Let us begin by recalling some notations and definitions needed in this section. Assume that X is a nonempty set. Suppose that \(S:X\times X \to X\) and \(t:X \to X\) are two mappings. Then t commutes with S if
$$ tS(x,y)=S(tx,ty) \quad\text{for every }x,y \in X. $$
For a partial order ⪯, define \(E_{\preceq }=\{(x,y) \in X\times X:x\preceq y\}\) (see [3]). Then S has the ⪯-t-monotone property if, for every \(x,y \in X\),
$$ x_{1},x_{2} \in X, (tx_{1},tx_{2}) \in E_{\preceq } \quad\implies\quad \bigl(S(x_{1},y),S(x _{2},y)\bigr)\in E_{\preceq } $$
and
$$ y_{1},y_{2} \in X, (ty_{1},ty_{2}) \in E_{\preceq } \quad\implies \quad\bigl(S(x,y _{1}),S(x,y_{2}) \bigr)\in E_{\preceq }. $$
Next, we give the definition of triangular α-admissible property, which is needed later in this section.
Definition 2.1
Suppose that \(S:X \times X \to X, t:X \to X\) and \(\alpha:X^{2} \times X^{2} \to [0,+\infty ]\) satisfy the following:
- (i)
if \(\alpha ((tx,ty),(tu,tv)) \geq 1\), then \(\alpha ((S(x,y),S(y,x)),(S(u,v),S(v,u))) \geq 1\),
- (ii)
if \(\alpha ((tx,ty),(tu,tv)) \geq 1\) and \(\alpha ((tu,tv),(S(u,v),S(v,u))) \geq 1\), then
$$ \alpha \bigl((tx,ty),\bigl(S(u,v),S(v,u)\bigr)\bigr) \geq 1. $$
Then S and t are said to be triangular α-admissible.
Now, let \(\varTheta ^{\prime }\) consist of all \(\theta:[0,+\infty ] \times [0, +\infty ] \to [0,1)\) so that all the following hold:
- \((\theta _{1})\):
\(\theta (s,t)=\theta (t,s)\) for any \(s,t\in {}[ 0,+\infty ]\),
- \((\theta _{2})\):
for \(\{s_{n}\}, \{t_{n}\}\subseteq {}[ 0,+\infty ]\),
$$ \lim_{n\rightarrow \infty }\theta (s_{n},t_{n})=1 \quad\text{implies } \lim_{n\rightarrow \infty }s_{n}=\lim _{n\rightarrow \infty }t_{n}=0. $$
Moreover, refer to [1, 2], the definition of an upper class of type I is extended as follows.
Definition 2.2
Given two mappings \(h\colon [0,+\infty ] \times [0, +\infty ] \rightarrow \mathbb{R}\cup \{+\infty \}\) and \(\mathcal{F}:[0,+\infty ] \times [0, +\infty ] \rightarrow \mathbb{R}\cup \{+\infty \}\), define an upper class of type I to be the pair \((\mathcal{F},h)\) satisfying that, for all \(s,t,x,y\in [0,+\infty ]\),
- (i)
\(h(1,y)\leq h(x,y)\) whenever \(1 \leq x\),
- (ii)
\(\mathcal{F}(s,t)\leq \mathcal{F}(1,t)\) whenever \(0\leq s\leq 1\),
- (iii)
\(y\leq st\) whenever \(h(1,y)\leq \mathcal{F}(s,t)\).
Example 2.3
For \(l>1\), \(m,n\in \mathbb{N}\), each pair \((\mathcal{F},h)\) is an upper class of type I, where \(h\colon [0,+\infty ] \times [0, +\infty ] \rightarrow \mathbb{R}\cup \{+\infty \}\) and \(\mathcal{F}:[0,+\infty ] \times [0, +\infty ] \rightarrow \mathbb{R}\cup \{+\infty \}\) are defined as follows:
- (a)
\(h(x,y)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} (y+l)^{x} & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise, } \end{array} } \text{ and } \mathcal{F}(s,t)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} st+l & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{array} } \)
- (b)
\(h(x,y)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} (x+l)^{y} & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise, } \end{array} } \text{ and } \mathcal{F}(s,t)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} (1+l)^{st} & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{array} } \)
- (c)
\(h(x,y)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} y & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise, } \end{array} } \text{ and } \mathcal{F}(s,t)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} st & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{array} } \)
- (d)
\(h(x,y)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} x^{m}y^{n} & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise,} \end{array} } \text{ and } \mathcal{F}(s,t)= \bigl\{ \scriptsize{ \begin{array}{l@{\quad}l} s^{n}t^{n} & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{array} } \)
To introduce our first theorem, for convenience purposes, assume all of the following throughout this section. Assume that \((X,\mathcal{D}, \preceq )\) is a complete partially ordered JS-metric space. Define \(S:X\times X \to X\) and \(t:X \to X\) to have the properties as follows:
- (i)
\(S(X^{2})\subseteq t(X)\),
- (ii)
S is ⪯-t-monotone,
- (iii)
t is \(\mathcal{D}\)-continuous and commutes with S.
Now, we state the first main theorem. This result is a generalized version for coupled coincidence points of [6, Theorem 3.1].
Theorem 2.4
Suppose that each statement is true:
- (i)
For any upper class
\((\mathcal{F},h)\)of type I, there are
\(\alpha:X^{2} \times X^{2} \to [0,+\infty ]\)and
\(\theta \in \varTheta '\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{ \preceq }\), the inequality is obtained:
$$\begin{aligned} &h\bigl(\alpha\bigl((tx,ty),(tu,tv)\bigr),\mathcal{D}\bigl(S(x,y),S(u,v)\bigr) \bigr) \\ &\quad \leq \mathcal{F}\bigl(\theta \bigl(\mathcal{D}(tx,tu),\mathcal{D}(ty,tv)\bigr), M\bigl((tx,tu),(ty,tv)\bigr)\bigr) \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (ii)
Sandtare triangularα-admissible, and there are
\(x_{0},y_{0}\in X\), \((t x_{0},S(x_{0},y_{0})), (ty_{0},S(y_{0},x_{0}))\in E_{\preceq }\)so that
$$\begin{aligned} & \alpha \bigl((tx_{0},ty_{0}),\bigl(S(x_{0},y_{0}),S(y_{0},x_{0}) \bigr)\bigr) \geq 1 \quad\textit{and } \\ & \alpha \bigl((ty_{0},tx_{0}),\bigl(S(y_{0},x_{0}),S(x_{0},y_{0}) \bigr)\bigr) \geq 1; \end{aligned}$$
- (iii)
If
\(\lim_{n \to \infty } \mathcal{D}(tx_{n},tx_{n+1})=0 \)and
\(\lim_{n \to \infty } \mathcal{D}(ty_{n},ty_{n+1})=0\), then
$$ \sup \bigl\{ \mathcal{D}(tx_{0},tx_{n}), \mathcal{D}(ty_{0},ty_{n}):n\in \mathbb{N}\bigr\} < \infty, $$
where
\(\{x_{n}\}\)and
\(\{y_{n}\}\)are sequences inX;
- (iv)
Sis
\(\mathcal{D}\)-continuous.
Then a coupled coincidence point oftandSexists.
