In this section we study the global stability of the five equilibrium points \(M_{0}\), \(M_{1}\), \(M_{2}\), \(M_{3}\), and \(M_{4}\) of system (2) by using the Lyapunov method.
Theorem 3
Let requirements [Q1]–[Q4] be satisfied, then the disease-free equilibrium
\(M_{0}=(U_{0},0,0,0,0,0)\)is globally asymptotically stable if
\(R_{0}\leq1\).
Proof
Define
$$\varLambda_{0}(t)= \int_{\varOmega}\varLambda_{0x}(x,t) \,\mathrm {d}x, $$
where
$$\varLambda_{0x}(x,t)=U-U_{0}- \int _{U_{0}}^{U}\lim_{V\rightarrow0^{+}}\frac{\varPi(U_{0},V)}{\varPi(\varphi,V)} \,\mathrm{d}\varphi+I+\frac {\alpha}{b}C+\frac{\alpha(\alpha+\beta)}{b\beta}V+ \frac{\delta}{p}Z+\frac {r\alpha(\alpha+\beta)}{b\beta q}W. $$
Then we get
$$\begin{aligned} \frac{\partial\varLambda_{0x}}{\partial t} ={}& \biggl(1-\lim _{V\rightarrow0^{+}}\frac{\varPi(U_{0},V)}{\varPi(U,V)} \biggr) \bigl( \varTheta(U)-\varPi(U,V) \bigr)\\ &+ \bigl( \varPi(U,V)-\alpha \varPhi_{1}(I)-\delta \varPhi_{1}(I)\varPhi_{4}(Z) \bigr) \\ &+\frac {\alpha}{b} \bigl(d_{C}\Delta C+b\varPhi_{1}(I)-( \alpha+\beta)\varPhi _{2}(C) \bigr)\\ &+ \frac{\alpha(\alpha+\beta)}{b\beta} \bigl(d_{V}\Delta V+\beta\varPhi_{2}(C)-m \varPhi_{3}(V)-r\varPhi_{3}(V)\varPhi_{5}(W) \bigr) \\ &+ \frac{\delta}{p} \bigl(p\varPhi_{1}(I)\varPhi_{4}(Z)- \sigma \varPhi_{4}(Z) \bigr)+ \frac{r\alpha(\alpha+\beta)}{b\beta q} \bigl( q \varPhi_{3}(V)\varPhi_{5}(W)-\mu\varPhi_{5}(W) \bigr). \end{aligned} $$
By using \(\varTheta(U_{0})=0\), [Q1] and [Q4], we get
$$\begin{aligned} \frac{\partial\varLambda_{0x}}{\partial t} ={}& \biggl(1-\lim _{V\rightarrow0^{+}}\frac{\varPi(U_{0},V)}{\varPi(U,V)} \biggr) \bigl(\varTheta(U)- \varTheta(U_{0}) \bigr)\\ &+ \frac{m\alpha(\alpha+\beta )}{b\beta} \biggl(\frac{b\beta}{m\alpha(\alpha+\beta)} \frac{\varPi (U,V)}{\varPhi_{3}(V)} \lim_{V\rightarrow0^{+}}\frac{\varPi (U_{0},V)}{\varPi(U,V)}-1 \biggr) \varPhi_{3}(V) \\ &- \frac{\delta\sigma }{p}\varPhi_{4}(Z)-\frac{r \mu\alpha(\alpha+\beta)}{b\beta q}\varPhi _{5}(W)+\frac{\alpha}{b}d_{C}\Delta C+ \frac{\alpha(\alpha+\beta)}{b\beta }d_{V}\Delta V \\ \leq{}& \biggl(1-\lim_{V\rightarrow0^{+}}\frac{\varPi (U_{0},V)}{\varPi(U,V)} \biggr) \bigl( \varTheta(U)-\varTheta(U_{0}) \bigr)\\ &+\frac{m\alpha(\alpha+\beta)}{b\beta} \biggl( \frac{b\beta}{m\alpha (\alpha+\beta)} \lim_{V\rightarrow0^{+}} \frac{\varPi(U,V)}{\varPhi _{3}(V)} \lim _{V\rightarrow0^{+}}\frac{\varPi(U_{0},V)}{\varPi (U,V)}-1 \biggr)\varPhi_{3}(V) \\ &- \frac{\delta\sigma}{p}\varPhi _{4}(Z)-\frac{r\mu\alpha(\alpha+\beta)}{b\beta q} \varPhi_{5}(W)+\frac {\alpha}{b}d_{C}\Delta C+ \frac{\alpha(\alpha+\beta)}{b\beta}d_{V}\Delta V \\ ={}& \biggl(1-\frac{\partial\varPi(U_{0},0)/\partial V}{\partial \varPi(U,0)/\partial V} \biggr) \bigl(\varTheta(U)-\varTheta(U_{0}) \bigr)\\ &+\frac{m\alpha(\alpha+\beta)}{b\beta} \biggl(\frac{b\beta}{m\alpha (\alpha+\beta) \varPhi_{3}^{\prime}(0)}\frac{\partial\varPi (U_{0},0)}{\partial V} -1 \biggr)\varPhi_{3}(V) \\ &- \frac{\delta\sigma }{p}\varPhi_{4}(Z)-\frac{r\mu\alpha(\alpha+\beta)}{b\beta q}\varPhi _{5}(W)+\frac{\alpha}{b}d_{C}\Delta C+ \frac{\alpha(\alpha+\beta)}{b\beta }d_{V}\Delta V \\ ={}& \biggl(1-\frac{\partial\varPi(U_{0},0)/\partial V}{\partial\varPi(U,0)/\partial V} \biggr) \bigl(\varTheta(U)-\varTheta (U_{0}) \bigr)\\ &+\frac{m\alpha(\alpha+\beta)}{b\beta} (R_{0} -1 ) \varPhi_{3}(V)- \frac{\delta\sigma}{p}\varPhi_{4}(Z) \\ &-\frac{r\mu \alpha(\alpha+\beta)}{b\beta q}\varPhi_{5}(W)+\frac{\alpha }{b}d_{C} \Delta C+\frac{\alpha(\alpha+\beta)}{b\beta}d_{V}\Delta V. \end{aligned} $$
The time derivative of \(\varLambda_{0}(t)\) along the positive solutions of (2) is given by
$$\begin{aligned} \frac{d\varLambda_{0}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\partial\varPi(U_{0},0)/\partial V}{\partial\varPi (U,0)/\partial V} \biggr) \bigl( \varTheta(U)-\varTheta(U_{0}) \bigr) \, \mathrm{d}x \\ &+\frac{m\alpha(\alpha+\beta)}{b\beta} (R_{0} -1 ) \int_{\varOmega} \varPhi_{3}(V) \,\mathrm{d}x \\ &- \frac{\delta\sigma }{p} \int_{\varOmega} \varPhi_{4}(Z) \,\mathrm{d}x- \frac{r\mu\alpha (\alpha+\beta)}{b\beta q} \int_{\varOmega} \varPhi_{5}(W) \,\mathrm {d}x \\ &+ \frac{\alpha d_{C}}{b} \int_{\varOmega} \Delta C \,\mathrm{d}x+\frac {\alpha(\alpha+\beta)d_{V}}{b\beta} \int_{\varOmega} \Delta V \,\mathrm {d}x. \end{aligned}$$
(24)
From the divergence theorem and (4), we have
$$ \int_{\varOmega}\Delta C \,\mathrm{d}x= \int_{\partial\varOmega}\frac {\partial C}{\partial\vec{n}} \,\mathrm{d}x=0,\qquad \int_{\varOmega}\Delta V \,\mathrm{d}x= \int_{\partial\varOmega}\frac{\partial V}{\partial\vec{n}} \,\mathrm{d}x=0. $$
(25)
In addition, we deduce from [Q1] and [Q2] that
$$\biggl( 1-\frac{\partial\varPi(U_{0},0)/\partial V}{\partial\varPi (U,0)/\partial V} \biggr) \bigl( \varTheta(U)-\varTheta(U_{0}) \bigr) \leq0. $$
