Proof of Theorem 1.1
Assume that \(f \not \equiv L_{c}^{r}\,f\).
Using Lemma 2.7, we have
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad\leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \\ & \quad\leq N \biggl(r,\frac{1}{L_{c}^{r}\,f-f} \biggr) \\ &\quad\leq T\bigl(r,L_{c}^{r}\,f-f\bigr)+ S(r,f) \\ &\quad= m\bigl(r,L_{c}^{r}\,f-f\bigr)+ N\bigl(r, L_{c}^{r}\,f-f\bigr)+S(r,f) \\ &\quad=m \biggl(r,f \biggl(\frac{L_{c}^{r}\,f}{f}-1 \biggr) \biggr) + N\bigl(r, L _{c}^{r}\,f -f\bigr) +S(r,f) \\ &\quad \leq m(r,f) + m \biggl(r, \frac{L_{c}^{r}\,f}{f}-1 \biggr) + N\bigl(r, L _{c}^{r}\,f -f\bigr) +S(r,f) \\ &\quad\leq m(r,f) + N\bigl(r, L_{c}^{r}\,f -f\bigr) +S(r,f). \end{aligned}$$
(3.1)
From (3.1), in view of Lemma 2.3, we have
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad \leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \\ &\quad\leq T(r,f) + N\bigl(r, L_{c}^{r}\,f\bigr) + S(r,f) \\ &\quad\leq T(r,f) + (k+1)N(r,f) + S(r,f). \end{aligned}$$
(3.2)
Let
$$\begin{aligned} U &= \frac{(L_{c}^{r}\,f)^{\prime }}{L_{c}^{r}\,f-a} - \frac{f^{\prime }}{f-a}. \end{aligned}$$
(3.3)
Case 1. Suppose \(U \not \equiv 0\).
As \(L_{c}^{r}\,f\) and \(f(z)\) share \((a,\infty )\), in view of Lemmas 2.3 and 2.7, a simple calculation yields
$$\begin{aligned} N(r,\infty;U) &\leq \overline{N}\bigl(r,\infty;L_{c}^{r}\,f\bigr)+ \overline{N}(r,\infty;f)+\overline{N}_{*} \bigl(r,a;L_{c}^{r}\,f,f\bigr)+S(r,f) \\ &\leq (k+2)\overline{N}(r,f)+S(r,f). \end{aligned}$$
(3.4)
Again using the logarithmic derivative theorem and Lemma 2.7, we get
$$\begin{aligned} m(r,U)\leq S\bigl(r, L_{c}^{r}\,f \bigr)+S(r,f)=S(r,f). \end{aligned}$$
(3.5)
Note that
$$ \frac{U}{f-b}=\frac{(L_{c}^{r}\,f)^{\prime }}{L_{c}^{r}f (L_{c}^{r}\,f-a)} \frac{L _{c}^{r}\,f}{f-b}- \frac{f^{\prime }}{(f-a)(f-b)}. $$
(3.6)
So in view of the first fundamental theorem, (3.4), (3.5), and Lemmas 2.2 and 2.7, we get
$$\begin{aligned} & m \biggl(r,\frac{1}{f-b} \biggr) \\ &\quad= m \biggl(r,\frac{1}{U} \biggr)+m \biggl(r,\frac{U}{f-b} \biggr) \\ &\quad\leq T(r,U)+m \biggl(r,\frac{(L_{c}^{r}\,f)^{\prime }}{L_{c}^{r}f (L_{c} ^{r}\,f-a)} \biggr)+m \biggl(r, \frac{L_{c}^{r}\,f}{f-b} \biggr) \\ &\qquad{}+m \biggl(r,\frac{f^{\prime }}{(f-a)(f-b)} \biggr)+O(1) \\ &\quad\leq T(r,U)+ m \biggl(r,\frac{(L_{c}^{r}\,f)^{\prime }}{a} \biggl(\frac{1}{(L _{c}^{r}\,f-a)}- \frac{1}{L_{c}^{r}f} \biggr) \biggr)+m \biggl(r,\frac{L _{c}^{r}\,f}{f-b} \biggr) \\ &\qquad{}+m \biggl(r,\frac{f^{\prime }}{(a-b)} \biggl(\frac{1}{f-a)}- \frac{1}{(f-b)} \biggr) \biggr)+S(r,f) \\ &\quad \leq (k+2) \overline{N}(r,f)+S\bigl(r,L_{c}^{r}\,f \bigr)+S(r,f)\leq (k+2) \overline{N}(r,f)+S(r,f). \end{aligned}$$
(3.7)
In a similar manner, we can show that
$$ m \biggl(r,\frac{1}{f-a} \biggr)\leq (k+2) \overline{N}(r,f)+S(r,f). $$
(3.8)
Now from (3.2), (3.7), and (3.8), applying the first fundamental theorem, we obtain
$$\begin{aligned} & 2T(r,f) + O(1) \\ &\quad= m \biggl(r, \frac{1}{f-a} \biggr)+ m \biggl(r, \frac{1}{f-b} \biggr) + N \biggl(r, \frac{1}{f-a} \biggr) + N \biggl(r, \frac{1}{f-b} \biggr) \\ &\quad \leq T(r,f)+(k+1)N(r,f)+ 2(k+2)\overline{N}(r,f)+S(r,f), \end{aligned}$$
(3.9)
which implies
$$\begin{aligned} T(r,f) \leq (k+1)N(r,f)+ 2(k+2)\overline{N}(r,f)+S(r,f), \end{aligned}$$
a contradiction.