Proof
Suppose that \(x_{0}\) and \(y_{0}\) are elements in X satisfying assumption (ii). Since \(S(X^{2}) \subseteq t(X)\), we can choose \(x_{1},y_{1} \in X\) such that \(tx_{1}=S(x_{0},y_{0})\) and \(ty_{1}=S(y _{0},x_{0})\). Similarly, \(tx_{2}=S(x_{1},y_{1})\) and \(ty_{2}=S(y_{1},x _{1})\) for some \(x_{2},y_{2}\in X\). Continue this argument. Then \(\{x_{n}\}\) and \(\{y_{n}\}\) are obtained with
$$ tx_{n+1}=S(x_{n},y_{n})\quad\text{and}\quad ty_{n+1}=S(y_{n},x_{n}). $$
Suppose that \(tx_{n_{0}+1}=tx_{n_{0}}\) and \(ty_{n_{0}+1}=ty_{n_{0}}\) for some natural number \(n_{0}\). Then a coupled coincidence point of t and S exists, i.e., \((x_{n_{0}},y_{n_{0}})\), and so we are done. Assume that
$$ tx_{n+1}\neq tx_{n}\quad\text{or}\quad ty_{n+1} \neq ty_{n} $$
for each positive integer n. By condition (ii),
$$ (tx_{0},tx_{1})\in E_{\preceq }\quad\text{and}\quad (ty_{0},ty_{1}) \in E_{ \preceq }. $$
Since S is ⪯-t-monotone,
$$ \bigl(S(x_{0},y_{0}),S(x_{1},y_{1}) \bigr)\in E_{\preceq }\quad\text{and}\quad \bigl(S(y _{0},x_{0}),S(y_{1},x_{1}) \bigr)\in E_{\preceq }. $$
That is,
$$ (tx_{1},tx_{2})\in E_{\preceq }\quad\text{and}\quad (ty_{1},ty_{2}) \in E_{\preceq }. $$
Repeat this process, we have that
$$ (tx_{n},tx_{n+1})\in E_{\preceq }\quad\text{and}\quad (ty_{n},ty_{n+1}) \in E_{\preceq }\quad\text{for all }n\in \mathbb{N}. $$
By transitivity of ⪯, we get that
$$ (tx_{n},tx_{n+m})\in E_{\preceq }\quad\text{and}\quad (ty_{n},ty_{n+m}) \in E _{\preceq }\quad\text{for all }n,m\in \mathbb{N}. $$
From assumption (ii),
$$ \alpha \bigl((tx_{0},ty_{0}),(tx_{1},ty_{1}) \bigr)=\alpha \bigl((tx_{0},ty_{0}),\bigl(S(x _{0},y_{0}),S(y_{0},x_{0}) \bigr)\bigr)\geq 1. $$
Since S and t are α-admissible,
$$ \alpha \bigl((tx_{1},ty_{1}),(tx_{2},ty_{2}) \bigr)=\alpha \bigl(\bigl(S(x_{0},y_{0}),S(y _{0},x_{0})\bigr),\bigl(S(x_{1},y_{1}),S(y_{1},x_{1}) \bigr)\bigr)\geq 1. $$
Thus, by mathematical induction, we obtain that
$$ \alpha \bigl((tx_{n},ty_{n}),(tx_{n+1},ty_{n+1}) \bigr)\geq 1\quad\text{for all }n \in \mathbb{N}. $$
With the same process as above, it can be concluded that
$$ \alpha \bigl((ty_{n},tx_{n}),(ty_{n+1},tx_{n+1}) \bigr)\geq 1\quad \text{for all }n \in \mathbb{N}. $$
Since S and t are triangular α-admissible,
$$\begin{aligned} & \alpha \bigl((tx_{n},ty_{n}),(tx_{n+m},ty_{n+m}) \bigr)\geq 1\quad \text{and } \\ & \alpha \bigl((ty_{n},tx_{n}),(ty_{n+m},tx_{n+m}) \bigr)\geq 1\quad\text{for all }n, m\in \mathbb{N}. \end{aligned}$$
Next, we prove the following claims.
Claim 1. \(\lim_{n\rightarrow \infty }\mathcal{D}(tx_{n},tx_{n+1})=0\text{ and } \lim_{n\rightarrow \infty }\mathcal{D}(ty_{n},ty_{n+1})=0\).
To prove by contradiction, assume that either \(\lim_{n\rightarrow \infty }\mathcal{D}(tx_{n},tx_{n+1})\neq0\) or
\(\lim_{n\rightarrow \infty }\mathcal{D}(ty_{n},ty_{n+1})\neq0\). Then there exists \(\varepsilon >0\) for which we can obtain a subsequence \(\{n_{k}\}\) such that \(n_{k}\geq k\) and
$$ \epsilon \leq \max \bigl\{ \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+1}), \mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+1})\bigr\} . $$
Consider
$$\begin{aligned} & h\bigl(1,\mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+1})\bigr) \\ &\quad =h\bigl(1,\mathcal{D}\bigl(S(x_{{n_{k}}-1},y_{{n_{k}}-1}),S(x_{{n_{k}}},y _{n_{k}})\bigr)\bigr) \\ &\quad \leq h\bigl(\alpha \bigl((tx_{{n_{k}}-1},ty_{{n_{k}}-1}),(tx_{{n_{k}}},ty _{{n_{k}}})\bigr),\mathcal{D}\bigl(S(x_{{n_{k}}-1},y_{{n_{k}}-1}),S(x_{{n_{k}}},y _{{n_{k}}})\bigr)\bigr) \\ &\quad \leq \mathcal{F} {\bigl(}\theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}})\bigr),M\bigl((tx_{{n_{k}}-1},tx_{{n _{k}}}),(ty_{{n_{k}}-1},ty_{{n_{k}}}) \bigr)\bigr) \end{aligned}$$
and
$$\begin{aligned} & h\bigl(1,\mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+1})\bigr) \\ &\quad =h\bigl(1,\mathcal{D}\bigl(S(y_{{n_{k}}-1},x_{{n_{k}}-1}),S(y_{{n_{k}}},x _{n_{k}})\bigr)\bigr) \\ &\quad \leq h\bigl(1,\alpha \bigl((ty_{{n_{k}}-1},tx_{{n_{k}}-1}),(ty_{n_{k}},tx _{n_{k}})\bigr)\mathcal{D}\bigl(S(y_{{n_{k}}-1},x_{{n_{k}}-1}),S(y_{n_{k}},x _{n_{k}})\bigr)\bigr) \\ &\quad \leq \mathcal{F} {\bigl(}\theta \bigl(\mathcal{D}(ty_{{n_{k}}-1},ty_{n_{k}}), \mathcal{D}(tx_{{n_{k}}-1},tx_{n_{k}})\bigr),M\bigl((ty_{{n_{k}}-1},ty_{n_{k}}),(tx _{{n_{k}}-1},tx_{n_{k}})\bigr)\bigr). \end{aligned}$$