Accordingly, Eq. (24) is reduced to
$$\begin{aligned} \frac{d\varLambda_{0}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\partial\varPi(U_{0},0)/\partial V}{\partial\varPi (U,0)/\partial V} \biggr) \bigl( \varTheta(U)-\varTheta(U_{0}) \bigr) \, \mathrm{d}x\\&+\frac{m\alpha(\alpha+\beta)}{b\beta} (R_{0} -1 ) \int_{\varOmega} \varPhi_{3}(V) \, \mathrm{d}x \\ &- \frac{\delta\sigma }{p} \int_{\varOmega} \varPhi_{4}(Z) \, \mathrm{d}x- \frac{r\mu\alpha (\alpha+\beta)}{b\beta q} \int_{\varOmega} \varPhi_{5}(W) \, \mathrm {d}x. \end{aligned} $$
Hence, \(\frac{d\varLambda_{0}}{dt}\leq0\) if \(R_{0}\leq1\). Moreover, \(\frac{d\varLambda_{0}}{dt}=0\) when \(U=U_{0}\), \(V=0\), \(Z=0\), and \(W=0\). It follows from system (2) that \(I=0\) and \(C=0\). Accordingly, the largest invariant set in \(\{(U,I,C,V,Z,W):\frac{d\varLambda_{0}}{dt}=0\} \) is the singleton \(\{M_{0}\}\). Thus, by LaSalle’s invariance principle [38], the infection-free equilibrium \(M_{0}\) is globally asymptotically stable when \(R_{0}\leq1\). □
Lemma 1
Suppose that
\(R_{0}>1\)and [Q1]–[Q4] are valid, then
$$\operatorname{sgn}(U_{2}-U_{1})=\operatorname {sgn}(V_{1}-V_{2})=\operatorname{sgn}(R_{1}-1). $$
Proof
From [Q1], [Q2], and [Q4], we can conclude the following relations:
$$\begin{aligned}& ( U_{1}-U_{2} ) \bigl( \varTheta(U_{2})- \varTheta (U_{1}) \bigr) >0, \end{aligned}$$
(26)
$$\begin{aligned}& (U_{2}-U_{1}) \bigl(\varPi(U_{2},V_{2})- \varPi(U_{1},V_{2})\bigr)>0, \end{aligned}$$
(27)
$$\begin{aligned}& ( V_{2}-V_{1} ) \bigl( \varPi(U_{1},V_{2})- \varPi (U_{1},V_{1}) \bigr) >0, \end{aligned}$$
(28)
$$\begin{aligned}& (V_{1}-V_{2}) \biggl( \frac{\varPi(U_{1},V_{2})}{\varPhi _{3}(V_{2})}- \frac{\varPi(U_{1},V_{1})}{\varPhi_{3}(V_{1})} \biggr) >0 \end{aligned}$$
(29)
for \(U_{1},U_{2},V_{1},V_{2}>0\). Assume by contradiction that \(\operatorname{sgn}(U_{2}-U_{1})=\operatorname{sgn}(V_{2}-V_{1})\). By using Eq. (5), we get
$$\begin{aligned} \varTheta(U_{2})-\varTheta(U_{1})&=\varPi(U_{2},V_{2})- \varPi (U_{1},V_{1})\\&= \bigl[ \varPi(U_{2},V_{2})- \varPi(U_{1},V_{2}) \bigr] + \bigl[ \varPi (U_{1},V_{2})-\varPi (U_{1},V_{1}) \bigr] .\end{aligned} $$
Consequently, from (26)–(28) we have \(\operatorname {sgn}(U_{1}-U_{2})=\operatorname{sgn}(U_{2}-U_{1})\), which is a contradiction. This implies that
$$\operatorname{sgn}(U_{2}-U_{1})=\operatorname{sgn}(V_{1}-V_{2}). $$
Moreover, using (17) and (18) with the definition of \(R_{1}\) gives
$$\begin{aligned} R_{1}-1&=\frac{b \beta}{m\alpha(\alpha+\beta)} \frac {\varPi(U_{2},V_{2})}{\varPhi_{3}(V_{2})}-\frac{b \beta}{m\alpha(\alpha +\beta)}\frac{\varPi(U_{1},V_{1})}{\varPhi_{3}(V_{1})} \\ &=\frac{b \beta}{m\alpha(\alpha+\beta)} \biggl[\frac{\varPi(U_{2},V_{2})}{\varPhi _{3}(V_{2})}-\frac{\varPi(U_{1},V_{1})}{\varPhi_{3}(V_{1})} \biggr] \\ &=\frac{b \beta}{m\alpha(\alpha+\beta)} \biggl[ \frac{1}{\varPhi _{3}(V_{2})} \bigl( \varPi(U_{2},V_{2})- \varPi(U_{1},V_{2}) \bigr)+ \frac{\varPi(U_{1},V_{2})}{\varPhi_{3}(V_{2})}- \frac{\varPi (U_{1},V_{1})}{\varPhi_{3}(V_{1})} \biggr]. \end{aligned} $$
Thus, from (27)–(29) we have
$$\operatorname{sgn}(V_{1}-V_{2})=\operatorname{sgn}(R_{1}-1). $$
□
Lemma 2
If
\(R_{0}>1\)and [Q1]–[Q4] hold, then
$$\operatorname{sgn}(U_{3}-U_{1})=\operatorname {sgn}(V_{1}-V_{3})=\operatorname{sgn}(I_{1}-I_{3})= \operatorname{sgn}(R_{2}-1). $$
Proof
From [Q1], [Q2], and [Q4], we have
$$\begin{aligned}& ( U_{1}-U_{3} ) \bigl( \varTheta(U_{3})-\varTheta (U_{1}) \bigr) >0, \end{aligned}$$
(30)
$$\begin{aligned}& (U_{3}-U_{1}) \bigl(\varPi(U_{3},V_{3})- \varPi(U_{1},V_{3})\bigr)>0, \end{aligned}$$
(31)
$$\begin{aligned}& ( V_{3}-V_{1} ) \bigl( \varPi(U_{1},V_{3})-\varPi (U_{1},V_{1}) \bigr) >0, \end{aligned}$$
(32)
$$\begin{aligned}& (V_{1}-V_{3}) \biggl( \frac{\varPi(U_{1},V_{3})}{\varPhi _{3}(V_{3})}- \frac{\varPi(U_{1},V_{1})}{\varPhi_{3}(V_{1})} \biggr) >0 \end{aligned}$$
(33)
for \(U_{1},U_{3},V_{1},V_{3}>0\). From the equilibrium conditions of \(M_{1}\) and \(M_{3}\), we get
$$\begin{gathered} \varPhi_{1}(I_{1})= \frac{m(\alpha+\beta)}{b \beta }\varPhi_{3}(V_{1}), \\ \varPhi_{1}(I_{3})=\frac{m(\alpha+\beta)}{b \beta} \varPhi_{3}(V_{3}), \end{gathered} $$
which implies that \(\operatorname{sgn}(V_{1}-V_{3})=\operatorname {sgn}(I_{1}-I_{3})\). Using (30)–(33) and following the same strategies used for proving Lemma 1, we can show that
$$\operatorname{sgn}(U_{3}-U_{1})=\operatorname{sgn}(V_{1}-V_{3}) $$
and
$$\operatorname{sgn}(V_{1}-V_{3})=\operatorname{sgn}(R_{2}-1). $$
□
Theorem 4
Assume that requirements [Q1]–[Q4] are met, then the infection equilibrium without immune responses
\(M_{1}=(U_{1},I_{1},C_{1} ,V_{1},0,0)\)is globally asymptotically stable if
\(R_{1}\leq1< R_{0}\)and
\(R_{2}\leq1< R_{0}\).