Case 2. Next, suppose \(U \equiv 0\).
Integrating we get
$$ \bigl(L_{c}^{r}\,f-a\bigr)=C_{1}(f-a), $$
where \(C_{1}\) is a nonzero constant. In a similar way, we can get
$$ \bigl(L_{c}^{r}\,f-b\bigr)=C_{2}(f-b), $$
where \(C_{2}\) is a nonzero constant. If either of \(C_{1}=1\) or \(C_{2}=1\), then we are done. If \(C_{1}\neq1\) and \(C_{2}\neq1\), then from the last two equations, after simple calculations, we get
$$ (C_{1}-C_{2})f(z)=C_{1}a-C_{2}b+b-a. $$
If \(C_{1}\neq C_{2}\), then f is a constant, a contradiction. Therefore \(C_{1}=C_{2}\), and hence \(C_{1}(a-b)=(a-b)\). As a and b are distinct, we have \(C_{1}=C_{2}=1\), and so \(f \equiv L_{c}^{r}\,f\). □
Proof of Theorem 1.2
Suppose \(f \not \equiv L_{c}^{r}\,f\).
Case 1.
\(ab\neq0\).
Since f and \(L_{c}^{r}\,f\) share \((\infty, \infty )\), we have \(N(r,f) = N(r,L_{c}^{r}\,f)\), and hence any pole of \(L_{c}^{r}\,f\) or f of multiplicity p must be a pole of \(L_{c}^{r}\,f - f\) of multiplicity ≤p, that is, \(N(r, L_{c}^{r}\,f -f) \leq N(r,f)\).
So (3.1) reduces to
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad\leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \leq T(r,f) + S(r,f). \end{aligned}$$
(3.10)
Let U be defined as in (3.3).
Case 1.1 First, suppose \(U \not \equiv 0\).
As \(L_{c}^{r}\,f\) and \(f(z)\) share \((a,\infty )\), \((\infty, \infty )\), in view of Lemma 2.7, we clearly have
$$\begin{aligned} N(r,\infty;U)\leq \overline{N}_{*} \bigl(r,\infty;L_{c}^{r}\,f,f\bigr)+ \overline{N}_{*} \bigl(r,a;L_{c}^{r}\,f,f\bigr)=S(r,f). \end{aligned}$$
(3.11)
Next, using (3.6), the first fundamental theorem, (3.5), (3.11), Lemmas 2.2 and 2.7 and proceeding in the same way as in Theorem 1.1, we see that (3.7) changes to
$$\begin{aligned} m \biggl(r,\frac{1}{f-b} \biggr)\leq S \bigl(r,L_{c}^{r}\,f\bigr)+S(r,f)=S(r,f). \end{aligned}$$
(3.12)
In a similar manner, we can show that
$$ m \biggl(r,\frac{1}{f-a} \biggr)=S(r,f). $$
(3.13)
Now from (3.10), (3.12), and (3.13), applying the first fundamental theorem, similarly to (3.9), we obtain
$$\begin{aligned} & 2T(r,f) + O(1) \\ &\quad= m \biggl(r, \frac{1}{f-a} \biggr)+ m \biggl(r, \frac{1}{f-b} \biggr) + N \biggl(r, \frac{1}{f-a} \biggr) + N \biggl(r, \frac{1}{f-b} \biggr) \\ &\quad \leq T(r,f) + S(r,f), \end{aligned}$$
which implies
$$\begin{aligned} T(r,f) \leq S(r,f), \end{aligned}$$
a contradiction.
Case 1.2. Next, suppose \(U \equiv 0\).
Here we can prove the theorem in the same way as in Theorem 1.1. So we omit the details.
Case 2. Let \(ab=0\).
Without loss of generality, we suppose that \(b=0\). Let us consider the function
$$\begin{aligned} \varPhi &= \frac{(L_{c}^{r}\,f)(L_{c}^{r}\,f-f)}{f(f-a)}. \end{aligned}$$
(3.14)
Case 2.1. First, suppose \(\varPhi \not \equiv 0\).