These two inequalities imply that
$$\begin{aligned} & \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+1}) \\ &\quad \leq \theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}}), \mathcal{D}(ty _{{n_{k}}-1},ty_{{n_{k}}})\bigr)M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}}),(ty_{{n _{k}}-1},ty_{{n_{k}}}) \bigr) \end{aligned}$$
(2.1)
and
$$\begin{aligned} & \mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+1}) \\ &\quad \leq \theta \bigl(\mathcal{D}(ty_{{n_{k}}-1},ty_{n_{k}}), \mathcal{D}(tx _{{n_{k}}-1},tx_{n_{k}})\bigr)M\bigl((ty_{{n_{k}}-1},ty_{n_{k}}),(tx_{{n_{k}}-1},tx _{n_{k}})\bigr). \end{aligned}$$
(2.2)
Since \(\theta (s,t)\in {}[ 0,1)\) for any \(s,t\in {}[ 0,+ \infty ]\),
$$\begin{aligned} M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}}),(ty_{{n_{k}}-1},ty_{{n_{k}}}) \bigr) & =M\bigl((ty _{{n_{k}}-1},ty_{n_{k}}),(tx_{{n_{k}}-1},tx_{n_{k}}) \bigr) \\ & =\max \bigl\{ \mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}}), \mathcal{D}(ty _{{n_{k}}-1},ty_{{n_{k}}})\bigr\} . \end{aligned}$$
(2.3)
From (2.1), (2.2), and (2.3),
$$\begin{aligned} & \max \bigl\{ \mathcal{D}(tx_{{n_{k}}},tx_{{n_{k}}+1}), \mathcal{D}(ty_{ {n_{k}}},ty_{{n_{k}}+1})\bigr\} \\ &\quad \leq \theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}}), \mathcal{D}(ty _{{n_{k}}-1},ty_{{n_{k}}})\bigr)\max \bigl\{ \mathcal{D}(tx_{{n_{k}}-1},tx_{ {n_{k}}}),\mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}}) \bigr\} . \end{aligned}$$
With this idea, we finally have the following inequality:
$$\begin{aligned} & \max \bigl\{ \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+1}), \mathcal{D}(ty_{n_{k}},ty _{{n_{k}}+1})\bigr\} \\ &\quad \leq \prod_{i=1}^{n_{k}}\theta \bigl( \mathcal{D}(tx_{{n_{k}}-i},tx_{ {n_{k}}+1-i}),\mathcal{D}(ty_{{n_{k}}-i},ty_{{n_{k}}+1-i}) \bigr)\max \bigl\{ \mathcal{D}(tx_{0},tx_{1}), \mathcal{D}(ty_{0},ty_{1})\bigr\} . \end{aligned}$$
Then choose \(i_{k}\) such that
$$\begin{aligned} & \theta \bigl(\mathcal{D}(tx_{{n_{k}}-i_{k}},tx_{{n_{k}}+1-i_{k}}), \mathcal{D}(ty_{{n_{k}}-i_{k}},ty_{{n_{k}}+1-i_{k}})\bigr) \\ & \quad=\max_{1\leq i\leq n_{k}}\bigl\{ \theta \bigl(\mathcal{D}(tx_{{n_{k}}-i},tx _{{n_{k}}+1-i}),\mathcal{D}(ty_{{n_{k}}-i},ty_{{n_{k}}+1-i})\bigr) \bigr\} . \end{aligned}$$
Define \(\eta:=\limsup_{k\rightarrow \infty }\{\theta (\mathcal{D}(tx_{{n_{k}}-i _{k}},tx_{{n_{k}}+1-i_{k}}),\mathcal{D}(ty_{{n_{k}}-i_{k}},ty_{{n_{k}}+1-i _{k}}))\}\).
If \(\eta <1\), then
$$ \lim_{k\rightarrow \infty }\max \bigl\{ \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+1}), \mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+1})\bigr\} =0. $$
This contradicts the assumption.
Assume that \(\eta =1\). For convenience, we suppose that
$$ \lim_{k\rightarrow \infty }\theta \bigl(\mathcal{D}(tx_{{n_{k}}-i_{k}},tx _{{n_{k}}+1-i_{k}}),\mathcal{D}(ty_{{n_{k}}-i_{k}},ty_{{n_{k}}+1-i _{k}})\bigr)=1. $$
Since \(\theta \in \varTheta ^{\prime }\),
$$ \lim_{k\rightarrow \infty }\mathcal{D}(tx_{{n_{k}}-i_{k}},tx_{{n_{k}}+1-i _{k}})=0\quad\text{and}\quad \lim_{k\rightarrow \infty }\mathcal{D}(ty_{{n_{k}}-i _{k}},ty_{{n_{k}}+1-i_{k}})=0. $$
That is, there exists \(k_{0}\in \mathbb{N}\) such that
$$ \mathcal{D}(tx_{n_{k_{0}}-i_{k_{0}}},tx_{n_{k_{0}}+1-i_{k_{0}}})< \frac{ \epsilon }{2}\quad\text{and}\quad \mathcal{D}(ty_{{n_{k_{0}}-i_{k_{0}}}},ty _{{n_{k_{0}}}+1}-i_{k_{0}})< \frac{\epsilon }{2}. $$
Thus, we have that
$$\begin{aligned} \epsilon \leq{}& \max \bigl\{ \mathcal{D}(tx_{n_{k_{0}}},tx_{n_{k_{0}}+1}), \mathcal{D}(ty_{n_{k_{0}}},ty_{n_{k_{0}}+1})\bigr\} \\ \leq{}& \prod_{j=1}^{i_{k_{0}}}\theta \bigl( \mathcal{D}(tx_{n_{k_{0}}-j},tx _{{n_{k_{0}}}+1-j}),\mathcal{D}(ty_{n_{k_{0}}-j},ty_{n_{k_{0}}+1-j}) \bigr) \\ & {}\times \max \bigl\{ \mathcal{D}(tx_{n_{k_{0}}-i_{k_{0}}},tx_{n_{k_{0}}+1-i_{k_{0}}}), \mathcal{D}(ty_{n_{k_{0}}-i_{k_{0}}},ty_{n_{k_{0}}+1-i_{k_{0}}})\bigr\} \\ < {}&\frac{\epsilon }{2}. \end{aligned}$$
This is a contradiction. Therefore, we conclude that
$$ \lim_{n\rightarrow \infty }\mathcal{D}(tx_{n},tx_{n+1})=0\quad\text{and}\quad \lim_{n\rightarrow \infty }\mathcal{D}(ty_{n},ty_{n+1})=0. $$
(2.4)
Claim 2. \(\{tx_{n}\}\) and \(\{ty_{n}\}\) are \(\mathcal{D}\)-Cauchy sequences.