Proof
Introduce a Lyapunov functional
$$\varLambda_{1}(t)= \int_{\varOmega} \varLambda_{1x}(x,t) \, \mathrm{d}x, $$
where
$$\begin{aligned} \varLambda_{1x}(x,t)={}&U-U_{1}- \int _{U_{1}}^{U}\frac {\varPi(U_{1},V_{1})}{\varPi(\varphi,V_{1})}\, \mathrm{d} \varphi+ \biggl(I-I_{1}- \int _{I_{1}}^{I}\frac{\varPhi_{1}(I_{1})}{\varPhi_{1}(\varphi )}\, \mathrm{d} \varphi \biggr)\\& +\frac{\alpha}{b} \biggl(C-C_{1}- \int _{C_{1}}^{C}\frac{\varPhi_{2}(C_{1})}{\varPhi_{2}(\varphi)}\, \mathrm {d} \varphi \biggr) \\ &+\frac{\alpha(\alpha+\beta)}{b\beta} \biggl(V-V_{1}- \int _{V_{1}}^{V}\frac{\varPhi_{3}(V_{1})}{\varPhi_{3}(\varphi )}\, \mathrm{d} \varphi \biggr)+\frac{\delta}{p}Z+\frac{r\alpha(\alpha +\beta)}{b\beta q}W. \end{aligned} $$
Then we get
$$ \begin{aligned} [b]\frac{\partial\varLambda_{1x}}{\partial t}={}& \biggl(1- \frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta (U)-\varPi(U,V) \bigr)\\&+ \biggl(1- \frac{\varPhi_{1}(I_{1})}{\varPhi _{1}(I)} \biggr) \bigl( \varPi(U,V)-\alpha\varPhi_{1}(I)- \delta\varPhi _{1}(I)\varPhi_{4}(Z) \bigr) \\ &+\frac{\alpha}{b} \biggl(1-\frac{\varPhi _{2}(C_{1})}{\varPhi_{2}(C)} \biggr) \bigl(d_{C} \Delta C+b\varPhi _{1}(I)-(\alpha+\beta)\varPhi_{2}(C) \bigr) \\ &+\frac{\alpha(\alpha +\beta)}{b\beta} \biggl(1-\frac{\varPhi_{3}(V_{1})}{\varPhi_{3}(V)} \biggr) \bigl(d_{V} \Delta V+\beta\varPhi_{2}(C)-m\varPhi_{3}(V)-r\varPhi _{3}(V)\varPhi_{5}(W) \bigr)\hspace{-12pt} \\ &+\frac{\delta}{p} \bigl(p\varPhi _{1}(I)\varPhi_{4}(Z)- \sigma\varPhi_{4}(Z) \bigr)+\frac{r\alpha(\alpha +\beta)}{b\beta q} \bigl( q \varPhi_{3}(V)\varPhi_{5}(W)-\mu\varPhi _{5}(W) \bigr) \\ ={}& \biggl(1-\frac{\varPi(U_{1},V_{1})}{\varPi (U,V_{1})} \biggr)\varTheta(U)+\varPi(U_{1},V_{1}) \frac{\varPi (U,V)}{\varPi(U,V_{1})} -\varPi(U,V)\frac{\varPhi_{1}(I_{1})}{\varPhi _{1}(I)}\\&+\alpha\varPhi_{1}(I_{1})+ \delta\varPhi_{1}(I_{1})\varPhi _{4}(Z) \\ &+\frac{\alpha}{b} \biggl(1-\frac{\varPhi_{2}(C_{1})}{\varPhi _{2}(C)} \biggr) d_{C}\Delta C-\alpha\varPhi_{1}(I)\frac{\varPhi _{2}(C_{1})}{\varPhi_{2}(C)}+\frac{\alpha(\alpha+\beta)}{b}\varPhi _{2}(C_{1})\\&+\frac{\alpha(\alpha+\beta)}{b\beta} \biggl(1-\frac{\varPhi _{3}(V_{1})}{\varPhi_{3}(V)} \biggr)d_{V}\Delta V \\ &-\frac{m\alpha (\alpha+\beta)}{b\beta}\varPhi_{3}(V)-\frac{\alpha(\alpha+\beta )}{b} \varPhi_{2}(C)\frac{\varPhi_{3}(V_{1})}{\varPhi_{3}(V)}+\frac {m\alpha(\alpha+\beta)}{b\beta} \varPhi_{3}(V_{1})\\&+\frac{r\alpha(\alpha +\beta)}{b\beta}\varPhi_{3}(V_{1}) \varPhi_{5}(W) \\ &-\frac{\delta\sigma }{p}\varPhi_{4}(Z)-\frac{r\mu\alpha(\alpha+\beta)}{b\beta q}\varPhi _{5}(W). \end{aligned} $$
(34)
At the equilibrium point \(M_{1}\), we have
$$\begin{gathered} \varTheta(U_{1})=\varPi(U_{1},V_{1}), \\ \varPi (U_{1},V_{1})=\alpha\varPhi_{1}(I_{1})= \frac{\alpha(\alpha+\beta )}{b}\varPhi_{2}(C_{1})= \frac{m\alpha(\alpha+\beta)}{b \beta} \varPhi _{3}(V_{1}). \end{gathered} $$
Thus, (34) can be rewritten as follows:
$$\begin{aligned} \frac{\partial\varLambda_{1x}}{\partial t}={}& \biggl(1-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{1}) \bigr)+ \varPi(U_{1},V_{1})-\varPi(U_{1},V_{1}) \frac {\varPi(U_{1},V_{1})}{\varPi(U,V_{1})}\\&+\varPi(U_{1},V_{1})\frac{\varPi (U,V)}{\varPi(U,V_{1})} \\ &-\varPi(U_{1},V_{1})\frac{\varPi(U,V)\varPhi _{1}(I_{1})}{\varPi(U_{1},V_{1})\varPhi_{1}(I)}+\varPi (U_{1},V_{1})-\varPi(U_{1},V_{1}) \frac{\varPhi_{1}(I)\varPhi _{2}(C_{1})}{\varPhi_{1}(I_{1})\varPhi_{2}(C)}\\&+\varPi (U_{1},V_{1})- \varPi(U_{1},V_{1})\frac{\varPhi_{3}(V)}{\varPhi _{3}(V_{1})} \\ &- \varPi(U_{1},V_{1})\frac{\varPhi_{2}(C)\varPhi _{3}(V_{1})}{\varPhi_{2}(C_{1})\varPhi_{3}(V)}+\varPi (U_{1},V_{1})+\delta \biggl(\varPhi_{1}(I_{1})- \frac{\sigma}{p} \biggr)\varPhi_{4}(Z)\\&+ \frac{r\alpha(\alpha+\beta)}{b\beta} \biggl( \varPhi _{3}(V_{1})-\frac{\mu}{q} \biggr) \varPhi_{5}(W) \\ &+\frac{\alpha }{b} \biggl(1-\frac{\varPhi_{2}(C_{1})}{\varPhi_{2}(C)} \biggr) d_{C} \Delta C +\frac{\alpha(\alpha+\beta)}{b\beta} \biggl(1-\frac{\varPhi _{3}(V_{1})}{\varPhi_{3}(V)} \biggr)d_{V} \Delta V \\ ={}& \biggl(1-\frac {\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta (U)- \varTheta(U_{1}) \bigr) \\ &+\varPi(U_{1},V_{1}) \biggl[ 5-\frac{\varPi (U_{1},V_{1})}{\varPi(U,V_{1})}- \frac{\varPi(U,V)\varPhi _{1}(I_{1})}{\varPi(U_{1},V_{1})\varPhi_{1}(I)}-\frac{\varPhi _{1}(I)\varPhi_{2}(C_{1})}{\varPhi_{1}(I_{1})\varPhi_{2}(C)}\\&- \frac {\varPhi_{2}(C)\varPhi_{3}(V_{1})}{\varPhi_{2}(C_{1})\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{1})} \biggr] \\ &+\varPi(U_{1},V_{1}) \biggl[ -1+\frac{\varPi (U,V)}{\varPi(U,V_{1})}- \frac{\varPhi_{3}(V)}{\varPhi_{3}(V_{1})}+ \frac{\varPi(U,V_{1})\varPhi_{3}(V)}{\varPi(U,V)\varPhi_{3}(V_{1})} \biggr]\\&+\delta \bigl( \varPhi_{1}(I_{1})-\varPhi_{1}(I_{3}) \bigr)\varPhi _{4}(Z) \\ &+\frac{r\alpha(\alpha+\beta)}{b\beta} \bigl( \varPhi _{3}(V_{1})- \varPhi_{3}(V_{2}) \bigr) \varPhi_{5}(W)+ \frac{\alpha }{b} \biggl(1-\frac{\varPhi_{2}(C_{1})}{\varPhi_{2}(C)} \biggr) d_{C}\Delta C \\&+\frac{\alpha(\alpha+\beta)}{b\beta} \biggl(1-\frac{\varPhi _{3}(V_{1})}{\varPhi_{3}(V)} \biggr)d_{V}\Delta V. \end{aligned} $$
Thus, the derivative of \(\varLambda_{1}(t)\) with respect to t is given by