Let \(z_{0}\) be a zero of \(f-a\) or that of f of multiplicity p. As \(L_{c}^{r}\,f\) and \(f(z)\) share \((a,\infty )\) and \((0,\infty )\), clearly, a- or 0-points of f will not be poles of Φ. Noting that f is a transcendental meromorphic function, each zero of f of multiplicity p will be a zero of Φ of multiplicity ≥p. Similarly, any pole of f of multiplicity q would be a pole of \(L_{c}^{r}\,f-f\) of multiplicity \(s\leq q\) and hence a pole of Φ of multiplicity \(q+s-2q\leq 0\). It follows that Φ has no pole. Also, from (3.14), Lemma 2.2, and the first fundamental theorem we have
$$\begin{aligned} m(r,\varPhi )\leq m \biggl(r,\frac{L_{c}^{r}\,f}{f-a} \biggr)+m \biggl(r, \biggl(\frac{L_{c}^{r}\,f}{f}-1 \biggr) \biggr)+S(r,f)\leq S(r,f). \end{aligned}$$
(3.15)
So using the fact that Φ has no pole, from (3.15) we see that \(S(r,\varPhi )\) can be replaced by \(S(r,f)\). Hence, in view of the first fundamental theorem, we have
$$\begin{aligned} N \biggl(r,\frac{1}{f} \biggr) &\leq N \biggl(r,\frac{1}{\varPhi } \biggr)+S(r,f) \leq T \biggl(r, \frac{1}{\varPhi } \biggr)-m \biggl(r,\frac{1}{\varPhi } \biggr)+S(r,f) \\ &\leq T (r,\varPhi )-m \biggl(r,\frac{1}{\varPhi } \biggr)+S(r,f) \\ &\leq -m \biggl(r,\frac{1}{\varPhi } \biggr)+S(r,f). \end{aligned}$$
(3.16)
Again from Lemma 2.2 we note that
$$\begin{aligned} &m \biggl(r,\frac{1}{f} \biggr) \\ &\quad\leq m \biggl(r,\frac{1}{\varPhi } \biggr)+m \biggl(r, \biggl( \frac{L _{c}^{r}\,f(L_{c}^{r}\,f-f)}{f^{2}(f-a)} \biggr) \biggr)+S(r,f) \\ &\quad\leq m \biggl(r,\frac{1}{\varPhi } \biggr)+m \biggl(r, \frac{L_{c}^{r}\,f}{a} \biggl\{ \frac{1}{f-a}-\frac{1}{f} \biggr\} \biggr)+m \biggl(r, \biggl(\frac{L_{c}^{r}\,f}{f}-1 \biggr) \biggr)+S(r,f) \\ &\quad\leq m \biggl(r,\frac{1}{\varPhi } \biggr)+ S(r,f). \end{aligned}$$
(3.17)
Using (3.17) in (3.16), from the first fundamental theorem we get
a contradiction.
Case 2.2. Next, suppose \(\varPhi \equiv 0\).
As we have \(f \not \equiv L_{c}^{r}\,f\), clearly, \(L_{c}^{r}\,f\equiv 0\), a contradiction. Hence the theorem follows. □
Proof of Theorem 1.3
Assume that \(f \not \equiv L_{c}^{r}\,f\).
For two complex constants a and b and two nonconstant meromorphic functions f and g, by \(N(r,a;f\mid g=b)\) (\(N(r,a;f\mid g\neq b)\)) we mean the counting function of those a-points of f that are (not) the b-points of g, where an a-point of f is counted according to its multiplicity. Again for a positive integer s, by \(N(r,a;f \mid =s)\) we mean the reduced counting function of those a-points of f that are of multiplicity exactly s.
As \(L_{c}^{r}\,f\) and f share \((a,0)\) and \((b,0)\), we see that an a (b)-point of f whose multiplicity is greater than that of \(L_{c}^{r}\,f\) is counted at least once in \(N (r,\frac{1}{L_{c} ^{r}\,f-f} )\). Thus
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad \leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \\ &\quad \leq N \biggl(r,\frac{1}{L_{c}^{r}\,f-f} \biggr)+ \bigl\{ \overline{N}(r,a;f\mid =2)+2\overline{N}(r,a;f\mid =3)+3\overline{N}(r,a;f \mid =4)+\cdots \bigr\} \\ &\qquad{}+ \bigl\{ \overline{N}(r,b;f\mid =2)+2\overline{N}(r,b;f\mid =3)+3 \overline{N}(r,b;f\mid =4)+\cdots \bigr\} \\ &\quad\leq N \biggl(r,\frac{1}{L_{c}^{r}\,f-f} \biggr)+ N\bigl(r,0;f'|f \neq0\bigr) \\ &\quad\leq N \biggl(r,\frac{1}{L_{c}^{r}\,f-f} \biggr)+ N \biggl(r, \frac{f'}{f} \biggr) \\ &\quad\leq N \biggl(r,\frac{1}{L_{c}^{r}\,f-f} \biggr)+ \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr). \end{aligned}$$
So (3.2) reduces to
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad\leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \\ &\quad\leq T(r,f) + N\bigl(r, L_{c}^{r}\,f\bigr) + \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr) + S(r,f). \end{aligned}$$
(3.18)
Now from Lemma 2.5 we see that
$$\begin{aligned} m \biggl(r,\frac{1}{f-a} \biggr)+ m \biggl(r, \frac{1}{f-b} \biggr) \leq m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr) + S(r,f), \end{aligned}$$
