j-1,i} ( t ) \) can move to \(S_{j-1,i} ( t ) =0\), then the asymptotic stability of (11) is obtained based on sliding mode control theory.