$$\begin{aligned} \frac{d\varLambda_{1}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{1}) \bigr) \, \mathrm{d}x \\ &+\varPi(U_{1},V_{1}) \int _{\varOmega} \biggl[ 5-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})}-\frac {\varPi(U,V)\varPhi_{1}(I_{1})}{\varPi(U_{1},V_{1})\varPhi_{1}(I)} \\&- \frac {\varPhi_{1}(I)\varPhi_{2}(C_{1})}{\varPhi_{1}(I_{1})\varPhi_{2}(C)}- \frac{\varPhi_{2}(C)\varPhi_{3}(V_{1})}{\varPhi_{2}(C_{1})\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{1})} \biggr]\, \mathrm{d}x \\ &+ \int_{\varOmega} \frac{\varPi (U_{1},V_{1}) \varPhi_{3}(V)}{\varPi(U,V)\varPi(U,V_{1}) } \bigl(\varPi (U,V)- \varPi(U,V_{1}) \bigr) \biggl(\frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})}{\varPhi_{3}(V_{1})} \biggr) \, \mathrm {d}x \\ &+ \delta \bigl(\varPhi_{1}(I_{1})-\varPhi_{1}(I_{3}) \bigr) \int _{\varOmega} \varPhi_{4}(Z) \, \mathrm{d}x + \frac{r\alpha(\alpha+\beta )}{b\beta} \bigl( \varPhi_{3}(V_{1})- \varPhi_{3}(V_{2}) \bigr) \int _{\varOmega} \varPhi_{5}(W)\, \mathrm{d}x \\ &+\frac{\alpha d_{C} }{b} \int_{\varOmega} \biggl(1-\frac{\varPhi_{2}(C_{1})}{\varPhi_{2}(C)} \biggr) \Delta C \, \mathrm{d}x +\frac{\alpha(\alpha+\beta )d_{V}}{b\beta} \int_{\varOmega} \biggl(1-\frac{\varPhi _{3}(V_{1})}{\varPhi_{3}(V)} \biggr)\Delta V \, \mathrm{d}x. \end{aligned}$$
(35)
We can deduce from the divergence theorem and Neumann boundary conditions that
$$\begin{aligned} 0&= \int_{\partial\varOmega} \frac{1}{\varPhi _{2}(C)}\triangledown C \cdot\vec{n}\, \mathrm{d}x \\ &= \int_{\varOmega } \text{div} \biggl( \frac{1}{\varPhi_{2}(C)}\triangledown C \biggr) \, \mathrm{d}x \\ &= \int_{\varOmega} \biggl[ \frac{1}{\varPhi _{2}(C)}\Delta C- \frac{ \Vert \triangledown C \Vert ^{2}\varPhi _{2}^{\prime}(C)}{(\varPhi_{2}(C))^{2}} \biggr] \, \mathrm{d}x. \end{aligned} $$
Rearranging and using [Q3], we get
$$ \int_{\varOmega}\frac{1}{\varPhi_{2}(C)}\Delta C\, \mathrm{d}x= \int _{\varOmega}\frac{ \Vert \triangledown C \Vert ^{2}\varPhi_{2}^{\prime}(C)}{(\varPhi _{2}(C))^{2}}\, \mathrm{d}x\geq0. $$
(36)
Similarly, we get
$$ \int_{\varOmega}\frac{1}{\varPhi_{3}(V)}\Delta V\, \mathrm{d}x= \int _{\varOmega}\frac{ \Vert \triangledown V \Vert ^{2}\varPhi_{3}^{\prime}(V)}{(\varPhi _{3}(V))^{2}}\, \mathrm{d}x\geq0. $$
(37)
Using (25), (36), and (37), we get
$$\begin{aligned} \frac{d\varLambda_{1}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{1}) \bigr) \, \mathrm{d}x \\ &+\varPi(U_{1},V_{1}) \int _{\varOmega} \biggl[ 5-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})}-\frac {\varPi(U,V)\varPhi_{1}(I_{1})}{\varPi(U_{1},V_{1})\varPhi_{1}(I)}- \frac {\varPhi_{1}(I)\varPhi_{2}(C_{1})}{\varPhi_{1}(I_{1})\varPhi_{2}(C)}\\&- \frac{\varPhi_{2}(C)\varPhi_{3}(V_{1})}{\varPhi_{2}(C_{1})\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{1})} \biggr]\, \mathrm{d}x \\ &+ \int_{\varOmega} \frac{\varPi (U_{1},V_{1}) \varPhi_{3}(V)}{\varPi(U,V)\varPi(U,V_{1}) } \bigl(\varPi (U,V)- \varPi(U,V_{1}) \bigr) \biggl(\frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})}{\varPhi_{3}(V_{1})} \biggr) \, \mathrm {d}x \\ &+ \delta \bigl(\varPhi_{1}(I_{1})-\varPhi_{1}(I_{3}) \bigr) \int _{\varOmega} \varPhi_{4}(Z) \, \mathrm{d}x \\&+ \frac{r\alpha(\alpha+\beta )}{b\beta} \bigl( \varPhi_{3}(V_{1})- \varPhi_{3}(V_{2}) \bigr) \int _{\varOmega} \varPhi_{5}(W)\, \mathrm{d}x \\ &-\frac{\alpha d_{C}\varPhi _{2}(C_{1}) }{b} \int_{\varOmega} \frac{ \Vert \triangledown C \Vert ^{2}\varPhi_{2}^{\prime}(C)}{(\varPhi_{2}(C))^{2}} \, \mathrm{d}x- \frac {\alpha(\alpha+\beta)d_{V}\varPhi_{3}(V_{1})}{b\beta} \int_{\varOmega} \frac{ \Vert \triangledown V \Vert ^{2}\varPhi_{3}^{\prime}(V)}{(\varPhi _{3}(V))^{2}} \, \mathrm{d}x. \end{aligned} $$
From the model requirements [Q1]–[Q4], we obtain
$$ \begin{gathered} \biggl(1-\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})} \biggr) \bigl( \varTheta(U)-\varTheta(U_{1}) \bigr)\leq0, \\ \bigl(\varPi(U,V)-\varPi(U,V_{1}) \bigr) \biggl( \frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{1})}{\varPhi_{3}(V_{1})} \biggr) \leq0. \end{gathered} $$
(38)
Using Lemma 1 and 2 and [Q3], we have
$$\begin{gathered} \varPhi_{1}(I_{1})- \varPhi_{1}(I_{3}) \leq0 \quad \text{if } R_{2}\leq1, \\ \varPhi_{3}(V_{1})- \varPhi _{3}(V_{2}) \leq0 \quad\text{if } R_{1}\leq1. \end{gathered} $$
Using the relation between geometrical and arithmetical means, we have
$$\begin{aligned}[b] 5\leq{}&\frac{\varPi(U_{1},V_{1})}{\varPi(U,V_{1})}+\frac{\varPi (U,V)\varPhi_{1}(I_{1})}{\varPi(U_{1},V_{1})\varPhi_{1}(I)}+\frac{\varPhi_{1}(I)\varPhi _{2}(C_{1})}{\varPhi_{1}(I_{1})\varPhi_{2}(C)}\\&+ \frac{\varPhi_{2}(C)\varPhi_{3}(V_{1})}{\varPhi _{2}(C_{1})\varPhi _{3}(V)}+\frac{\varPi(U,V_{1})\varPhi_{3}(V)}{\varPi(U,V)\varPhi_{3}(V_{1})}. \end{aligned} $$
(39)
The above arguments imply that \(\frac{d\varLambda_{1}}{dt}\leq0\) if \(R_{1}\leq1\) and \(R_{2}\leq1\). It is easy to check that \(\frac{d\varLambda _{1}}{dt}=0\) at \(M_{1}=(U_{1},I_{1},C_{1},V_{1},0,0)\), so \(\{ M_{1} \} \) is the largest invariant subset of \(\{(U,I,C,V,Z,W):\frac{d\varLambda _{1}}{dt}=0\}\). Hence, when \(R_{1}\leq1< R_{0}\) and \(R_{2}\leq1< R_{0}\), \(M_{1}\) exists and LaSalle’s invariance principle [38] assures its global asymptotic stability. □
Theorem 5
The infection equilibrium with only antibody immune response
\(M_{2}=(U_{2},I_{2}, C_{2},V_{2},0,W_{2})\)is globally asymptotically stable if
\(R_{1}>1\), \(R_{3}\leq1\)and whenever [Q1]–[Q4] are satisfied.