(3.19)
which, in view of (3.18) and the first fundamental theorem, yields
$$\begin{aligned} T(r,f) \leq m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr)+ N \bigl(r, L_{c}^{r}\,f\bigr)+ \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr) + S(r,f). \end{aligned}$$
(3.20)
Since
$$\begin{aligned} & N \biggl(r, \frac{1}{L_{c}^{r}\,f -a} \biggr) - \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr) + N \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr)- \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad \leq N \biggl(r, \frac{1}{(L_{c}^{r}\,f)'} \biggr) + S(r,f), \end{aligned}$$
we get from (3.18) that
$$\begin{aligned} & N \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ N \biggl(r, \frac{1}{L _{c}^{r}\,f -b} \biggr) \\ &\quad\leq T(r,f) + N\bigl(r, L_{c}^{r}\,f\bigr) + N \biggl(r, \frac{1}{(L_{c}^{r}\,f)'} \biggr)+\overline{N}(r,f)+\overline{N}\biggl(r, \frac{1}{f}\biggr)+S(r,f). \end{aligned}$$
(3.21)
Again from (2.1) of Lemma 2.4 we notice that
$$ m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr) + m \biggl(r, \frac{1}{L_{c} ^{r}\,f-a} \biggr) + m \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \leq m \biggl(r,\frac{1}{(L_{c}^{r}\,f)'} \biggr) + S(r,f). $$
(3.22)
So from (2.3), (3.21), and (3.22), using Lemmas 2.5 and 2.7 and applying the first fundamental theorem, we obtain
$$\begin{aligned} & m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr) + 2T\bigl(r,L_{c}^{r}\,f\bigr) + O(1) \\ &\quad = m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr) + m \biggl(r, \frac{1}{L _{c}^{r}\,f-a} \biggr)+ m \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\qquad{}+ N \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr) + N \biggl(r, \frac{1}{L_{c} ^{r}\,f-b} \biggr) \\ &\quad \leq T \biggl(r,\frac{1}{(L_{c}^{r}\,f)'} \biggr)+ T(r,f) + N\bigl(r, L _{c}^{r}\,f\bigr) +\overline{N}(r,f)+\overline{N} \biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\quad \leq T(r,f) + m\bigl(r, \bigl(L_{c}^{r}\,f \bigr)'\bigr)+ N\bigl(r, \bigl(L_{c}^{r}\,f \bigr)'\bigr) + N\bigl(r, L _{c}^{r}\,f \bigr) +\overline{N}(r,f)+\overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\quad \leq T(r,f) + m \biggl(r, \frac{(L_{c}^{r}\,f)'}{L_{c}^{r}\,f} \biggr)+ m\bigl(r, L_{c}^{r}\,f\bigr) + N\bigl(r, \bigl(L_{c}^{r}\,f\bigr)'\bigr)+ N\bigl(r, L_{c}^{r}\,f \bigr) + \overline{N}(r,f) \\ &\qquad{}+\overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\quad \leq T(r,f) + T\bigl(r, L_{c}^{r}\,f\bigr) + N\bigl(r, \bigl(L_{c}^{r}\,f\bigr)'\bigr)+ \overline{N}(r,f)+\overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f). \end{aligned}$$
Thus, in view of (3.20), we get
$$ T\bigl(r, L_{c}^{r}\,f\bigr) \leq N \bigl(r, L_{c}^{r}\,f\bigr) + N\bigl(r, \bigl(L_{c}^{r}\,f\bigr)'\bigr)+2 \overline{N}(r,f)+2\overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f). $$
(3.23)
Finally, using Lemmas 2.3 and 2.7 and (3.23) in (3.20), we get
$$\begin{aligned} T(r,f) &\leq m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr) + N\bigl(r, L_{c} ^{r}\,f\bigr)+\overline{N}(r,f)+\overline{N} \biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\leq T\bigl(r, L_{c}^{r}\,f\bigr)+ N\bigl(r, L_{c}^{r}\,f\bigr) +\overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\leq 2 N\bigl(r, L_{c}^{r}\,f\bigr) + N\bigl(r, \bigl(L_{c}^{r}\,f\bigr)'\bigr) +3 \overline{N}(r,f)+3 \overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\leq 3N\bigl(r, L_{c}^{r}\,f\bigr)+ \overline{N} \bigl(r, L_{c}^{r}\,f\bigr) +3 \overline{N}(r,f)+3 \overline{N}\biggl(r,\frac{1}{f}\biggr)+S(r,f) \\ &\leq 3(k+1) N(r,f) + (k+4) \overline{N}(r,f) +3\overline{N}\biggl(r, \frac{1}{f}\biggr)+S(r,f), \end{aligned}$$
which is a contradiction, and so \(f \equiv L_{c}^{r}\,f\). □
Proof of Theorem 1.4
Here we proceed with the same argument as in Theorem 1.3.