We suppose by contradiction that neither \(\{tx_{n}\}\) nor \(\{ty_{n}\}\) is a \(\mathcal{D}\)-Cauchy sequence. Consequently, subsequences \(\{n_{k}\}\) and \(\{m_{k}\}\) can be obtained, where \(n_{k},m_{k}\geq k\) for each \(k\in \mathbb{N}\), and \(\epsilon ^{\prime }\leq \max \{ \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+{m_{k}}}),\mathcal{D}(ty_{n_{k}},ty _{{n_{k}}+{m_{k}}})\}\) for some \(\epsilon ^{\prime }>0\). Consider
$$\begin{aligned} & h\bigl(1,\mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+{m_{k}}})\bigr) \\ &\quad =h\bigl(1,\mathcal{D}\bigl(S(x_{{n_{k}}-1},y_{{n_{k}}-1}),S(x_{{n_{k}}+{m _{k}}-1},y_{{n_{k}}+{m_{k}}-1}) \bigr)\bigr) \\ &\quad \leq h\bigl(\alpha \bigl((tx_{{n_{k}}-1},ty_{{n_{k}}-1}),(tx_{{n_{k}}+{m_{k}}-1},ty _{{n_{k}}+{m_{k}}-1})\bigr),\mathcal{D}\bigl(S(x_{{n_{k}}-1},y_{{n_{k}}-1}),S(x_{{n_{k}}-1},y_{{n_{k}}-1}) \bigr)\bigr) \\ &\quad \leq \mathcal{F}\bigl(\theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+ {m_{k}}-1}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr),M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}),(ty_{{n_{k}}-1},ty_{{n_{k}}+ {m_{k}}-1}) \bigr)\bigr) \end{aligned}$$
and
$$\begin{aligned} & h\bigl(1,\mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+{m_{k}}})\bigr) \\ &\quad =h\bigl(1,\mathcal{D}\bigl(S(y_{{n_{k}}-1},x_{{n_{k}}-1}),S(y_{{n_{k}}+{m _{k}}-1},x_{{n_{k}}+{m_{k}}-1}) \bigr)\bigr) \\ &\quad \leq h\bigl(\alpha \bigl((ty_{{n_{k}}-1},tx_{{n_{k}}-1}),(ty_{{n_{k}}+{m_{k}}-1},tx_{{n_{k}}+{m_{k}}-1})\bigr), \mathcal{D}\bigl(S(y_{{n_{k}}-1},x_{{n_{k}}-1}),S(y_{{n_{k}}+{m_{k}}-1},x _{{n_{k}}+{m_{k}}-1})\bigr)\bigr) \\ &\quad \leq \mathcal{F} {(}\theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+ {m_{k}}-1}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr),M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}),(ty_{{n_{k}}-1},ty_{{n_{k}}+ {m_{k}}-1}) \bigr). \end{aligned}$$
These imply that
$$\begin{aligned} & \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+{m_{k}}}) \\ &\quad \leq \theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr) \\ & \qquad{}\times M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}),(ty_{{n_{k}}-1},ty_{{n_{k}}+ {m_{k}}-1}) \bigr)) \end{aligned}$$
(2.5)
and
$$\begin{aligned} & \mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+{m_{k}}}) \\ & \quad\leq \theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr) \\ & \qquad{}\times M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}),(ty_{{n_{k}}-1},ty_{{n_{k}}+ {m_{k}}-1}) \bigr). \end{aligned}$$
(2.6)
By (2.4), we have that
$$\begin{aligned} & M\bigl((tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}),(ty_{{n_{k}}-1},ty_{{n _{k}}+{m_{k}}-1}) \bigr) \\ &\quad =M\bigl((ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1}),(tx_{{n_{k}}-1},tx_{ {n_{k}}+{m_{k}}-1}) \bigr) \\ & \quad=\max \bigl\{ \mathcal{D}(tx_{{n_{k}}-1},tx_{n_{k}+m_{k}-1}), \mathcal{D}(ty _{{n_{k}}-1},ty_{n_{k}+m_{k}-1})\bigr\} . \end{aligned}$$
(2.7)
From (2.5), (2.6), and (2.7), we obtain that
$$\begin{aligned} & \max \bigl\{ \mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+{m_{k}}}),\mathcal{D}(ty _{n_{k}},ty_{{n_{k}}+{m_{k}}})\bigr\} \\ & \quad\leq \theta \bigl(\mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}), \mathcal{D}(ty_{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr) \\ & \qquad{}\times\max \bigl\{ \mathcal{D}(tx_{{n_{k}}-1},tx_{{n_{k}}+{m_{k}}-1}), \mathcal{D}(ty _{{n_{k}}-1},ty_{{n_{k}}+{m_{k}}-1})\bigr\} . \end{aligned}$$
Therefore,
$$\begin{aligned} & \max \bigl\{ \mathcal{D}(tx_{n_{k}}, tx_{{n_{k}}+{m_{k}}}), \mathcal{D}(ty _{n_{k}},ty_{{n_{k}}+{m_{k}}})\bigr\} \\ &\quad \leq \prod_{i=1}^{n_{k}}\theta \bigl( \mathcal{D}(tx_{{n_{k}}-i},tx_{{n_{k}}+ {m_{k}}-i}),\mathcal{D}(ty_{{n_{k}}-i},ty_{{n_{k}}+{m_{k}}-i}) \bigr) \\ & \qquad{}\times\max \bigl\{ \mathcal{D}(tx_{0},tx_{m_{k}}), \mathcal{D}(ty_{0},ty_{m_{k}}) \bigr\} . \end{aligned}$$
Choose \(i_{k}\) such that
$$\begin{aligned} &\theta \bigl(\mathcal{D}(tx_{{n_{k}}-i_{k}} ,tx_{{n_{k}}+{m_{k}}-i_{k}}), \mathcal{D}(ty_{{n_{k}}-i_{k}},ty_{{n_{k}}+{m_{k}}-i_{k}})\bigr) \\ &\quad =\max_{1\leq i\leq n_{k}}\bigl\{ \theta \bigl(\mathcal{D}(tx_{{n_{k}}-i},tx _{{n_{k}}+{m_{k}}-i}),\mathcal{D}(ty_{{n_{k}}-i},ty_{{n_{k}}+{m_{k}}-i})\bigr) \bigr\} . \end{aligned}$$
Define \(\eta:=\limsup_{k\rightarrow \infty }\{\theta (\mathcal{D}(tx_{{n_{k}}-i _{k}},tx_{{n_{k}}+{m_{k}}-i_{k}}),\mathcal{D}(ty_{{n_{k}}-i_{k}},ty _{{n_{k}}+{m_{k}}-i_{k}}))\}\).
If \(\eta <1\), then \(\lim_{k\rightarrow \infty }\max \{\mathcal{D}(tx_{n_{k}},tx_{{n_{k}}+ {m_{k}}}),\mathcal{D}(ty_{n_{k}},ty_{{n_{k}}+{m_{k}}})\}=0\). This cannot be possible due to the assumption.