Proof
Consider a Lyapunov functional
$$\varLambda_{2}(t)= \int_{\varOmega} \varLambda_{2x}(x,t) \, \mathrm{d}x, $$
where
$$\begin{aligned} \varLambda_{2x}(x,t)={}&U-U_{2}- \int _{U_{2}}^{U}\frac {\varPi(U_{2},V_{2})}{\varPi(\varphi,V_{2})}\, \mathrm{d} \varphi+ \biggl(I-I_{2}- \int _{I_{2}}^{I}\frac{\varPhi_{1}(I_{2})}{\varPhi_{1}(\varphi )}\, \mathrm{d} \varphi \biggr) \\ &+\frac{\alpha}{b} \biggl(C-C_{2}- \int _{C_{2}}^{C}\frac{\varPhi_{2}(C_{2})}{\varPhi_{2}(\varphi)}\, \mathrm {d} \varphi \biggr) \\ &+\frac{\alpha(\alpha+\beta)}{b\beta} \biggl(V-V_{2}- \int_{V_{2}}^{V}\frac{\varPhi_{3}(V_{2})}{\varPhi_{3}(\varphi )}\, \mathrm{d}\varphi \biggr)+\frac{\delta}{p}Z\\&+\frac{r\alpha(\alpha +\beta)}{b\beta q} \biggl(W-W_{2}- \int _{W_{2}}^{W}\frac{\varPhi _{5}(W_{2})}{\varPhi_{5}(\varphi)}\, \mathrm{d} \varphi \biggr). \end{aligned} $$
This leads to
$$\begin{aligned} \frac{\partial\varLambda_{2x}}{\partial t}={}& \biggl(1- \frac{\varPi(U_{2},V_{2})}{\varPi(U,V_{2})} \biggr) \bigl( \varTheta (U)-\varPi(U,V) \bigr) \\ &+ \biggl(1- \frac{\varPhi_{1}(I_{2})}{\varPhi _{1}(I)} \biggr) \bigl( \varPi(U,V)-\alpha\varPhi_{1}(I)- \delta\varPhi _{1}(I)\varPhi_{4}(Z) \bigr) \\ &+\frac{\alpha}{b} \biggl(1-\frac{\varPhi _{2}(C_{2})}{\varPhi_{2}(C)} \biggr) \bigl(d_{C} \Delta C+b\varPhi _{1}(I)-(\alpha+\beta)\varPhi_{2}(C) \bigr) \\ &+\frac{\alpha(\alpha +\beta)}{b\beta} \biggl(1-\frac{\varPhi_{3}(V_{2})}{\varPhi_{3}(V)} \biggr) \bigl(d_{V} \Delta V+\beta\varPhi_{2}(C)-m\varPhi_{3}(V)-r\varPhi _{3}(V)\varPhi_{5}(W) \bigr) \\ &+\frac{\delta}{p} \bigl(p\varPhi _{1}(I)\varPhi_{4}(Z)- \sigma\varPhi_{4}(Z) \bigr) \\ &+\frac{r\alpha(\alpha +\beta)}{b\beta q} \biggl(1- \frac{\varPhi_{5}(W_{2})}{\varPhi_{5}(W)} \biggr) \bigl( q\varPhi_{3}(V)\varPhi_{5}(W)- \mu\varPhi_{5}(W) \bigr). \end{aligned}$$
(40)
From the equilibrium conditions of \(M_{2}\), we observe
$$ \begin{gathered} \varTheta(U_{2})= \varPi(U_{2},V_{2}), \\ \begin{aligned}\varPi (U_{2},V_{2})&=\alpha\varPhi_{1}(I_{2})\\&= \frac{\alpha(\alpha+\beta )}{b}\varPhi_{2}(C_{2})= \frac{m\alpha(\alpha+\beta)}{b \beta} \varPhi _{3}(V_{2})+\frac{r\alpha(\alpha+\beta)}{b \beta}\varPhi _{3}(V_{2})\varPhi_{5}(W_{2}).\end{aligned} \end{gathered} $$
(41)
After collecting terms of (40) and using (41), we get
$$\begin{aligned} \frac{\partial\varLambda_{2x}}{\partial t}={}& \biggl(1-\frac{\varPi(U_{2},V_{2})}{\varPi(U,V_{2})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{2}) \bigr) \\ &+\varPi(U_{2},V_{2}) \biggl[ 5-\frac{\varPi (U_{2},V_{2})}{\varPi(U,V_{2})}- \frac{\varPi(U,V)\varPhi _{1}(I_{2})}{\varPi(U_{2},V_{2})\varPhi_{1}(I)}-\frac{\varPhi _{1}(I)\varPhi_{2}(C_{2})}{\varPhi_{1}(I_{2})\varPhi_{2}(C)}\\&- \frac {\varPhi_{2}(C)\varPhi_{3}(V_{2})}{\varPhi_{2}(C_{2})\varPhi _{3}(V)}-\frac{\varPi(U,V_{2})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{2})} \biggr] \\ &+\varPi(U_{2},V_{2}) \biggl[ -1+\frac{\varPi (U,V)}{\varPi(U,V_{2})}- \frac{\varPhi_{3}(V)}{\varPhi_{3}(V_{2})}+ \frac{\varPi(U,V_{2})\varPhi_{3}(V)}{\varPi(U,V)\varPhi_{3}(V_{2})} \biggr]\\&+\delta \bigl( \varPhi_{1}(I_{2})-\varPhi_{1}(I_{4}) \bigr)\varPhi _{4}(Z) \\ &+\frac{\alpha}{b} \biggl(1-\frac{\varPhi_{2}(C_{2})}{\varPhi _{2}(C)} \biggr) d_{C}\Delta C +\frac{\alpha(\alpha+\beta)}{b\beta } \biggl(1-\frac{\varPhi_{3}(V_{2})}{\varPhi_{3}(V)} \biggr)d_{V}\Delta V. \end{aligned} $$
Now, taking the time derivative of \(\varLambda_{2}(t)\) and applying (25) and (36) with (37) give
$$\begin{aligned} \frac{d\varLambda_{2}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\varPi(U_{2},V_{2})}{\varPi(U,V_{2})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{2}) \bigr) \, \mathrm{d}x \\ &+\varPi(U_{2},V_{2}) \int _{\varOmega} \biggl[ 5-\frac{\varPi(U_{2},V_{2})}{\varPi(U,V_{2})}-\frac {\varPi(U,V)\varPhi_{1}(I_{2})}{\varPi(U_{2},V_{2})\varPhi_{1}(I)}\\&- \frac {\varPhi_{1}(I)\varPhi_{2}(C_{2})}{\varPhi_{1}(I_{2})\varPhi_{2}(C)}- \frac{\varPhi_{2}(C)\varPhi_{3}(V_{2})}{\varPhi_{2}(C_{2})\varPhi _{3}(V)}-\frac{\varPi(U,V_{2})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{2})} \biggr] \, \mathrm{d}x \\ &+ \int_{\varOmega} \frac{\varPi (U_{2},V_{2}) \varPhi_{3}(V)}{\varPi(U,V)\varPi(U,V_{2}) } \bigl(\varPi (U,V)- \varPi(U,V_{2}) \bigr) \biggl(\frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{2})}{\varPhi_{3}(V_{2})} \biggr) \, \mathrm {d}x\\&+ \delta \bigl(\varPhi_{1}(I_{2})- \varPhi_{1}(I_{4}) \bigr) \int _{\varOmega} \varPhi_{4}(Z) \, \mathrm{d}x \\ &-\frac{\alpha d_{C}\varPhi _{2}(C_{2}) }{b} \int_{\varOmega} \frac{ \Vert \triangledown C \Vert ^{2}\varPhi_{2}^{\prime}(C)}{(\varPhi_{2}(C))^{2}} \, \mathrm{d}x- \frac {\alpha(\alpha+\beta)d_{V}\varPhi_{3}(V_{2})}{b\beta} \int_{\varOmega} \frac{ \Vert \triangledown V \Vert ^{2}\varPhi_{3}^{\prime}(V)}{(\varPhi _{3}(V))^{2}} \, \mathrm{d}x. \end{aligned} $$