So (3.2) reduces to
$$\begin{aligned} &\overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ \overline{N} \biggl(r, \frac{1}{L_{c}^{r}\,f-b} \biggr) \\ &\quad \leq N \biggl(r, \frac{1}{f-a} \biggr)+ N \biggl(r, \frac{1}{f-b} \biggr) \leq T(r,f) + \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr)+ S(r,f). \end{aligned}$$
(3.24)
Thus, in view of (3.19), using Lemma 2.5 and applying the first fundamental theorem, we get
$$\begin{aligned} T(r,f) \leq m \biggl(r, \frac{1}{L_{c}^{r}\,f} \biggr)+ \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr)+ S(r,f). \end{aligned}$$
(3.25)
Hence (3.21) reduces to
$$\begin{aligned} & N \biggl(r, \frac{1}{L_{c}^{r}\,f-a} \biggr)+ N \biggl(r, \frac{1}{L _{c}^{r}\,f -b} \biggr) \\ &\quad \leq T(r,f) + N \biggl(r, \frac{1}{(L_{c}^{r}\,f)'} \biggr)+ \overline{N}(r,f)+ \overline{N} \biggl(r,\frac{1}{f} \biggr) + S(r,f). \end{aligned}$$
(3.26)
Hence (3.23) reduces to
$$\begin{aligned} T\bigl(r, L_{c}^{r}\,f\bigr) \leq \overline{N}\bigl(r, \bigl(L_{c}^{r}\,f \bigr)'\bigr)+ 2 \overline{N}(r,f)+2\overline{N} \biggl(r, \frac{1}{f} \biggr) + S(r,f) \end{aligned}$$
(3.27)
Finally, by (3.25) and (3.27) we get
$$\begin{aligned} T(r,f) \leq (k+1) N(r,f)+(k+4)\overline{N}(r,f)+ 3\overline{N} \biggl(r, \frac{1}{f} \biggr) + S(r,f), \end{aligned}$$
which is a contradiction, and so \(f \equiv L_{c}^{r}\,f\). □
Proof of Theorem 1.5
Let \(F_{1}= (\frac{f}{a} )^{n}\), \(G_{1}= (\frac{ \Delta _{c}^{k}\,f}{a} )^{n}\) and \(F_{2}= (\frac{f}{b} ) ^{m}\), \(G_{2}= (\frac{\Delta _{c}^{k}\,f}{b} )^{m}\). By the statement of the theorem it follows that \(F_{i}\) and \(G_{i}\) share \((1,2)\) for \(i=1,2\).
First, suppose that (i) of Lemma 2.9 holds. Then we get
$$\begin{aligned} T(r,F_{1}) \leq N_{2}(r,0;F_{1}) + N_{2}(r,0;G_{1}) + N_{2}(r, \infty; F_{1}) + N_{2}(r,\infty; G_{1}) + S(r,F_{1}) + S(r,G_{1}), \end{aligned}$$
that is,
$$\begin{aligned} nT(r,f) \leq{} & 2\overline{N} \biggl(r,\frac{1}{f} \biggr)+ 2 \overline{N} \biggl(r,\frac{1}{\Delta _{c}^{k}\,f} \biggr)+ 2 \overline{N}(r, f) + 2 \overline{N}\bigl(r,\Delta _{c}^{k}\,f\bigr) \\ &{}+ S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr). \end{aligned}$$
In a similar way, we can obtain
$$\begin{aligned} nT\bigl(r,\Delta _{c}^{k}\,f\bigr) \leq{} & 2\overline{N} \biggl(r,\frac{1}{f} \biggr)+ 2\overline{N} \biggl(r, \frac{1}{ \Delta _{c}^{k}\,f} \biggr)+ 2 \overline{N}(r, f) + 2 \overline{N}\bigl(r, \Delta _{c}^{k}\,f\bigr) \\ &{} + S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr). \end{aligned}$$
Thus
$$\begin{aligned} &n\bigl\{ T(r,f)+ T\bigl(r,\Delta _{c}^{k}\,f\bigr)\bigr\} \\ &\quad\leq 4 \biggl\{ \overline{N} \biggl(r,\frac{1}{f} \biggr)+ \overline{N} \biggl(r,\frac{1}{\Delta _{c}^{k}\,f} \biggr)+ \overline{N}(r, f) + \overline{N}\bigl(r,\Delta _{c}^{k}\,f\bigr) \biggr\} + S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr) \\ &\quad\leq 8\bigl\{ T(r,f)+ T\bigl(r, \Delta _{c}^{k}\,f \bigr)\bigr\} + S(r,f) + S\bigl(r, \Delta _{c} ^{k}\,f \bigr), \end{aligned}$$
which is a contradiction for \(n \geq 9\).