Assume that \(\eta =1\). For convenience, suppose that
$$ \lim_{k\rightarrow \infty }\theta \bigl(\mathcal{D}(tx_{{n_{k}}-i_{k}},tx _{{n_{k}}+{m_{k}}-i_{k}}),\mathcal{D}(ty_{{n_{k}}-i_{k}},ty_{{n_{k}}+ {m_{k}}-i_{k}})\bigr)=1. $$
Since \(\theta \in \varTheta ^{\prime }\) and (2.4),
$$ \lim_{k\rightarrow \infty }\mathcal{D}(tx_{{n_{k}}-i_{k}},tx_{{n_{k}}+ {m_{k}}-i_{k}})=0\quad\text{and}\quad \lim_{k\rightarrow \infty }\mathcal{D}(ty _{{n_{k}}-i_{k}},ty_{{n_{k}}+{m_{k}}-i_{k}})=0. $$
We obtain that
$$ \mathcal{D}(tx_{{n_{k_{0}}}-i_{k_{0}}},tx_{{n_{k_{0}}}+{m_{k_{0}}}-i _{k_{0}}})< \frac{\epsilon ^{\prime }}{2}\quad\text{and}\quad \mathcal{D}(ty_{ {n_{k_{0}}}-i_{k_{0}}},ty_{{n_{k_{0}}}+{m_{k_{0}}}-i_{k_{0}}})< \frac{ \epsilon ^{\prime }}{2} $$
for some \(k_{0}\in \mathbb{N}\). Thus, we have that
$$\begin{aligned} \epsilon ^{\prime } \leq {}&\max \bigl\{ \mathcal{D}(tx_{n_{k_{0}}},tx_{{n_{k _{0}}}+{m_{k_{0}}}}), \mathcal{D}(ty_{n_{k_{0}}},ty_{{n_{k_{0}}}+{m _{k_{0}}}})\bigr\} \\ \leq{}& \prod_{j=1}^{i_{k_{0}}}\theta \bigl( \mathcal{D}(tx_{n_{k_{0}}-j},tx _{{n_{k_{0}}}+{m_{k_{0}}}-j}),\mathcal{D}(ty_{{n_{k_{0}}}-j},ty_{ {n_{k_{0}}}+{m_{k_{0}}}-j}) \bigr) \\ &{}\times \max \bigl\{ \mathcal{D}(tx_{{n_{k_{0}}}-i_{k_{0}}},tx_{{n_{k_{0}}}+{m_{k _{0}}}-i_{k_{0}}}), \mathcal{D}t(y_{{n_{k_{0}}}-i_{k_{0}}},ty_{{n_{k _{0}}}+{m_{k_{0}}}-i_{k_{0}}})\bigr\} \\ < {}&\frac{\epsilon ^{\prime }}{2}. \end{aligned}$$
This is a contradiction. Thus, the sequences \(\{tx_{n}\}\) and \(\{ty_{n}\}\) must be \(\mathcal{D}\)-Cauchy. By completeness of \((X,\mathcal{D})\),
$$\begin{aligned} &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(S(x_{n},y_{n}), \omega \bigr)= \lim_{n\rightarrow \infty }\mathcal{D}(tx_{n},\omega )=0, \\ &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(S(y_{n},x_{n}), \omega ^{\prime }\bigr)=\lim_{n\rightarrow \infty }\mathcal{D} \bigl(ty_{n},\omega ^{\prime }\bigr)=0 \end{aligned}$$
for some \(\omega,\omega ^{\prime }\in X\). By the continuity of t,
$$ \lim_{n\rightarrow \infty }\mathcal{D}\bigl(t\bigl(S(x_{n},y_{n}) \bigr),t\omega \bigr)=0\quad \text{and}\quad \lim_{n\rightarrow \infty }\mathcal{D} \bigl(t\bigl(S(y_{n},x_{n})\bigr),t \omega ^{\prime }\bigr)=0. $$
By the continuity of S,
$$ \lim_{n\rightarrow \infty }\mathcal{D}\bigl(S(tx_{n},ty_{n}),S \bigl(\omega, \omega ^{\prime }\bigr)\bigr)=0\quad \text{and}\quad \lim _{n\rightarrow \infty } \mathcal{D}\bigl(S(ty_{n},tx_{n}),S \bigl(\omega ^{\prime },\omega \bigr)\bigr)=0. $$
Now, by the commutation between t and S, it can be obtained that \(t\omega =S(\omega,\omega ^{\prime })\) and \(t\omega ^{\prime }=S( \omega ^{\prime },\omega )\). Therefore, a coupled coincidence point of t and S exists, namely \((\omega,\omega ^{\prime })\). □
Corollary 2.5
Theorem 2.4is valid when assumption (i) is substituted by one of the following statements:
- (i)
There are
\(\theta \in \varTheta '\)and
\(l>1\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} &\bigl(\mathcal{D}\bigl(S(x,y),S(u,v)\bigr)+l\bigr)^{\alpha ((tx,ty),(tu,tv))} \\ &\quad \leq \theta \bigl(\mathcal{D}(tx,tu),\mathcal{D}(ty,tv)\bigr)M \bigl((tx,tu),(ty,tv)\bigr)+l \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)={} &\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (ii)
There are
\(\theta \in \varTheta '\)and
\(l>1\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} \bigl(\alpha \bigl((tx,ty),(tu,tv)\bigr)+l\bigr)^{\mathcal{D}(S(x,y),S(u,v))} \leq (1+l)^{ \theta (\mathcal{D}(tx,tu),\mathcal{D}(ty,tv))M((tx,tu),(ty,tv))} \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)={} &\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (iii)
There is
\(\theta \in \varTheta '\)satisfying, for any
\((tx,tu)\in E_{\preceq }\),\((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} \mathcal{D}\bigl(S(x,y),S(u,v)\bigr) \leq \theta \bigl(\mathcal{D}(tx,tu), \mathcal{D}(ty,tv)\bigr)M\bigl((tx,tu),(ty,tv)\bigr) \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (iv)
There is
\(\theta \in \varTheta '\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} &\bigl(\alpha \bigl((tx,ty),(tu,tv)\bigr)\bigr)^{m}\bigl( \mathcal{D}\bigl(S(x,y),S(u,v)\bigr)\bigr)^{n} \\ &\quad \leq \bigl(\theta \bigl(\mathcal{D}(tx,tu)\mathcal{D}(ty,tv)\bigr) \bigr)^{n}\bigl(M\bigl((tx,tu),(ty,tv)\bigr)\bigr)^{n} \end{aligned}$$
for all positive integers
\(m,n\)when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} . \end{aligned}$$
Proof
- (i)
Apply h and \(\mathcal{F}\) from Example 2.3(a) to Theorem 2.4.
- (ii)
Apply h and \(\mathcal{F}\) from Example 2.3(b) to Theorem 2.4.
- (iii)
Apply h and \(\mathcal{F}\) from Example 2.3(c) to Theorem 2.4.
- (iv)
Apply h and \(\mathcal{F}\) from Example 2.3(d) to Theorem 2.4.
□
Remark 2.6
-
(1)
Corollary 2.5 holds for standard metric, b-metric, and dislocated metric spaces.
-
(2)
Theorem 3.1 in [4] is a consequence of Corollary 2.5(iii).
-
(3)
Theorem 3.1 in [6] is a special case of Corollary 2.5(iv) when \(m=n=1\).
Example 2.7
Given \(X=[0,+\infty ]\) and \(x,y\in X\), define \(\mathcal{D}(x,y)= \max \{x,y\}\), and \(S:X\times X\rightarrow X\) and \(t:X\rightarrow X\) by
$$ S(x,y)= \textstyle\begin{cases} \frac{x+y}{2} & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise } \end{cases}\displaystyle \quad\text{and}\quad tx= \textstyle\begin{cases} 2x & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{cases} $$
Also, define \(\alpha:X^{2}\times X^{2}\rightarrow {}[ 0,+\infty ] \) by
$$ \alpha \bigl((x,y),(u,v)\bigr)= \textstyle\begin{cases} 4 & \text{if }x\leq y\text{ and }u\leq v, \\ 0 & \text{otherwise. } \end{cases} $$
Let \(x\leq u\) and \(y\leq v\). Then
$$\begin{aligned} \mathcal{D}\bigl(S(x,y),S(u,v)\bigr) &=\max \biggl\{ \frac{x+y}{2}, \frac{u+v}{2}\biggr\} \\ &\leq \frac{1}{2}\max \{2u,2v\} \\ &=\theta \bigl(\mathcal{D}(tx,tu),\mathcal{D}(ty,tv)\bigr)M\bigl((tx,tu),(ty,tv) \bigr)). \end{aligned}$$
Thus, assumption (iii) of Corollary 2.5 holds for \(\theta (k,l)= \frac{1}{2}\), where \(k,l\in {}[ 0,+\infty ]\). From Theorem 2.4, it can be easily shown that each property stated in the theorem holds. Hence, it follows that a coupled coincidence point of t and S exists.