Using the equilibrium points \(M_{2}\) and \(M_{4}\), we have
$$\begin{gathered} \varPhi_{1}(I_{2})= \frac{1}{\alpha}\varPi (U_{2},V_{2}), \\ \varPhi_{1}(I_{4})=\frac{\sigma}{p}. \end{gathered} $$
Since \(V_{2}=V_{4}\), then by Theorem 2 we have \(U_{2}=U_{4}\). This implies that
$$\varPhi_{1}(I_{2})=\frac{1}{\alpha}\varPi(U_{4},V_{4}). $$
Hence, we obtain
$$\begin{aligned} \varPhi_{1}(I_{2})- \varPhi_{1}(I_{4})&=\frac{1}{\alpha }\varPi(U_{4},V_{4})- \frac{\sigma}{p} \\ &=\frac{\sigma}{p} \biggl[\frac {p}{\sigma\alpha}\varPi(U_{4},V_{4})-1 \biggr] \\ &=\frac{\sigma }{p}(R_{3}-1)\leq0 \quad\text{if } R_{3}\leq1. \end{aligned} $$
Then, using similar justifications to those given in (38) and (39), we find that \(\frac{d\varLambda_{2}}{dt}\leq0\) if \(R_{3}\leq 1\). Also, \(\frac{d\varLambda_{2}}{dt} =0\) whenever \(U=U_{2}\), \(I=I_{2}\), \(C=C_{2}\), \(V=V_{2}\), and \(Z=0\). Let S be the largest invariant subset of \(\lbrace(U,I,C,V,Z,W): \frac{d\varLambda_{2}}{dt} =0\rbrace\). For each element in S, we have \(C=C_{2}\) and \(V=V_{2}\), then \(\frac{\partial V(x,t)}{\partial t}=0\). From system (2) we have \(0=\frac{\partial V(x,t)}{\partial t}=\beta\varPhi_{2}(C_{2})-m\varPhi_{3}(V_{2})-r\varPhi _{3}(V_{2})\varPhi_{5}(W)\) which gives \(W=W_{2}\). It follows from LaSalle’s invariance principle [38] that \(M_{2}\) is defined and globally asymptotically stable if \(R_{1}>1\) and \(R_{3}\leq1\). □
Theorem 6
Suppose that [Q1]–[Q4] are valid, then the infection equilibrium with only CTL immune response
\(M_{3}=(U_{3},I_{3},C_{3},V_{3},Z_{3},0)\)is globally asymptotically stable when
\(R_{2}>1\)and
\(\frac {R_{1}}{R_{3}}\leq1\).
Proof
Take a Lyapunov functional as
$$\varLambda_{3}(t)= \int_{\varOmega}\varLambda_{3x}(x,t)\, \mathrm {d}x, $$
where
$$\begin{aligned} \varLambda_{3x}(x,t)={}&U-U_{3}- \int _{U_{3}}^{U}\frac {\varPi(U_{3},V_{3})}{\varPi(\varphi,V_{3})}\, \mathrm{d} \varphi+ \biggl(I-I_{3}- \int _{I_{3}}^{I}\frac{\varPhi_{1}(I_{3})}{\varPhi_{1}(\varphi )}\, \mathrm{d} \varphi \biggr)\\& +\frac{1}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{3}) \bigr) \biggl(C-C_{3}- \int _{C_{3}}^{C}\frac{\varPhi _{2}(C_{3})}{\varPhi_{2}(\varphi)}\, \mathrm{d} \varphi \biggr) \\ &+\frac {(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta\varPhi_{4}(Z_{3}) \bigr) \biggl(V-V_{3}- \int _{V_{3}}^{V}\frac{\varPhi_{3}(V_{3})}{\varPhi _{3}(\varphi)}\, \mathrm{d} \varphi \biggr)\\&+\frac{\delta}{p} \biggl(Z-Z_{3}- \int _{Z_{3}}^{Z}\frac{\varPhi_{4}(Z_{3})}{\varPhi_{4}(\varphi )}\, \mathrm{d} \varphi \biggr) \\ &+\frac{r(\alpha+\beta)}{b\beta q} \bigl( \alpha+\delta\varPhi_{4}(Z_{3}) \bigr)W. \end{aligned} $$
Then we have
$$\begin{aligned} \frac{\partial\varLambda_{3x}}{\partial t}={}& \biggl(1-\frac{\varPi(U_{3},V_{3})}{\varPi(U,V_{3})} \biggr) \bigl( \varTheta (U)-\varPi(U,V) \bigr) \\&+ \biggl(1-\frac{\varPhi_{1}(I_{3})}{\varPhi _{1}(I)} \biggr) \bigl( \varPi(U,V)-\alpha\varPhi_{1}(I)-\delta\varPhi _{1}(I)\varPhi_{4}(Z) \bigr) \\ &+\frac{1}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{3}) \bigr) \biggl(1-\frac{\varPhi_{2}(C_{3})}{\varPhi_{2}(C)} \biggr) \bigl(d_{C}\Delta C+b \varPhi_{1}(I)-(\alpha+\beta)\varPhi _{2}(C) \bigr) \\ &+\frac{(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta \varPhi_{4}(Z_{3}) \bigr) \\ &\times\biggl(1-\frac{\varPhi_{3}(V_{3})}{\varPhi _{3}(V)} \biggr) \bigl(d_{V}\Delta V+\beta \varPhi_{2}(C)-m\varPhi _{3}(V)-r\varPhi_{3}(V) \varPhi_{5}(W) \bigr) \\ &+\frac{\delta}{p} \biggl(1-\frac{\varPhi_{4}(Z_{3})}{\varPhi_{4}(Z)} \biggr) \bigl(p\varPhi _{1}(I)\varPhi_{4}(Z)-\sigma\varPhi_{4}(Z) \bigr) \\ &+\frac{r(\alpha+\beta )}{b\beta q} \bigl( \alpha+\delta\varPhi_{4}(Z_{3}) \bigr) \bigl( q\varPhi_{3}(V)\varPhi_{5}(W)-\mu \varPhi_{5}(W) \bigr). \end{aligned}$$
(42)
By using the equilibrium conditions at \(M_{3}\)
$$\begin{gathered} \varTheta(U_{3})=\varPi(U_{3},V_{3}), \\ \begin{aligned} \varPi (U_{3},V_{3})&= \bigl( \alpha+\delta \varPhi_{4}(Z_{3}) \bigr)\varPhi _{1}(I_{3})\\&= \frac{(\alpha+\beta)}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{3}) \bigr)\varPhi_{2}(C_{3})= \frac{m(\alpha+\beta)}{b \beta } \bigl( \alpha+ \delta\varPhi_{4}(Z_{3}) \bigr)\varPhi_{3}(V_{3}), \end{aligned}\end{gathered} $$