Next, considering cases (ii) and (iii) of Lemma 2.9, we get
$$\begin{aligned} F_{1}\equiv G_{1}, \quad\text{i.e., }\,f\equiv t_{1}\Delta _{c}^{k}f \end{aligned}$$
(3.28)
or
$$\begin{aligned} F_{1}.G_{1} \equiv 1,\quad \text{i.e., }\,f. \Delta _{c}^{k}\,f \equiv s_{1}, \end{aligned}$$
(3.29)
where \(t_{1}^{n}=1\) and \(s_{1}^{n} = a^{2n}\).
Also,
$$\begin{aligned} F_{2}\equiv G_{2},\quad \text{i.e., }\,f\equiv t_{2}\Delta _{c}^{k}f \end{aligned}$$
(3.30)
or
$$\begin{aligned} F_{2}.G_{2} \equiv 1,\quad \text{i.e., }\,f. \Delta _{c}^{k}\,f \equiv s_{2}, \end{aligned}$$
(3.31)
where \(t_{2}^{m}=1\) and \(s_{2}^{m} = b^{2m}\).
- (1)
Assume that (3.28) and (3.30) hold. Then \(t_{1}=t_{2}\). Since \(t_{1}^{n}=t_{2}^{m}=1\), where n and m are coprime, we get that \(t_{1}= t_{2}=1\). It follows that \(f\equiv \Delta _{c}^{k}\,f\).
- (2)
Assume that (3.28) and (3.31) hold. Then \(t_{1}(\Delta _{c}^{k}f)^{2}= s_{2}\), which is impossible.
- (3)
Assume that (3.30) and (3.31) hold. Similarly to the argument as in \((2)\), we obtain an impossible situation.
- (4)
Assume that (3.29) and (3.31) hold. Then \(s_{1} = s_{2}\). Thus \(a^{2mn}=s_{1}^{mn}=s_{2}^{mn}=b^{2mn}\), which is impossible.
□
Proof of Theorem 1.6
Let \(F_{1}= (\frac{f}{a} )^{n}\), \(G_{1}= (\frac{ \Delta _{c}^{k}\,f}{a} )^{n}\) and \(F_{2}= (\frac{f}{b} ) ^{m}\), \(G_{2}= (\frac{\Delta _{c}^{k}\,f}{b} )^{m}\). By the statement of the theorem it follows that \(F_{i}\) and \(G_{i}\) share \((1,1)\) for \(i=1,2\).
Let
$$\begin{aligned} \biggl(\frac{ F_{i}^{\prime \prime }}{F_{i}^{\prime }}-\frac{2F_{i}^{\prime }}{F_{i}-1} \biggr)- \biggl( \frac{ G_{i}^{\prime \prime }}{G_{i}^{\prime }}-\frac{2G_{i}^{\prime }}{G_{i}-1} \biggr) \not \equiv 0 \quad\text{for } i=1,2. \end{aligned}$$
Now considering the functions \(F_{1}\) and \(G_{1}\), from Lemma 2.9 we get
$$\begin{aligned} T(r,F_{1}) \leq{} & N_{2}(r,0;F_{1}) + N_{2}(r,0;G_{1}) + N_{2}(r, \infty; F_{1}) + N_{2}(r,\infty; G_{1}) + \frac{1}{2}\overline{N}(r,0;F _{1}) \\ &{}+ \frac{1}{2}\overline{N}(r,\infty;F_{1})+ S(r,F_{1}) + S(r,G_{1}). \end{aligned}$$
Now as f and \(\Delta _{c}^{k}\,f\) are entire functions, we have
$$\begin{aligned} nT(r,f) \leq 2\overline{N} \biggl(r,\frac{1}{f} \biggr)+ 2 \overline{N} \biggl(r,\frac{1}{\Delta _{c}^{k}\,f} \biggr) + \frac{1}{2} \overline{N} \biggl(r,\frac{1}{f} \biggr)+S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr). \end{aligned}$$
In a similar way, we obtain
$$\begin{aligned} nT\bigl(r,\Delta _{c}^{k}\,f\bigr) \leq 2\overline{N} \biggl(r,\frac{1}{f} \biggr)+ 2\overline{N} \biggl(r, \frac{1}{ \Delta _{c}^{k}\,f} \biggr) +\frac{1}{2}\overline{N} \biggl(r, \frac{1}{ \Delta _{c}^{k}\,f} \biggr)+ S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr). \end{aligned}$$
Thus
$$\begin{aligned} &n\bigl\{ T(r,f)+ T\bigl(r,\Delta _{c}^{k}\,f\bigr)\bigr\} \\ &\quad\leq 4 \biggl\{ \overline{N} \biggl(r,\frac{1}{f} \biggr)+ \overline{N} \biggl(r,\frac{1}{\Delta _{c}^{k}\,f} \biggr) \biggr\} + \frac{1}{2} \biggl\{ \overline{N} \biggl(r,\frac{1}{f} \biggr)+ \overline{N} \biggl(r,\frac{1}{\Delta _{c}^{k}\,f} \biggr) \biggr\} \\ &\qquad{}+ S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr) \\ &\quad\leq \frac{9}{2}\bigl\{ T(r,f)+ T\bigl(r, \Delta _{c}^{k}\,f\bigr)\bigr\} +S(r,f) + S\bigl(r, \Delta _{c}^{k}\,f\bigr), \end{aligned}$$
which is a contradiction for \(n \geq 5\).