In this example, observe that \(\mathcal{D}\) is not a metric on X. Then Theorem 3.1 in [4] cannot be used to guarantee the existence of a coupled coincidence point for t and S. Moreover, one of the assumptions of Theorems 3.1 and 3.2 in [6] fails as shown below. When \(x\leq y \leq v\) and \(x\leq u \leq v\), consider
$$\begin{aligned} \alpha \bigl((tx,ty),(tu,tv)\bigr)\mathcal{D}\bigl(S(x,y),S(u,v)\bigr) &= 4\max \biggl\{ \frac{x+y}{2},\frac{u+v}{2}\biggr\} \\ &=4\biggl(\frac{u+v}{2}\biggr) \\ &=2u+2v \\ &> \theta \bigl(\mathcal{D}(tx,tu),\mathcal{D}(ty,tv)\bigr)\cdot 2v \\ &= \theta \bigl(\mathcal{D}(tx,tu),\mathcal{D}(ty,tv)\bigr)M \bigl((tx,tu),(ty,tv)\bigr) \end{aligned}$$
for all \(\theta \in \varTheta '\).
Define \(\mathcal{F}^{\prime }\) to be the class of mappings \(\beta:[0,+ \infty ] \to [0,1)\) such that
$$ \beta (t_{n}) \to 1 \quad\text{implies } t_{n} \to 0 \quad\text{for all } t_{n}\in [0,+\infty ]. $$
Next, we introduce our second main theorem which is a generalized version of [6, Theorem 3.2]. It can be remarked that the continuity of S is not necessary to obtain the result.
Theorem 2.8
Suppose that each statement is true:
- (i)
For any upper class
\((\mathcal{F},h)\)of type I, there are
\(\alpha:X^{2} \times X^{2} \to [0,+\infty ]\)and
\(\beta \in \mathcal{F}'\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} &h\bigl(\alpha\bigl((tx,ty),(tu,tv)\bigr),\mathcal{D}\bigl(S(x,y),S(u,v)\bigr) \bigr) \\ &\quad \leq \mathcal{F}\bigl(\beta \bigl(M\bigl((tx,tu),(ty,tv)\bigr)\bigr),M \bigl((tx,tu),(ty,tv)\bigr)\bigr) \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (ii)
Sandtare triangularα-admissible, and there are
\(x_{0},y_{0}\in X\), \((t x_{0},S(x_{0},y_{0})), (ty_{0},S(y_{0},x_{0}))\in E_{\preceq }\)so that
$$\begin{aligned} & \alpha \bigl((tx_{0},ty_{0}),\bigl(S(x_{0},y_{0}),S(y_{0},x_{0}) \bigr)\bigr) \geq 1 \quad\textit{and } \\ & \alpha \bigl((ty_{0},tx_{0}),\bigl(S(y_{0},x_{0}),S(x_{0},y_{0}) \bigr)\bigr) \geq 1; \end{aligned}$$
- (iii)
If
\(\lim_{n \to \infty } \mathcal{D}(tx_{n},tx_{n+1})=0 \)and
\(\lim_{n \to \infty } \mathcal{D}(ty_{n},ty_{n+1})=0\), then
$$ \sup \bigl\{ \mathcal{D}(tx_{0},tx_{n}), \mathcal{D}(ty_{0},ty_{n}):n\in \mathbb{N}\bigr\} < \infty, $$
where
\(\{x_{n}\}\)and
\(\{y_{n}\}\)are sequences inX;
- (iv)
If
\(\{x_{n}\}\)and
\(\{y_{n}\}\)are sequences inXwith
\((tx_{n},tx_{n+1}),(ty_{n},ty_{n+1})\in E_{\preceq }\),
$$\begin{aligned} &\alpha \bigl((tx_{n},ty_{n}),(tx_{n+1},ty_{n+1}) \bigr) \geq 1, \\ &\alpha \bigl((ty_{n},tx_{n}),(ty_{n+1},tx_{n+1}) \bigr) \geq 1 \quad\textit{for all } n\in \mathbb{N}, \end{aligned}$$
and
\(\lim_{n \to \infty } \mathcal{D}(tx_{n},\omega )=0\textit{ and } \lim_{n \to \infty } \mathcal{D}(ty_{n},\omega ')=0\), then
\((tx_{n},t \omega ),(ty_{n},t \omega ')\in E_{\preceq }\),
$$\begin{aligned} &\alpha \bigl((tx_{n},ty_{n}),\bigl(t \omega,t \omega '\bigr)\bigr) \geq 1, \\ &\alpha \bigl((ty_{n},tx_{n}),\bigl(t \omega ',t \omega \bigr)\bigr) \geq 1\quad \textit{for all } n\in \mathbb{N}; \end{aligned}$$
- (v)
There exists
\(0< C\leq 1\)such that
$$\begin{aligned} &\mathcal{D}\bigl(t\omega,S\bigl(\omega,\omega '\bigr)\bigr)\leq C\limsup_{n \to \infty }\mathcal{D}\bigl(S(tx_{n},ty_{n}),S \bigl(\omega,\omega '\bigr)\bigr) \quad\textit{and} \\ &\mathcal{D}\bigl(t\omega ',S\bigl(\omega ',\omega \bigr)\bigr)\leq C\limsup_{n \to \infty }\mathcal{D} \bigl(S(ty_{n},tx_{n}),S\bigl(\omega ', \omega \bigr)\bigr). \end{aligned}$$
ThentandShave a coupled coincidence point.