and collecting terms of (42), we have
$$\begin{aligned} \frac{\partial\varLambda_{3x}}{\partial t}={}& \biggl(1-\frac{\varPi(U_{3},V_{3})}{\varPi(U,V_{3})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{3}) \bigr) \\ &+\varPi(U_{3},V_{3}) \biggl[ 5-\frac{\varPi (U_{3},V_{3})}{\varPi(U,V_{3})}- \frac{\varPi(U,V)\varPhi _{1}(I_{3})}{\varPi(U_{3},V_{3})\varPhi_{1}(I)}-\frac{\varPhi _{1}(I)\varPhi_{2}(C_{3})}{\varPhi_{1}(I_{3})\varPhi_{2}(C)}\\&- \frac {\varPhi_{2}(C)\varPhi_{3}(V_{3})}{\varPhi_{2}(C_{3})\varPhi _{3}(V)}-\frac{\varPi(U,V_{3})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{3})} \biggr] \\ &+\varPi(U_{3},V_{3}) \biggl[ -1+\frac{\varPi (U,V)}{\varPi(U,V_{3})}- \frac{\varPhi_{3}(V)}{\varPhi_{3}(V_{3})}+ \frac{\varPi(U,V_{3})\varPhi_{3}(V)}{\varPi(U,V)\varPhi_{3}(V_{3})} \biggr]\\&+\frac{r(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta\varPhi _{4}(Z_{3}) \bigr) \bigl( \varPhi_{3}(V_{3})-\varPhi_{3}(V_{4}) \bigr) \varPhi_{5}(W) \\ &+\frac{1}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{3}) \bigr) \biggl(1-\frac{\varPhi_{2}(C_{3})}{\varPhi_{2}(C)} \biggr) d_{C}\Delta C \\&+ \frac{(\alpha+\beta)}{b\beta} \bigl( \alpha +\delta\varPhi_{4}(Z_{3}) \bigr) \biggl(1-\frac{\varPhi _{3}(V_{3})}{\varPhi_{3}(V)} \biggr)d_{V}\Delta V. \end{aligned} $$
Then, by using (25), (36), and (37), the derivative of \(\varLambda_{3}(t)\) with respect to time is given by
$$\begin{aligned} \frac{d\varLambda_{3}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\varPi(U_{3},V_{3})}{\varPi(U,V_{3})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{3}) \bigr) \, \mathrm{d}x \\ &+\varPi(U_{3},V_{3}) \int _{\varOmega} \biggl[ 5-\frac{\varPi(U_{3},V_{3})}{\varPi(U,V_{3})}-\frac {\varPi(U,V)\varPhi_{1}(I_{3})}{\varPi(U_{3},V_{3})\varPhi_{1}(I)}- \frac {\varPhi_{1}(I)\varPhi_{2}(C_{3})}{\varPhi_{1}(I_{3})\varPhi_{2}(C)}\\&- \frac{\varPhi_{2}(C)\varPhi_{3}(V_{3})}{\varPhi_{2}(C_{3})\varPhi _{3}(V)}-\frac{\varPi(U,V_{3})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{3})} \biggr] \, \mathrm{d}x \\ &+ \int_{\varOmega} \frac{\varPi (U_{3},V_{3}) \varPhi_{3}(V)}{\varPi(U,V)\varPi(U,V_{3}) } \bigl(\varPi (U,V)- \varPi(U,V_{3}) \bigr) \biggl(\frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{3})}{\varPhi_{3}(V_{3})} \biggr) \, \mathrm {d}x \\ &+ \frac{r(\alpha+\beta) ( \alpha+\delta\varPhi _{4}(Z_{3}) ) }{b\beta} \bigl(\varPhi_{3}(V_{3})-\varPhi _{3}(V_{4}) \bigr) \int_{\varOmega} \varPhi_{5}(W) \, \mathrm{d}x \\ &- \frac{ ( \alpha+\delta\varPhi_{4}(Z_{3}) ) d_{C}\varPhi _{2}(C_{3}) }{b} \int_{\varOmega} \frac{ \Vert \triangledown C \Vert ^{2}\varPhi_{2}^{\prime}(C)}{(\varPhi_{2}(C))^{2}} \, \mathrm{d}x \\ &-\frac{(\alpha+\beta) ( \alpha+\delta\varPhi_{4}(Z_{3}) ) d_{V}\varPhi_{3}(V_{3})}{b\beta} \int_{\varOmega} \frac{ \Vert \triangledown V \Vert ^{2}\varPhi_{3}^{\prime}(V)}{(\varPhi_{3}(V))^{2}} \, \mathrm{d}x. \end{aligned}$$
Using the equilibrium points \(M_{3}\) and \(M_{4}\), we have
$$\begin{gathered} \varPhi_{3}(V_{3})= \frac{b\beta\sigma}{mp(\alpha +\beta)}, \\ \varPhi_{3}(V_{4})=\frac{\mu}{q}. \end{gathered} $$
Hence, we obtain
$$\begin{aligned} \varPhi_{3}(V_{3})- \varPhi_{3}(V_{4})&=\frac{b\beta \sigma}{mp(\alpha+\beta)}-\frac{\mu}{q} \\ &=\frac{\mu}{q} \biggl[\frac {b\beta\sigma q}{mp \mu(\alpha+\beta)}-1 \biggr] \\ &=\frac{\mu}{q} \biggl(\frac{R_{1}}{R_{3}}-1 \biggr)\leq0 \quad\text{if } \frac{R_{1}}{R_{3}}\leq 1. \end{aligned} $$
The other terms are less than or equal to zero for the same reasons given in (38) and (39), therefore \(\frac{d\varLambda _{3}}{dt}\leq0\) if \(\frac{R_{1}}{R_{3}}\leq1\). Following the proof of Theorem 5, one can prove that \(\frac{d\varLambda_{3}}{dt}=0\) at \(M_{3}=(U_{3},I_{3},C_{3},V_{3},Z_{3},0)\) and thus \(\{M_{3}\}\) is the largest invariant subset of \(\{(U,I,C,V,Z,W):\frac{d\varLambda_{3}}{dt}=0\}\). By LaSalle’s invariance principle [38], the equilibrium point \(M_{3}\) is defined and globally asymptotically stable if \(R_{2}>1\) and \(\frac{R_{1}}{R_{3}}\leq1\). □
Theorem 7
Assume that requirements [Q1]–[Q4] are met, then the infection equilibrium with CTL and antibody immune responses
\(M_{4}=(U_{4},I_{4},C_{4},V_{4},Z_{4},W_{4})\)is globally asymptotically stable when
\(R_{1}>R_{3}>1\).