A similar contradiction holds for \(m \geq 5\) while considering the functions \(F_{2}\) and \(G_{2}\).
Next, suppose
$$\begin{aligned} \biggl(\frac{ F_{i}^{\prime \prime }}{F_{i}^{\prime }}-\frac{2F_{i}^{\prime }}{F_{i}-1} \biggr)- \biggl( \frac{ G_{i}^{\prime \prime }}{G_{i}^{\prime }}-\frac{2G_{i}^{\prime }}{G_{i}-1} \biggr) \equiv 0 \quad\text{for } i=1,2. \end{aligned}$$
Now considering the functions \(F_{1}\) and \(G_{1}\), by integration we get
$$ \frac{F_{1}'}{(F_{1}-1)^{2}} \equiv A \frac{G_{1}'}{(G_{1}-1)^{2}}, $$
(3.32)
where A is a nonzero constant.
From this we obtain that \(T(r,F_{1}) = T(r,G_{1}) + O(1)\), that is, \(T(r, \Delta _{c}^{k}\,f) = T(r,f) + O(1)\).
Also, (3.32) implies that \(F_{1}\) and \(G_{1}\) share \((1,\infty )\).
Again, as \(F_{1}\) and \(G_{1}\) are entire functions, we can say that \(F_{1}\) and \(G_{1}\) share \((\infty, \infty )\) and
$$\begin{aligned} N(r, \infty; F_{1}) = N(r, \infty; G_{1}) = 0. \end{aligned}$$
Now it is obvious that
$$\begin{aligned} N_{2}(r, 0; F_{1}) \leq 2N\biggl(r, \frac{1}{f}\biggr)\leq 2T(r,f) + O(1). \end{aligned}$$
Also, we obtain
$$\begin{aligned} N(r,0; G_{1}) \leq 2 T\bigl(r,\Delta _{c}^{k}f \bigr) + O(1)\leq 2 T(r,f) + S(r,f). \end{aligned}$$
So
$$\begin{aligned} \limsup_{r \longrightarrow \infty }\frac{N_{2}(r,0;F)+ N_{2}(r, 0; G)+ 2\overline{N}(r,\infty;F)}{T(r)} \leq \frac{4}{n} < 1 \end{aligned}$$
for \(n \geq 5\). Thus using Lemma 2.8, we get \(F_{1}= G_{1}\) or \(F_{1}. G_{1}=1\).
Similarly, \(F_{2}= G_{2}\) or \(F_{2}. G_{2}=1\).
Now if we take
$$\begin{aligned} F_{1}.G_{1} \equiv 1, \quad\text{i.e., }\,f^{n}\bigl(\Delta _{c}^{k}\,f \bigr)^{n} \equiv a^{2n}, \end{aligned}$$
then as f and \(\Delta _{c}^{k}\,f\) are both entire functions, we get \(N (r, \infty; \frac{\Delta _{c}^{k}\,f}{f} ) \leq N (r, \frac{1}{f} )\).
Therefore
$$\begin{aligned} 2nT(r,f) &= 2T(r, F_{1}) +O(1) \leq T \biggl(r, \frac{1}{F_{1}^{2}} \biggr) + S(r,f) \\ &\leq T \biggl(r, \biggl(\frac{\Delta _{c}^{k}\,f}{f} \biggr)^{n} \biggr) \leq nT \biggl(r, \frac{\Delta _{c}^{k}\,f}{f} \biggr) + S(r,f) \leq n T(r,f) + S(r,f), \end{aligned}$$
which is a contradiction. So we have \(F_{1} \equiv G_{1}\), that is, \(f\equiv t_{1}(\Delta _{c}^{k}f)\), where \(t_{1}^{n}=1\). Similarly, we have \(f\equiv t_{2}\Delta _{c}^{k}f\), where \(t_{2}^{m}=1\).
Thus in the same way as in Theorem 1.5, we get \(f \equiv \Delta _{c}^{k}\,f\). □
Proof of Theorem 1.7
Since \(E_{f}(S_{1},1)= E_{\Delta _{c}^{k}f}(S_{1},1)\), in the line of the proof of Theorem 1.6, we can see that
$$ \,f \equiv t\bigl(\Delta _{c}^{k}\,f \bigr), $$
(3.33)
where \(t^{n}=1\).
Now if b is a Picard value of f, by the assumption \(E_{f}(S_{2},1)= E_{\Delta _{c}^{k}f}(S_{2},1)\) we know that b is a Picard value of \(\Delta _{c}^{k}\,f\). Again from (3.33) we see that \((tb)\) is a Picard value of f. Since f is an entire function, we have \(b=tb\). Thus \(t=1\), and hence \(f\equiv \Delta _{c}^{k}\,f\).