Proof
According to the statements in Theorem 2.4, the sequences \(\{tx_{n}\}\) and \(\{ty_{n}\}\) can be obtained. Moreover, by using \(\beta (M((tx,tu),(ty,tv)))\) for \(\theta (\mathcal{D}(tx,tu), \mathcal{D}(ty,tv))\) in Theorem 2.4, where \(x,y,u,v\in X\), these two sequences are \(\mathcal{D}\)-Cauchy in a JS-metric space \((X,\mathcal{D})\) that is complete. As a result,
$$\begin{aligned} &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(S(x_{n},y_{n}), \omega \bigr)= \lim_{n\rightarrow \infty }\mathcal{D}(tx_{n},\omega )=0, \\ &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(S(y_{n},x_{n}), \omega ^{\prime }\bigr)=\lim_{n\rightarrow \infty }\mathcal{D} \bigl(ty_{n},\omega ^{\prime }\bigr)=0 \end{aligned}$$
for some \(\omega,\omega ^{\prime }\in X\). By the continuity of t,
$$\begin{aligned} &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(tS(x_{n},y_{n}),t \omega \bigr) = \lim_{n\rightarrow \infty }\mathcal{D}(ttx_{n},t \omega )=0, \\ &\lim_{n\rightarrow \infty }\mathcal{D}\bigl(tS(y_{n},x_{n}),t \omega ^{ \prime }\bigr) =\lim_{n\rightarrow \infty }\mathcal{D} \bigl(tty_{n},t \omega ^{\prime }\bigr)=0. \end{aligned}$$
By assumptions (i), (ii), we have that
$$\begin{aligned} & h\bigl(1,\mathcal{D}\bigl(S(tx_{n},ty_{n}),S\bigl( \omega,\omega ^{\prime }\bigr)\bigr)\bigr) \\ &\quad \leq h\bigl(\alpha \bigl((ttx_{n},tty_{n}),\bigl(t \omega,t\omega ^{\prime }\bigr)\bigr), \mathcal{D}\bigl(S(tx_{n},ty_{n}),S \bigl(\omega,\omega ^{\prime }\bigr)\bigr)\bigr) \\ & \quad\leq \mathcal{F} {\bigl(}\beta \bigl(M\bigl((ttx_{{n}},t\omega ), \bigl(tty_{{n}},t \omega ^{\prime }\bigr)\bigr)\bigr),M \bigl((ttx_{{n}},t\omega ),\bigl(tty_{{n}},t\omega ^{\prime }\bigr)\bigr)\bigr) \end{aligned}$$
and
$$\begin{aligned} & h\bigl(1,\mathcal{D}\bigl(S(ty_{n},tx_{n}),S\bigl( \omega ^{\prime },\omega \bigr)\bigr)\bigr) \\ &\quad \leq h\bigl(\alpha \bigl((tty_{n},ttx_{n}),\bigl(t \omega ^{\prime },t\omega \bigr)\bigr), \mathcal{D}\bigl(S(ty_{n},tx_{n}),S \bigl(\omega ^{\prime },\omega \bigr)\bigr)\bigr) \\ & \quad\leq \mathcal{F}\bigl(\beta \bigl(M\bigl(\bigl(tty_{{n}},t\omega ^{\prime }\bigr),(ttx_{ {n}},t\omega )\bigr)\bigr),M\bigl( \bigl(tty_{{n}},t\omega ^{\prime }\bigr),(ttx_{{n}},t \omega )\bigr)\bigr), \end{aligned}$$
where
$$\begin{aligned} & M\bigl((ttx_{{n}},t\omega ),\bigl(tty_{{n}},t\omega ^{\prime }\bigr)\bigr) \\ &\quad =M\bigl(\bigl(tty_{{n}},t\omega ^{\prime } \bigr),(ttx_{{n}},t\omega )\bigr) \\ &\quad =\max \bigl\{ \mathcal{D}(ttx_{n},t\omega ),\mathcal{D} \bigl(tty_{n},t \omega ^{\prime }\bigr),\mathcal{D} \bigl(ttx_{n},S(tx_{n},ty_{n})\bigr), \\ & \qquad\mathcal{D}\bigl(tty_{n},S(ty_{n},tx_{n}) \bigr),\mathcal{D}\bigl(t\omega,S\bigl(\omega, \omega ^{\prime }\bigr) \bigr),\mathcal{D}\bigl(t\omega ^{\prime },S\bigl(\omega ^{\prime }, \omega \bigr)\bigr)\bigr\} . \end{aligned}$$
(2.8)
Consequently,
$$\begin{aligned} & \mathcal{D}\bigl(S(tx_{n},ty_{n}),S\bigl(\omega,\omega ^{\prime }\bigr)\bigr) \\ &\quad \leq \beta \bigl(M\bigl((ttx_{{n}},t\omega ),\bigl(tty_{{n}},t \omega ^{\prime }\bigr)\bigr)\bigr)M\bigl((ttx _{{n}},t\omega ), \bigl(tty_{{n}},t\omega ^{\prime }\bigr)\bigr) \end{aligned}$$
(2.9)
and
$$\begin{aligned} & \mathcal{D}\bigl(S(ty_{n},tx_{n}),S\bigl(\omega ^{\prime },\omega \bigr)\bigr) \\ & \quad\leq \beta \bigl(M\bigl(\bigl(tty_{{n}},t\omega ^{\prime } \bigr),(ttx_{{n}},t\omega )\bigr)\bigr)M\bigl(\bigl(tty _{{n}},t\omega ^{\prime }\bigr),(ttx_{{n}},t\omega ) \bigr). \end{aligned}$$
(2.10)
Suppose that \(t\omega \neq S(\omega,\omega ^{\prime })\) or \(t \omega ^{\prime }\neq S(\omega ^{\prime },\omega )\). That is,
$$ D:=\max \bigl\{ \mathcal{D}\bigl(t\omega,S\bigl(\omega,\omega ^{\prime } \bigr)\bigr), \mathcal{D}\bigl(t\omega ^{\prime },S\bigl(\omega ^{\prime },\omega \bigr)\bigr)\bigr\} >0. $$
By assumption (v), there exists \(0< C\leq 1\) such that
$$ \mathcal{D}\bigl(t\omega,S\bigl(\omega,\omega '\bigr)\bigr)\leq C \limsup_{n \to \infty }\mathcal{D}\bigl(S(tx_{n},ty_{n}),S \bigl(\omega,\omega '\bigr)\bigr) \leq C D, $$
and
$$ \mathcal{D}\bigl(t\omega ',S\bigl(\omega ',\omega \bigr)\bigr) \leq C\limsup_{n \to \infty }\mathcal{D} \bigl(S(ty_{n},tx_{n}),S\bigl(\omega ', \omega \bigr)\bigr) \leq C D. $$
Therefore,
$$\begin{aligned} D &=\max \bigl\{ \mathcal{D}\bigl(t\omega,S\bigl(\omega,\omega ^{\prime } \bigr)\bigr), \mathcal{D}\bigl(t\omega ^{\prime },S\bigl(\omega ^{\prime },\omega \bigr)\bigr)\bigr\} \\ &\leq C \limsup_{n \to \infty }\max \bigl\{ \mathcal{D} \bigl(S(tx_{n},ty_{n}),S\bigl( \omega,\omega '\bigr)\bigr),\mathcal{D}\bigl(S(ty_{n},tx_{n}),S \bigl(\omega ',\omega \bigr)\bigr) \bigr\} \\ &\leq C D. \end{aligned}$$
Since \(1\leq \frac{1}{C}\), we get
$$\begin{aligned} D\leq {}&\frac{1}{C}D \\ \leq {}& \limsup_{n \to \infty }\max \bigl\{ \mathcal{D} \bigl(S(tx_{n},ty_{n}),S\bigl( \omega,\omega '\bigr)\bigr),\mathcal{D}\bigl(S(ty_{n},tx_{n}),S \bigl(\omega ',\omega \bigr)\bigr) \bigr\} \\ \leq{} & D. \end{aligned}$$
It follows that \(\limsup_{n \to \infty }\max \{\mathcal{D}(S(tx_{n},ty_{n}),S(\omega, \omega ')),\mathcal{D}(S(ty_{n},tx_{n}),S(\omega ',\omega ))\}=D\).