Proof
Define a Lyapunov functional
$$\varLambda_{4}(t)= \int_{\varOmega} \varLambda_{4x}(x,t) \, \mathrm{d}x, $$
where
$$\begin{aligned} \varLambda_{4x}(x,t)={}&U-U_{4}- \int _{U_{4}}^{U}\frac {\varPi(U_{4},V_{4})}{\varPi(\varphi,V_{4})}\, \mathrm{d} \varphi+ \biggl(I-I_{4}- \int _{I_{4}}^{I}\frac{\varPhi_{1}(I_{4})}{\varPhi_{1}(\varphi )}\, \mathrm{d} \varphi \biggr)\\ & +\frac{1}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{4}) \bigr) \biggl(C-C_{4}- \int _{C_{4}}^{C}\frac{\varPhi _{2}(C_{4})}{\varPhi_{2}(\varphi)}\, \mathrm{d} \varphi \biggr) \\ &+\frac {(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta\varPhi_{4}(Z_{4}) \bigr) \biggl(V-V_{4}- \int _{V_{4}}^{V}\frac{\varPhi_{3}(V_{4})}{\varPhi _{3}(\varphi)}\, \mathrm{d} \varphi \biggr)\\ &+\frac{\delta}{p} \biggl(Z-Z_{4}- \int _{Z_{4}}^{Z}\frac{\varPhi_{4}(Z_{4})}{\varPhi_{4}(\varphi )}\, \mathrm{d} \varphi \biggr) \\ &+\frac{r(\alpha+\beta)}{b\beta q} \bigl( \alpha+\delta\varPhi_{4}(Z_{4}) \bigr) \biggl(W-W_{4}- \int _{W_{4}}^{W}\frac{\varPhi_{5}(W_{4})}{\varPhi_{5}(\varphi)}\, \mathrm {d} \varphi \biggr). \end{aligned}$$
Then we obtain
$$ \begin{aligned}[b] \frac{\partial\varLambda_{4x}}{\partial t}={}& \biggl(1- \frac{\varPi(U_{4},V_{4})}{\varPi(U,V_{4})} \biggr) \bigl( \varTheta (U)-\varPi(U,V) \bigr)\\&+ \biggl(1- \frac{\varPhi_{1}(I_{4})}{\varPhi _{1}(I)} \biggr) \bigl( \varPi(U,V)-\alpha\varPhi_{1}(I)- \delta\varPhi _{1}(I)\varPhi_{4}(Z) \bigr) \\ &+\frac{1}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{4}) \bigr) \biggl(1-\frac{\varPhi_{2}(C_{4})}{\varPhi_{2}(C)} \biggr) \bigl(d_{C}\Delta C+b \varPhi_{1}(I)-(\alpha+\beta)\varPhi _{2}(C) \bigr) \\ &+\frac{(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta \varPhi_{4}(Z_{4}) \bigr)\\&\times \biggl(1-\frac{\varPhi_{3}(V_{4})}{\varPhi _{3}(V)} \biggr) \bigl(d_{V}\Delta V+\beta \varPhi_{2}(C)-m\varPhi _{3}(V)-r\varPhi_{3}(V) \varPhi_{5}(W) \bigr) \\ &+\frac{\delta}{p} \biggl(1-\frac{\varPhi_{4}(Z_{4})}{\varPhi_{4}(Z)} \biggr) \bigl(p\varPhi _{1}(I)\varPhi_{4}(Z)-\sigma\varPhi_{4}(Z) \bigr)\\&+\frac{r(\alpha+\beta )}{b\beta q} \bigl( \alpha+\delta\varPhi_{4}(Z_{4}) \bigr) \biggl(1-\frac {\varPhi_{5}(W_{4})}{\varPhi_{5}(W)} \biggr) \bigl( q\varPhi _{3}(V) \varPhi_{5}(W)-\mu\varPhi_{5}(W) \bigr). \end{aligned} $$
(43)
By using the equilibrium conditions at \(M_{4}\)
$$\begin{gathered} \varTheta(U_{4})=\varPi(U_{4},V_{4}), \\ \begin{aligned} \varPi (U_{4},V_{4})&= \bigl( \alpha+\delta \varPhi_{4}(Z_{4}) \bigr)\varPhi _{1}(I_{4})= \frac{(\alpha+\beta)}{b} \bigl( \alpha+\delta\varPhi _{4}(Z_{4}) \bigr)\varPhi_{2}(C_{4}) \\ &= \frac{m(\alpha+\beta)}{b \beta } \bigl( \alpha+\delta\varPhi_{4}(Z_{4}) \bigr)\varPhi_{3}(V_{4})+\frac {r(\alpha+\beta)}{b\beta} \bigl( \alpha+ \delta\varPhi_{4}(Z_{4}) \bigr)\varPhi_{3}(V_{4}) \varPhi_{5}(W_{4}), \end{aligned}\end{gathered} $$
and collecting terms of (43), we have
$$\begin{aligned} \frac{\partial\varLambda_{4x}}{\partial t}={}& \biggl(1-\frac{\varPi(U_{4},V_{4})}{\varPi(U,V_{4})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{4}) \bigr) \\ &+\varPi(U_{4},V_{4}) \biggl[ 5-\frac{\varPi (U_{4},V_{4})}{\varPi(U,V_{4})}- \frac{\varPi(U,V)\varPhi _{1}(I_{4})}{\varPi(U_{4},V_{4})\varPhi_{1}(I)}-\frac{\varPhi _{1}(I)\varPhi_{2}(C_{4})}{\varPhi_{1}(I_{4})\varPhi_{2}(C)}\\&- \frac {\varPhi_{2}(C)\varPhi_{3}(V_{4})}{\varPhi_{2}(C_{4})\varPhi _{3}(V)}-\frac{\varPi(U,V_{4})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{4})} \biggr] \\ &+\varPi(U_{4},V_{4}) \biggl[ -1+\frac{\varPi (U,V)}{\varPi(U,V_{4})}- \frac{\varPhi_{3}(V)}{\varPhi_{3}(V_{4})}+ \frac{\varPi(U,V_{4})\varPhi_{3}(V)}{\varPi(U,V)\varPhi_{3}(V_{4})} \biggr] \\ &+\frac{1}{b} \bigl( \alpha+\delta\varPhi_{4}(Z_{4}) \bigr) \biggl(1-\frac{\varPhi_{2}(C_{4})}{\varPhi_{2}(C)} \biggr) d_{C}\Delta C\\& + \frac{(\alpha+\beta)}{b\beta} \bigl( \alpha+\delta\varPhi _{4}(Z_{4}) \bigr) \biggl(1-\frac{\varPhi_{3}(V_{4})}{\varPhi_{3}(V)} \biggr)d_{V}\Delta V. \end{aligned} $$
Then, by using (25), (36), and (37), the time derivative of \(\varLambda_{4}(t)\) is given by
$$\begin{aligned} \frac{d\varLambda_{4}}{dt} ={}& \int_{\varOmega} \biggl(1-\frac{\varPi(U_{4},V_{4})}{\varPi(U,V_{4})} \biggr) \bigl( \varTheta (U)-\varTheta(U_{4}) \bigr) \, \mathrm{d}x \\ &+\varPi(U_{4},V_{4}) \int _{\varOmega} \biggl[ 5-\frac{\varPi(U_{4},V_{4})}{\varPi(U,V_{4})}-\frac {\varPi(U,V)\varPhi_{1}(I_{4})}{\varPi(U_{4},V_{4})\varPhi_{1}(I)}- \frac {\varPhi_{1}(I)\varPhi_{2}(C_{4})}{\varPhi_{1}(I_{4})\varPhi_{2}(C)}\\&- \frac{\varPhi_{2}(C)\varPhi_{3}(V_{4})}{\varPhi_{2}(C_{4})\varPhi _{3}(V)}-\frac{\varPi(U,V_{4})\varPhi_{3}(V)}{\varPi(U,V)\varPhi _{3}(V_{4})} \biggr] \, \mathrm{d}x \\ &+ \int_{\varOmega} \frac{\varPi (U_{4},V_{4}) \varPhi_{3}(V)}{\varPi(U,V)\varPi(U,V_{4}) } \bigl(\varPi (U,V)- \varPi(U,V_{4}) \bigr) \biggl(\frac{\varPi(U,V)}{\varPhi _{3}(V)}-\frac{\varPi(U,V_{4})}{\varPhi_{3}(V_{4})} \biggr) \, \mathrm {d}x \\ & -\frac{ ( \alpha+\delta\varPhi_{4}(Z_{4}) ) d_{C}\varPhi_{2}(C_{4}) }{b} \int_{\varOmega} \frac{ \Vert \triangledown C \Vert ^{2}\varPhi_{2}^{\prime}(C)}{(\varPhi_{2}(C))^{2}} \, \mathrm {d}x\\&- \frac{(\alpha+\beta) ( \alpha+\delta\varPhi_{4}(Z_{4}) ) d_{V}\varPhi_{3}(V_{4})}{b\beta} \int_{\varOmega} \frac{ \Vert \triangledown V \Vert ^{2}\varPhi_{3}^{\prime}(V)}{(\varPhi_{3}(V))^{2}} \, \mathrm{d}x. \end{aligned}$$
From (38) and (39), we can deduce that \(\frac {d\varLambda_{4}}{dt} \leq0\). Note that \(\frac{d\varLambda_{4}}{dt} =0\) at \(M_{4}=(U_{4},I_{4},C_{4},V_{4}, Z_{4},W_{4})\), and thus \(\lbrace M_{4}\rbrace\) is the largest invariant subset of \(\lbrace(U,I,C,V,Z,W): \frac {d\varLambda_{4}}{dt} =0\rbrace\). Then \(M_{4}\) is globally asymptotically stable by LaSalle’s invariance principle [38], where the point exists if \(R_{1}>R_{3}>1\). □