If b is not a Picard value of f, then there exists α such that \(f(\alpha )= \Delta _{c}^{k}f(\alpha )= b\). By (3.33) we obtain \(b=tb\). Thus \(t=1\), and hence \(f \equiv \Delta _{c}^{k}\,f\). □
Proof of Theorem 1.8
Since \(E_{f}(S_{1},2)= E_{\Delta _{c}^{k}f}(S_{1},2)\), in the line of the proof of Theorem 1.5, we can see that
$$ \,f \equiv t\bigl(\Delta _{c}^{k}\,f \bigr), $$
(3.34)
where \(t^{n}=1\), or
$$ \,f. \Delta _{c}^{k}\,f \equiv s, $$
(3.35)
where \(s^{n} = a^{2n}\). Now we discuss the following cases.
Case 1.
Suppose f and \(\Delta _{c}^{k}\,f\) satisfy (3.34). We discuss the following subcases.
Subcase 1.1.
Assume that \(b_{1}\) is not a Picard value of f. Then there exists α such that \(f(\alpha )= b_{1}\). Since \(E_{f}(S_{2},2)= E_{ \Delta _{c}^{k}f}(S_{2},2)\), we obtain \(\Delta _{c}^{k}\,f(\alpha ) = b _{1}\) or \(\Delta _{c}^{k}\,f(\alpha ) = b_{2}\). If \(\Delta _{c}^{k}\,f( \alpha ) = b_{1}\), then by (3.34) we have \(b_{1}= t b_{1}\). Thus \(t=1\) and \(f \equiv \Delta _{c}^{k}\,f\). If \(\Delta _{c}^{k}\,f(\alpha ) = b_{2}\), then by (3.34) we see that \(b_{1}= t b_{2}\), which contradicts the assumption \(b_{1}^{n} \neq b_{2}^{n}\).
Subcase 1.2.
Assume that \(b_{2}\) is not a Picard value of f. Then in the similar way, we have \(f \equiv \Delta _{c}^{k}\,f\).
Subcase 1.3.
Assume that \(b_{1}\) and \(b_{2}\) are Picard values of f. As \(E_{f}(S_{1},2)= E_{\Delta _{c}^{k}f}(S_{1},2)\), \(b_{1}\) and \(b_{2}\) are Picard values f and \(\Delta _{c}^{k}f\). Again by (3.34) we see that \((tb_{1})\) and \((tb_{2})\) are Picard values of f. Since a meromorphic function has at most two Picard values, \(b_{1}= tb_{1}\) or \(b_{1}= tb_{2}\). If \(b_{1}= tb_{1}\), then \(t=1\) and \(f \equiv \Delta _{c}^{k}f\). If \(b_{1}= t b_{2}\), then it contradicts the assumption \(b_{1}^{n} \neq b_{2}^{n}\).
Case 2.
Suppose f and \(\Delta _{c}^{k}\,f\) satisfy (3.35). We discuss the following subcases.
Subcase 2.1.
Assume that \(b_{1}\) is not a Picard value of f. Then there exists α such that \(f(\alpha )= b_{1}\). Since \(E_{f}(S_{2},2)= E_{ \Delta _{c}^{k}f}(S_{2},2)\), we obtain that \(\Delta _{c}^{k}\,f(\alpha ) = b_{1}\) or \(\Delta _{c}^{k}\,f(\alpha ) = b_{2}\). If \(\Delta _{c}^{k}\,f( \alpha ) = b_{1}\), then by (3.35) we have \(b_{1}^{2}=s\), which contradicts the assumption \(b_{1}^{2n}= a^{2n}\). If \(\Delta _{c}^{k}\,f( \alpha ) = b_{2}\), then by (3.35) we have \((b_{1} b_{2})= s\), which again contradicts the assumption \(b_{1}^{n}b_{2}^{n} \neq a ^{2n}\).
Subcase 2.2.
Assume that \(b_{2}\) is not a Picard value of f. Then in a similar way, we arrive at a contradiction.
Subcase 2.3.
Assume that \(b_{1}\) and \(b_{2}\) are Picard values of f. Since \(E_{f}(S_{2},2)= E_{\Delta _{c}^{k}f}(S_{2},2)\), \(b_{1}\) and \(b_{2}\) are Picard values of f and \(\Delta _{c}^{k}f\). Again by (3.35) we see that \(\frac{s}{b_{1}}\) and \(\frac{s}{b_{2}}\) are Picard values of f. Since a meromorphic function has at most two Picard values, \(b_{1} = \frac{s}{b_{1}}\) or \(b_{1} = \frac{s}{b_{2}}\), and similarly in both situations, contradiction arises. □
Proof of Theorem 1.9
The proof can be carried out in the line of Theorem 1.7. □
Proof of Theorem 1.10
The proof can be carried out in the line of Theorem 1.8. □
In this section, we have the following observation.