Then there exists a subsequence \(\max \{\mathcal{D}(S(tx_{n_{k}},ty _{n_{k}}),S(\omega,\omega ')),\mathcal{D}(S(ty_{n_{k}},tx_{n_{k}}),S( \omega ',\omega ))\}\)
such that
$$ \lim_{k\to \infty }\max \bigl\{ \mathcal{D}\bigl(S(tx_{n_{k}},ty_{n_{k}}),S \bigl( \omega,\omega '\bigr)\bigr),\mathcal{D}\bigl(S(ty_{n_{k}},tx_{n_{k}}),S \bigl(\omega ', \omega \bigr)\bigr)\bigr\} =D. $$
Letting \(k\rightarrow \infty \) in (2.8), we have that
$$ \lim_{n\rightarrow \infty }M\bigl((ttx_{{n_{k}}},t\omega ), \bigl(tty_{{n_{k}}},t \omega ^{\prime }\bigr)\bigr)=D. $$
(2.11)
From (2.9) and (2.10),
$$\begin{aligned} & \frac{\max \{\mathcal{D}(S(tx_{n_{k}},ty_{n_{k}}),S(\omega, \omega ^{\prime })),\mathcal{D}(S(ty_{n_{k}},tx_{n_{k}}),S(\omega ^{ \prime },\omega ))\}}{M((ttx_{{n_{k}}},t\omega ),(tty_{{n_{k}}},t \omega ^{\prime }))} \\ & \quad\leq \beta \bigl(M\bigl((ttx_{{n_{k}}},t\omega ),\bigl(tty_{{n_{k}}},t \omega ^{ \prime }\bigr)\bigr)\bigr). \end{aligned}$$
Taking limit on both sides of the inequality, we obtain that
$$ \lim_{n\rightarrow \infty }\beta \bigl(M\bigl((ttx_{{n_{k}}},t\omega ),\bigl(tty_{ {n_{k}}},t\omega ^{\prime }\bigr)\bigr)\bigr)=1. $$
Thus, \(\lim_{n\rightarrow \infty }M((ttx_{{n_{k}}},t\omega ),(tty_{{n_{k}}},t \omega ^{\prime }))=0\). This contradicts equation (2.11). Therefore, \(t\omega =S(\omega,\omega ^{\prime })\) and \(t\omega ^{\prime }=S( \omega ^{\prime },\omega )\). Hence, \((\omega,\omega ^{\prime })\) is a coupled coincidence point of t and S. □
Corollary 2.9
Theorem 2.8is valid when assumption (i) is substituted by one of the following statements:
- (i)
There are
\(\beta \in \mathcal{F}'\)and
\(l>1\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} &\bigl(\mathcal{D}\bigl(S(x,y),S(u,v)\bigr)+l\bigr)^{\alpha ((tx,ty),(tu,tv))} \\ &\quad\leq \beta \bigl(M\bigl((tx,tu),(ty,tv)\bigr)\bigr)M\bigl((tx,tu),(ty,tv) \bigr)+l \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (ii)
There are
\(\beta \in \mathcal{F}'\)and
\(l>1\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} \bigl(\alpha \bigl((tx,ty),(tu,tv)\bigr)+l\bigr)^{\mathcal{D}(S(x,y),S(u,v))} \leq (1+l)^{ \beta (M((tx,tu),(ty,tv)))M((tx,tu),(ty,tv))} \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)={} &\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (iii)
There is
\(\beta \in \mathcal{F}'\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} \mathcal{D}\bigl(S(x,y),S(u,v)\bigr) \leq \beta \bigl(M\bigl((tx,tu),(ty,tv) \bigr)\bigr)M\bigl((tx,tu),(ty,tv)\bigr) \end{aligned}$$
when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} ; \end{aligned}$$
- (iv)
There is
\(\beta \in \mathcal{F}'\)satisfying, for any
\((tx,tu)\in E_{\preceq }\), \((ty,tv)\in E_{\preceq }\), the inequality is obtained:
$$\begin{aligned} &\bigl(\alpha \bigl((tx,ty),(tu,tv)\bigr)\bigr)^{m}\bigl( \mathcal{D}\bigl(S(x,y),S(u,v)\bigr)\bigr)^{n} \\ &\quad \leq \bigl(\beta \bigl(M\bigl((tx,tu),(ty,tv)\bigr)\bigr)\bigr)^{n} \bigl(M\bigl((tx,tu),(ty,tv)\bigr)\bigr)^{n} \end{aligned}$$
for all positive integers
\(m,n\)when
$$\begin{aligned} M\bigl((tx,tu),(ty,tv)\bigr)= {}&\max \bigl\{ \mathcal{D}(tx,tu), \mathcal{D}(ty,tv), \mathcal{D}\bigl(tx,S(x,y)\bigr), \\ &{}\mathcal{D}\bigl(ty,S(y,x)\bigr),\mathcal{D}\bigl(tu,S(u,v)\bigr),\mathcal{D} \bigl(tv,S(v,u)\bigr) \bigr\} . \end{aligned}$$
Proof
- (i)
Apply h and \(\mathcal{F}\) from Example 2.3(a) to Theorem 2.8.
- (ii)
Apply h and \(\mathcal{F}\) from Example 2.3(b) to Theorem 2.8.
- (iii)
Apply h and \(\mathcal{F}\) from Example 2.3(c) to Theorem 2.8.
- (iv)
Apply h and \(\mathcal{F}\) from Example 2.3(d) to Theorem 2.8.
□
Remark 2.10
-
(1)
Corollary 2.9 holds for standard metrics, b-metrics, and dislocated metrics.
-
(2)
Theorem 3.2 in [6] is a consequence of Corollary 2.9(iv). Indeed, let \(m=n=1\).
Example 2.11
Given \(X=[0,+\infty ]\) and \(x,y\in X\), define \(\mathcal{D}(x,y)=|x|+|y|\), and \(S:X\times X\rightarrow X\) and \(t:X\rightarrow X\) by
$$ S(x,y)= \textstyle\begin{cases} \frac{ \vert x-y \vert }{3} & \text{if }x,y\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise} \end{cases}\displaystyle \quad \text{and}\quad tx= \textstyle\begin{cases} 3x & \text{if }x\in {}[ 0,+\infty ), \\ +\infty & \text{otherwise. } \end{cases} $$
Also, define \(\alpha:X^{2}\times X^{2}\rightarrow {}[ 0,+\infty ] \) by
$$ \alpha \bigl((x,y),(u,v)\bigr)= \textstyle\begin{cases} 1 & \text{if }x\leq y\text{ and }u\leq v, \\ 0& \text{otherwise. } \end{cases} $$
Let \(x\leq u\) and \(y\leq v\). When \(r>1\), consider
$$\begin{aligned} \bigl(\alpha \bigl((tx,ty),(tu,tv)\bigr)+r\bigr)^{\mathcal{D}(S(x,y),S(u,v))} &\leq (1+r)^{ (\frac{|x-y|}{3}+\frac{|u-v|}{3} )} \\ &\leq (1+r)^{ \frac{1}{3} ( |x|+|y|+|u|+|v| )} \\ &\leq (1+r)^{ \frac{2}{3}\max \{|3x|+|3u|, |3y|+|3v|\}} \\ & = (1+r)^{ \beta (M((tx,tu),(ty,tv)))M((tx,tu),(ty,tv))}. \end{aligned}$$
Thus, assumption (ii) of Corollary 2.9 holds for \(\beta (t)= \frac{2}{3}\), where \(t\in {}[ 0,+\infty ]\). From Theorem 2.8, it can be easily shown that each property stated in the theorem holds. Hence, it follows that a coupled coincidence point of t and S exists.